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This paper extends the tabular and formular material of
the theory of complex spectra to configurations involving f
and g electrons. In making these computations it was
found that in practically every case significant simplifi-
cation could be made over the methods previously used. In
particular, for the computation of the electrostatic energies
for two-electron-like almost-closed-shell configurations a
simple closed formula was found which entirely replaces the
previous lengthy diagonal-sum calculation. The explicit
content of the paper is best exhibited by listing the section

headings: I. Extension of Tables of c~, b", and a~ to gp, gd,

gf, gg. II. Explanation of the Regularities in the Electro-
static Energies of Two-Electron Configurations and
Formulas for gp, gd, gf, gg, g'. III. Formula Determining
the Electrostatic Energies of Two-Electron-Like Con-
figurations with Almost-Closed Shells. Values for psg and
d'g. IV. Matrices for Transformation of pf, df, Pg, dg from
LS to jj Coupling. V. Matrices of Electrostatic Interaction
in jj Coupling for &sf, (d'p), d'd, d'f, d g.

PECTROSCOPIC analysis is beginning more
and more to involve configurations with f

and g electrons. ' For this reason we believe it
useful to extend the tabular and formular
material of the theory of complex spectra to the
point where it will handle the simpler of the
observed f and g-ele-ctron configurations. This
is the purpose of the present paper. The abstract
above contains a statement of the contents by
sections. In extending this material to the more
complicated configurations for which the amount
of computational labor is great, it became de-

sirable to re-examine the methods of calculation
with a view to simplifying them if possible. It
has been found that in practically every case
significant simpliFication could be made over the
methods previously used. In one case (the
determination of the electrostatic energies for
almost-closed-shell configurations) it was possible
to find a simple closed formula to replace the
previous lengthy diagonal-sum calculation. These
simplified methods of computation are discussed
at the beginning of each section before the
tabular results are given.

I ExTENsIDN QF TABLEs DF c
~

li
p

AND G To gpss gfi gdi gg (TABLEs I AND I I)

The a' s, b's, and c's are the Slater coefficients needed to compute the matrix of electrostatic
interaction. ' The values of' the a's and li's follow at once by 8'14 (TAS) from the values of the c's.
The c's represent the following definite integrals:

c'(lm, l'nz') =
~ ~

O(k, m —m') O(lm) O(l'm') sin 0 de,
(2kyl)

~l —l'~ ~&k~&l+l' 0+l+l' = 2g (g integral).

The direct individual evaluation of these integrals by means of Gaunt's formula 8'11 is very
laborious because of the sum occurring in this formula. We find, however, that it is possible to
express c~(l, m; l', l' —e) as the square root of a polynomial in m and then compute from this poly-
nomial the 2l+1 entries with m= l, . , —/ with but little more trouble than the direct evaluation
of a single entry. We start by noting that an examination of Gaunt's derivation shows that 8'11
is valid for the whole range —l~& m &&3; —1'~& m'~& l'; —/" &&m+m'~& l".

Compare, for example, Shenstone s analysis of Cu II, which is discussed theoretically in the paper following this.
'See Condon and Shortley, Theory of Atom~'c Spectra /which we shall denote, following Kemble, by TASj, pp.

175—180 for definitions and previous tabulations.
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TABLE I. c~(lm, l'm') and b~(lm, l'm'). S'e write c~ = +g(x/D&), @here D~ depends only on 0, l, l'. In the table are listed
only the sign preceding the radical and the value of x, D~ being given at the head of each column. Since b~= (c~)', b~ = +x/D&:.¹tethat c~(l'm', An) = {—1) 'c~(lm, l'm').

c (lm, I'm') roR /+l' HvEN

El'

~4
&3
&2
&1

0

a3
&2
+1

0
W1
W2
w3

~4
~3
&2
&1

0
+1
W2
T-3
~4

&3
&2
&1

0

~4
a3
a2

0
~1
W2
W3

~3
&2
+1

0
%1
W2
w3
&2
&1

0
W1
W2

0

0

0
0
0
0
0

a2
~2
~2
&2
&2
+2
&2
a2
~2
&1
&1
&1
+1
~1

~1
&1

0
0
0
0
0

~4

~4

+3
&3
&3
&3
&3
&3
&3
&2
&2
&2
&2
&2
&1
&1
~1.

0

1
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0

0
0
1

+g 70/245
+ 35
+ 15
+ 5
+ 1

0
0
0
0
0

+ 35
+ 40
+ 30
+ 16
+ 5

0
0
0
0

+ 15
+ 30
+ 36

—+784/5929
588
168

0
0
0
0
0
0

49
525
378

0
0
0
0

+ 64
243
540

0
0

+ 289
30

600

+ 400

+V' 1/9
1
1
1
1

—+168/10672.2
378
540
600
540
378
168

0
0

+ 588
+ 525
+ 243
+ 30

30
243
525
588

0

784
49

+ 64
+ 2'89

+ 400

++196/123703 /8g+ 490
+ 630
+ 490
+ 196

0
0
0
0

441
70

+ 70
+ 441
+ 490

0
0

121
360
121

+ 70
+ 630

+ 81
81

360

+ 324

1/4089. 8
+ 5
+ 15
+ 35
+ 70
+ 126
+ 210
+ 330
+ 495

9
32
70

120
175
224
252
240
165

+ 45
+ 108
+ 168
+ 2i0
+ 225

16/20449
84

240
480
720
792
528

0
0

+ 289
+ 507
+ 540
+ 300
+ 18

198
924

484
189

0
+ 210
+ 504

210
420

+ 400

+g 1/120607~~~@9
+ 9
+ 45
+ 165
+ 495
+ 1287
+ 3003
+ 6435
+ 12870

64
252
720

1650
3168
5148
6864

+ 784
+ 1764
+ 3150
+ 4620
+ 5544

'3136
-4410
5040

+ 4900
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ck(bn, l'm') voR l+l' oDD

~4
%3
~2
&1

0

&1
~1
~1
41

&3
a2
&1

0

~1
0
0
0
0
0

W3 &1

++28/147
+ 21
+ 15
+ 10
+ 6
+ 3
+ 1

0
0

0
+ 7
+ 12
+ 15
+ 16

1/363
3
6

10
15

28
36
45

9
16
21

25

a3
a2

0
%1
W2
W3

~4
%3
%2
&1

0
Wi
w2

3

%3
&2
%1

0
%1
W2
W3
~4

&3
&2
&1

0

&3
+3
&3
&3
&3
a3
&3.
&3
&3
a2
&2
&2
&2
a2
&2
+2
~2
~2
&1
&1
%1
+1
&1
&1
~1
~1
%1

0
0
0
0
0

++28/63
+ 7
+ 1

0
0
0
0

0
+ 21
+ 12
+ 3

0
0
0
0

0

+ 15
+ 15
+ 6

0
0
0
0

0
0
0

+ 10
+ 16

—+42/847
63
54
30

9
0
0
0
0

+ 70
+ 14

3
32
49
30

0
0
0

42
+ 14
+ 40
+ 15

1
32
54
0
0

0
63
3

+ 15
+ 36

+Q 420/143143
+ 1575
+ 3375
+ 5250
+ 6300
+ 5670
+ 3150

0
0

1960
4235
4800
3125

700
+ 210
+ 3/60
+ 7350

0

+ 4704
+ 4802
+ 1849
+ 15

1210
3584
3402

294
+ 5880

7056
1764

+ 84
+ 2166
+ 3600

1/26291)$
7

28
84

210
462
924

1716
3003

9
48

147
336
630

1008
1386
1584
1287

180
420
735

1050
1260
1260
990
495

165
480
840

1120
1225

If in 8'11 we substitute l', l' —e for lm; k, m —l'+~ for l'm'; lm for I,", m+m'; we can obtain the
formula

(—1)'+'+'g! (2l+1)(2l'+1) (0+l' —e —m)! (l+m)!
c'(l, m; P, l' —e) =

(g —l)!(g —l')!(g —k)!(2g+ 1)! e!(2l' —~)! (l —m)! (k —l'+ c+m)!

(e) (2g —2k)! (k —l'+m+ e)!
XQ( —1)'i

i (2P —s)!(2g —2l'+ s)! — . (3A)
Esk (2g —2k —s)! ('k —l'+m+s)!

t(~In the sum,
~ ~

is the binomial coefficient, and s runs from 0 to the lesser of e and 2g —2k.' (s
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TABLE Il. a~(lm, l'm'). The value of this coegcierit is independent of the signs of m and m'. As in the preceding table, me
print the common denominator of several related values but once at the beginning of each group. For l =0, a~(00, l'm') = 8(k, 0)
for all l', m'; for k =0, a (lm, l'm') =1for all values of the arguments; in the table me give values only for l, l', k)0. ¹tethat
a~(l'm', lm) =a~(lm, l'm').

lml lm'l

+ 28/385
+ 7

8
17
20

—56
14

+ 16
+ 34
+ 40

4
3
2
1
0

3
2

0

3
2
1
0

2
2
2
2
2

1
'

1

1
1

0
0
0
0
0

+ 56/539
+ 14

16
34
40

28
7

+ 8
+ 17
+ 20
—56

14
+ 16
+ 34
+ 40

+ 14/2335~Ãg
21
11

+ 9
+ 18

56
+ 84
+ 44—36—72

+ 84—126—66
+ 54
+108

3
3
3
3
3

4 1
3 1
2 1

2
1
0

0 4

3 .3
2 3
1 3

+140/1155
+ 35

40—85—100

0
0
0
0
0

84
21

+ 24
+ 51
+ 60
—112

28
+ 32
+ 68
+ 80

+784/5929
+196—224—476—560

+ 49—56—119—140

+ 64
+136
+160
+289
+340
+400

+ 42/3670/&3—63—33
+ 27
+ 54
—98
+ 1.47
+ 77

63—126

+ 14
21
11

+ 9
+ 18

+ 84—126—66
+ 54
+168

+196/12370~ g&8 g—294—154
+126
+252
+441
+231—189—378
+121—99—198

+ 81
+162
+324

+ 4/12269. 4
17

+ 22
+ 1

20

24
+102—132

6
+120
+ 60.—255
+330
+ 15—300
—80
+340—440

20
+400

+ 16/20449—68
+ 88
+

80

+289—374—17
+340
+484

. + 22
' —440

+ 1
20

+400

+ 1/120607 & ~4g
8

+ 28
56

+ 70

+ 64
224

+ 448—560

+ 784—1568
+1960
+3136—3920

+4900



THEORY OF COM PLEX SPECTRA 743

Alternatively if in 8'11 we substitute k, m —1'+e for Im; 1', l' —e for l'm'; Im for /", m+m', we
can obtain

(—1)&+'g! (2l+1)(21'+1) (k+1' —e —m)!
c"(t, m; t', l' e) =-

(g —t)!(g—t')!(g—k)!(2g+1)! e!(2l' —e)! (l m—)!
(3+m)!

(k P+ e—+m)!

(.) (2g —2t)! (t —m)!
XP (—1)'i

i
(2l' —s)!(2g —2l'+ s)! —,(38)

Es) (2g —2l —s)! (1.—m —e+s)!

where s runs from 0 to the lesser of e and 2g —21.
These formulas are good for the full range —1&&m&& /; hence we need consider only e&& 1 since the

negative values of P emay—be covered by the formula c~(l, m; l', m') =c~(t, —m; t', —m'). For
e&~ t, it may be seen that formula (3A) gives directly for (c")' a polynomial of order 2l' in m if e) 2g
—2k; formula (38) gives directty a polynomial of order 2t in m if e)2g —2l; while if e&2g —2k
and e&2g —2l both formulas give polynomials of order 2l' dhrectly. By directly we mean that the
numerator and denominator of the rational function which these formulas give for (c~)' come ready
factorized so that the denominator may be canceled at once. 3

The procedure for calculating the entries of Table I is then the following. In (3A) or (38) take
l&~t to minimize the number of polynomials required. Then for each value of k occurring in (2),
and for e =0, 1, . , l, compute the c's as functions of m, using, in order to simplify the computation
and make the sums as short as possible, (3A) if e)2g —2k, (38) if e)2g —2l (these inequalities
are mutually exclusive), and either formula if e&2g —2l and e&2g —2k. For example, one jets
all the entries for gd from nine formulas, of which the following three are typical:

c'(gm; d2) =+/(4+m)(3+m)(2+m)(1+m)/24 49 Sg'= c( ,g—m; d, —2),
c4(gm; d1) =+(2m —1)[5(5—m)(4+m)/6 121 49]* =c4(g, —m; d, —1),
c'(gm; d0) =+LS(36—m')(25 —m')/4 169 121]' =c'(g —m d 0)

These are valid for —4 ~& m ~& 4.

II. EXPLANATION OF THE REGULARITIES IN THE

ELECTROSTATIC ENERGIES OF TWO-

ELECTRON CONFIGURATIONS

AMD FORMULAS FOR

gp~ g4 gfi ggi g

Inspection of the formulas for the electrostatic
energies of two-electron configurations (TAS
$57) reveals a number of striking regularities to
which attention has been called but for which,
so far as we know, no proofs have been given.
In order that we may justifiably take advantage
of these regularities in our computations, we
first indicate their general proofs.

(a) In the case of IP (two nonequivalent elec-
trons, cf. gp, gd, gf, gg below), 'I and 'I have

equal coepcients of the I"s and equal but opposite
coegcients of the G's.

The ratio of two factorials involving m should here
be treated like the ratio of two I' functions, ignoring the
fact that the factorials may be meaningless for certain
values of m, for the resulting polynomials will always
vanish properly for such m.

Consider a table, such as 1~2 of TAS, in which
the orbital functions are classified according to
M8 and 3III.. The sum of the diagonal elements
of electrostatic energy for the states in the box
(1, IVI), with Ms ——1, Ml, ——Ml„gives the sum
of the energies of the N triplets of largest I.
value, if there are N states in this box. This
sum is a certain linear combination of Ii's and
6's. Consider now the diagonal sum for the
corresponding box (0, Ml, ) with Ms =0. This
box contains 2N states and the diagonal sum
gives the total energy of the N'triplets and
N singlets of highest I value. We see from the
arrangement of the spins that the coefficients of
the Ii's for this box are just twice those for
(1, Mz,), while the coefficients of the G's vanish.
The difference between the diagonal sum for
(0, Mr, ) and (1, Mz, ) is the energy sum for the
X singlets, and this sum therefore has the same
E coefficients but the negative of the 6 coeffi-
cients of the triplet sum. By starting now with
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the highest 3III, value, which involves only one
singlet and one triplet, and working down, we

prove the statement (a) by induction.

(b) In the case of nln'l (nonequivalent electrons
of the same l value, cf. gg below) in addition to

(a) one finds that for those terms which are per
mitted in nl by the exclusion principle the coefji

cients of the F's equal those of the corresponding
G's, while for the terms excluded in nP, corre

sponding coegcients of F's and G's are equal and
opposi te.

(c) One can obtain the electrostatic energies for
nP from those for nln'l by setting F~=G' and
dividing by Z.

The proof of (c) follows at once from the fact
(TAS p. 232) that the Russell-Saunders eigen-
functions of nP, 'both the vanishing and the
nonvanishing ones, may be obtained from the
corresponding eigenfunctions of n/n'/ by setting
n =n' and dividing by v2. Then, since G"(nP)
=Fi(nP), a diagonal electrostatic matrix element
of N/2 in JS coupling is obtained from that of
n/n'/ by setting G~=F~ and dividing by 2; as
stated in (c). If this is done for one of the terms
of // which is excluded from /', the resulting

energy must vanish; this requires that for such
terms of // the coeKcients of F' and G' be equal
and opposite. This proves one of the statements
of (b), the other statement now follows at once
from (a), which says that the unexcluded
member of the pair of terms, 'I., 'L, has opposite
G coefficients from the excluded member, and
hence will have G coefficients equal to its I
coeAicients.

We give now the electrostatic energies of
two-electron configurations involving g electrons.
We also give the f(SI) which determine the
absolute first-order, Lande splitting (cf. TAS
(4'). LWe do not go on a,nd calculate the com-
plete matrices of spin-orbit interaction in I.S
coupling for these configurations because so far
no one has wanted to use these matrices —even
the known ones (TAS, pp. 268—269) for pd, di, dd—for intermediate-coupling computations be-
cause of the extreme complexity of the equations
involved. Most of . the complex configurations
for which intermediate-coupling computations
have been made involve almost-closed shells,
and for these the jj-coupling matrices, which
we do obtain, are of most interest. $

F, F=F,+55 F,w( G,+55G,)
'G, 'G=Fp —77F~( 7G —11, G)
~H 3H=F,+28 F,~(28 G,+ G,)

~('F) = 58 r, -V8 ~,
K('G) = ~40 Kg+f0 CJ

f(3H)= V5 t +Ho fp

ID, D = Fp+ 110 F2+ 143 F4~ ( G2+330 G4+ 7 15 Gp)

IF, 'F = Fp+ 11 Fg —286 F4~ ( 5 G2+957 G4 —286 Gp)

G, G = Fp —65 F2+234 F4+(15 G2+883 G4+ 78 Gp)

~H, H= Fp —70 F2—91 F4~ (35 Gg —798 G4 —13 G6)
= Fp+ 56 F2+ 14 F4~(70 G2+ 168 G4+ Gp)

0('D) = N f.—Va

~('F) ='N4&, -V24«
&('G) =»V40 F +F0 «
~(3H) =»Vso ~g+V»5 «
g(3I) = g», g, +g»

gf: P, P =' Fp+275 F2+429 F4+ 715
iD, 3D = Fp+ 165 F2 —143 F4 —1287
F, F = Fp+ 30 F".—299 F4+1170

'G, 'G ~Fp —94 F2+ 39 F4 —650
'H, H=Fo —159 F2+289 F4+ 225
II 3I =Fp —105 F2 —203 F4 — 45
'X 3K= Fo+140 F2+ 42 F4+ 4

Fp~( GI+33 G3+10725 GO+5005 Gy)

Ff,~ ( 3 GO+77 G3+12155 G6 —3003 Gg)

Fpa( 6 GO+97 G3 —2990 G5+1365 G7)
Fp~ (10 GI.+63 G3 —9594 G5 —455 G7)

Fpa(15 Gp —23 G3+ 8779 Gp+ 105 Gg)
Fp~ (21 Gg —91 G3—3115 Gg — 15 Gy)

F6&(28 GI+42 G3+ 420 Gg+ Gy)

l('P) = N fu —
V4 h

0('D) = Z»2 fg —H2 ~f
r(F) = V»r, + V»2~f
g( G) —

/V20 g + /320 gf
( H) = %0 fg+ V60 ff

g( I) —2/584 g + 1/V

|-(3~)—g2 g + /3

~S, S = Fp+1540 Fg+2002 F4+2860 F6+24310 Fs~(Go+1540 G2+2002 G4+2860 Go+24310 Gs)
3P = Fp+1309 F2+1001 F4—143 F6—19448 F8~ (Gp+1309 G2+1001 G4 143 G6 19448 Gg)

D, D = Fp+ 883 F2 —299 F4—1469 Fp+ 12376 F8&(Gp+ 883 G2 —299 G4 —1469 Go+12376 Gs)
~F, F = Fp+ 334 F2 —949 F4+ 44- F6—6188 Fs+ (Gp+ 334 G2 —949 G4+ 442 Gp —6188 G8)

G, G = Fp —230 F2 —467 F4+1030 Fp+ 2380 F8~(Gp —230 G2 467 G4+ 1030 G6+ 2380 G8)

H, H=' Fp —665 F2+ 581 F4—1205 Fp — 680 F8+ (Gp —665 Gg+ 581 G4 —1205 Gp — 680 Gs)
~I, 'I =Fp —791 F2+ 721 F4+ 601 F6+ 136 Fs~(Gp —791 G2+ 721 G4+ 601 Ge+ 136 G8)
K, X= Fp —392 F2 —784 F4—152 F6 — 17 Fs~ (Gp —392 G2 784 G4 152 Gp 17 Gs)
L, L = Fp+ 784 F2+ 196 F4+ 16 Fp+ Fs~(Gp+ 784 G2+ 196 G4+ 16 G6+ G8)

r('P) =S('D}=r('F) =r('G) =r('H) =S('I) =r('&) =r('L) = V4 r. ,+Y~ r-, .

g': The formulas for the allowed terms, 'S, 'P, jD, 'F, «G, 'H, 'I, 'X, 'L, are obtained from gg by omitting the expressions
in the 6's. The intervals are given by P('P) =g('F) = g('H) =g('X) = —,'1'„,.
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Cppp = 2
Cp11 83
Cp22 = /5
Cp33= g
Cp44= Y9

C112= F15
CIg3 ——%5
C134 F6 3
C14s = y9910&

C222 =
C224

——+35
/105

C233 ——%31
C244 = %93
C246= %43

C334 = +7
C336 = %008
C343 = %001
C34~ = %287
C444= 3%001
C446 +128 7
C443 = %1879

TABLE III. The integrat C„, Lcf. (6)].* ln the diagonal sum for the box characterized
by Ms =0, 3Er. = Mi, the coefficient of G~ (11'),
according to 1"4 (TAS), is seen to be

++2b~(l, ni; 1', 3Ec+m). (4)
m

Now we shall presently prove that

Qb~(l, m; 1', M+m)
~ The table gives all nonvanishing integrals for u and v~4. The

values are independent of the order of the three subscripts.

~,=l+l' (-l+, l'+)(-l-, l'-),

( —l+t+, l'+)( —l+&, l' )
(—l+, l' —1+)(—l, l' —1 ),

M =l+l' —2 (—l+Z+, l'+) (—l+2 —,l'-)
(—l+1+, l' —1+)(—l+1-, l' —1-)
(—l+, l' —2+) (—l-, l' —2-).

(The first entry in each parenthesis gives the
quantum number m~, m, of the electron missing
from the l shell, the second entry the quantum
numbers of the 1' electron. ) The table continues
in this fashion down to 3III.= fl —1' f, and the
G terms in the energies of all the singlets may
be obtained by using just this part of the table.

III. FORMULA DETERMINING THE ELECTROSTATIC

ENERGIES OF TWO-ELECTRON-LIKE CON-

FIGURATIONS WITH ALMOST-CLOSED

SHELLS. VALUES FOR

pig AND dig

In $1" (TAS) it is shown that the coefficients

of the P's in the electrostatic energies for the

configuration 1" '1', which has one electron
missing from the 1 shell, are the negatives of those

for the related two electron -configuration ll'. It is
also shown that the coePcients of the G's vanish

for the triplets, so that if the formulas for ll' are
known the computation is reduced to a determi-
nation of the coefficients of the G's for the
singlets. These G singlet coefficients, in the cases
where they have been previously obtained, by
the lengthy diagonal-sum calculation, turn out
to have the strikingly simple form shown by
the formulas of p. 299, TAS. We show below
the reason for this form and give for the non-
vanishing G coeAicients an explicit formula whose
use eliminates completely the necessity for a
diagonal-sum calculation for configurations of
this type.

The start of the table (similar to 1"5, TAS)
which classifies the orbital functions for l 'l'

according to the values of 3fg and 311, is, for
~8=0:

(21+1)(21'+ 1)
C„, ifk~&fiVf

2(2k+1)
(5)

if k( fMf,=0
so that the sum (4), when it is nonvanishing, is
independent of 3III, The factor C~~ I, is the
integral of the product of three' Legendre
polynomials:

Cii i, = Pi(cos 0)Pi (cos 0)Pi(cos 0) sin 0 de (6).
Its values, which may be readily obtained from
9'9 (TAS) are given in Table III. From (4) and

(5), and the usual diagonal-sum procedure which
starts with the box with M q =0, III,——l+ l' and
works down the table we see at once that

In the electrostatic energy for 'L the coegcients
of all G~'s vanish except that for k=t, which has
the value

(21+1)(21'+1)
CU I..

2I.+1
Siri ce C~~ 1, vanishes unless the triangular conditions

(Z) are satisfied, only alternate singlets, those with

L =1+1', 1+1'—2, 1+1' 4
f
1—1—'

f
have any

nonvanishing G coePcients The intermed. iate sing
lets, with I.=1+1'—1, 1+1'—3, have the same
electrostatic energies as the triplets of the same L
value.

From this rule and those enunciated at the
beginning of this section we may at once write
down the electrostatic energy formulas, in
particular the formulas for d'g which we shall
need in our applications to Cu II in the suc-
ceeding paper. In p'g and d'g the only non-
vanishing terms in the G's are given by

'II: 90G3
p'g or g"p

(7)'I: 990G6
'

d pg OI g1"d 1Q: 3080G4
ID 252 G2.

Note that these are written in terms of Gl,
rather than G~ (Gi ——G"/D~„cf. Table I).
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Proof of (5).—By the definition of by'= (c~)',

Zb~(l, m; I', M+m) = Zb~(/', M+m; I, m)

JfLei(k, M)ei(i', M+m)Oi(l, m) j[Os(k, M)Os(l', M+m)es(l, m)] sin e~ sin es de~ de, ,

ii k ~&~ M~. bs aid hence the srsm samsh by defsnition for k( ) M~. We now introduce integrais over s ~ and e», involving a
quantum number m', which vanish unless m' =M+m, in which case they equal (2m) &. We may then write m' for M+m
in the 0 factors if we introduce a sum over m'. In this way the above expression becomes

4~=Z Z JJ J $0'&(kM)0' (ksM)C»(M)C (sM)][ 0~(l m') 0~(l m'')4i(m')Cs(m') j
mm~ 2k+1

Xr O~{lm)O~(lm)C ~(m)Cq(m)g sin ej sin 82 de~ d82 dpi dq2.

The sums over m and m' may now be evaluated by means of the spherical-harmonic addition theorem to give

(2l'+1) (2l11)
Og(kM) 02(kM)C $(M)C'2(M)P) (cos 07)P~(cos or) sin ej sin 0~ de~ d02 dq ~ dq ~,

4m (24+1)

where or is the angle between the directions 0~, q~ and 02, p2. Now express the product P~ {cos co)Pg(cos co) as a series in

TABLE IV. Matrices for transformation from I.S to jj coupling.

He
S7
Z2

Gg
3 T'

Zz
pg 38

zz
gg ay

5,9
22

I
Hg G5 H5

57
zz 'I ./8 MJo

S5~.p 3&/0 W/0 sly I

3 7
zz——ZWZ/-WZI 470

3 3 3 /
H4 G4 F4 G4

——-4' fT8-SISSY/655.7
Z2

.55
ZZ I
——2Css66o /06'-/os� .

3 7
zz——-zfz7 efS /08His /0 Vz]

35
Zz
—-4ftlO-WI5 5' /o&8

8 3 '3 I
G3 Fg D~ Fg

2 z -a(5 &3s-4fFo2Wio5
'5 7

« Iorz6ri~~r~-za~z
/

2 2
——zFSziioSdio89 /~+537
3 5
2 2 /5CD-%2/ 4(Z 6/7

3 3 8 I
Fz Oz Pz Dz

5 7
z 2 W(y-3&a 3~io

zz——8&63//0 -4 "0/5
I

. -- -e ZmiS4&~ ~io &~73 7
2 Z

~ z &f6 -$/0 j' Z~/5
35

J' /
G4 Fg G4

3 7
22 zf/5 ZKS

3$ I
2 2 A&5. WD -5
I 7'
22——K3s-Czl Hr

3 I6 F'DF
z 2'
——-g 6&r~z6e~zl3 7

35
zz 9tF5WD5 -g -~/ob

I

3%35W2I Bf)S6%I 7
22

—35 -4%72&54WI
/. 5
zz

Z 3 I
/2 Oz Oz

22——-18 Zt& 637
35 . I
2 2 4&z 5' "%6

ztT -$/4 Wzl
/5
22

3Q
35

'2 2

0/ P/ P/
5T
zz——-fS ~lo 2'
55 I

3&2 "I
35
Z2 W/4 -f7' W/4

3 I
Hg Gg Hg

39
2 z——WJ +tlz M/o

37 I
22——z&6 I "26—
——AZ-zfS Q/5
I '9
22

3
Fz

22
3 '7 BQ

lz57

J 3 I
&z O2D2

59
W/0 5$Z gfS

57 . I
22 WATS 7 -18

2 2
——3ts -6 A&
37

3 3 3 I
Hg G4 Fg G4

2 2
——-a 9W](-sfrrefss
)s

407/8PT -/0 6WZS I
3 7
2Z
I 9
2 2
——2&/I 86 201&/&5
l 7
g z 8W5-9R W35 DO

3 3' Ia ~a F~
39
22——-I M/s 2'
-- HSz&-z8 T I
22 6
I 7
Z2 W/5 -3 218

H6 Ie Ie
——4&7 Di tat5e
22sr ~$ f70 zA5

I

39——-3(2 3CT 36622
3 3 I

I5 H5 G5H5
5 9
2.2

—465&886-38T6f2/45

57
ZZ
——Wg(0 7&7T-/2Q-~IDIO I

22 fl95 71QI2&ll 6~55

——4~890 8338fFAllo37
2 2

3 3 I
H4 G4. Fg G4

2 2
——-2+7 658-zfl/06&/05 9

57
2 2
—- 40/0 z/ -155 66 l

4C 7C7 ~8852135
BO

2 2
——Z~I5O-2&II ztPZW55
37'

I
G3 &g 03] o

S9—--666/is~-/ofi72%2 Z
57
2 2
——3riarr~~-fflO-2$I05 I
39
2Z
——-3fll 7'tI2/20& 6/7
3T
2 2 6155-2&I052$306r~S
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TABLE V. Matrices of electrostatic energy in jj coupling.

dg~ a: fz, % c: 3/z, 2/z

h: ~/Z, ~Jr d: 3/Z, ~/Z

3o 3b 3C 3d '

Do ~(20FZ+I32F4~360G&) VIO( 5 FZG 66F4-72G&) @(3OFZ-264F4i/ZOG3) CI5(& FZ -66F4~726&)

3b ' -(—FZ-209F4+/44G3)I (+0( F 55F4 2$ G3) C6( F2+66 F4 -72G3)

OJ& 6a
Ob -24FZ-66F4 6a -IOFZ -3F4

5FZ+—G3
/ZO
7 ~&(SFZ+ 7 G3)

6 72

—FZ+—G3
66 2/6
5 7

5c -7FZ+ /68GS
(

4o IZ FZ -36 F4

4b

4b 4c
-2~I/0 F4 ', —(2F2+ 72F4)

/2 FZ+ I I F4, ~M(SFZ+33F4)

/3 FZ
I
I

4d

+~~(3FZ '(OFG )
WZ( 36FZ 22F4)

2&5FZ

-6 FZ

5a 5b Sc
I

Sa ~~ FZ+—P+ + 72GS ~yp( —FZ+—F4-366&)', ~Z](-—FZ-—F4+24G5)

5b -—FZ- —F4+/80GS 'W2lO(--F --F "IZG )2 74 5& (7274 5

20
Zo -/OFZ+33F4

Zb

-—t8 FZ
/2

/2 F2+33F45

Zc Zd

—FZ+—F4 C&(-—FZ+/65')6P 396 + 2Z

I

-l5 Fz
/2

I

/2—FZ

/d

'~( IBF 33f «46)

~(( Fg+ Fy ZG()—'

35 7
—~FZ+ZSG/

/a Ib

(a &62 &(—Garo&-( g(- 22 (6 —y&(-)—-ISO 297 72 /3Z

Ib 552 66
35 7

-—F2+—F4+ZGI

Ib

Ib -IIP FZ-/43F ra -56 F~-/4F4

9 (3: 5Jz, ~/2 c: 3/z, 8/2

b: %, % d: 3/2, 7/2

4o 28FZ+ —F4+ 1232G4
9/

4b

4c

4b 4c 4d

+g("5 F2+~a F4-6/6 G4) ,'C4(ZBF -IBZF4+6/6G4) ~~~(Z FZ-65F4+ 6/6G4)

Fz-—F4+6/6 G4 ,'C~(—FZ-/30 F4-6/6 G4) ~~&(22FZ+/04 F4-6/664)

98 43/2 /4 6/6
9—FZ+—G4 ~»(--FZ' —G4)/5 9

IOOIF +6776 G

5c

6o 6h 6c 3a 3b Dc 3d

Ga F~+ F~+(56&6 (35( F~+ FP 66&6) I((6( Fz JG+6666) Ga -
(
-—Fga 8 F~ Kilo( Fz~ 8 Fj) ', I=(66(5 F~+ 8 Fy) 830(522 8 36)7Z8 658 56, 2B I „56 ZB 532 I/83 32 26 ' 28 /82 65

6b F~ (6+6606—. 6—
,
'6(0( -—FZ FG l32&6) 36 —FZ+—F4 f»( Fi+ ', «)—&&(ZZFZ 26)—/54 9/ /4 7 44 57Z ' l l Zed II44

9 3 9 I 5 9 9
6c F2+396 G6 3c/96 /078 IO78

IS FZ /O5 ~SFZ
r7

Sa 5b Sc 3'2
Sa 3 FZ- & F4 ~IJZ(/5FZ- 9 F4)', 9 ~39F4 ~7+(SFZ+ 9 F4)

l96 //27 40 ', /96
Za 2b Zd

' A2(-FZ+ —F) ~g(("—fz- —F4) 2 -—FZ-—F4 l4OGZ ~(-—FZ"—F -2SG ),'~g(-II Fz-—F4+84GZ)BI4 533 ,'. 6 65 44 52 308 /OOI 44 „572,' „ /43
l5 9 I 5 9 5 9 3 9 9 ', 3—Fz

/96 /96 „/S4 /OOI 56,' S72 /d B
3 2b

/5
—Fz'—F4'—Gz,'44FZ+ —F4 —GZ3 9 S I 3 'S

5d -—Fz 2d539 —77FZ+—GZ
504

I /5

de
Oa

po - FZ 42 F4+6 'G0
56
5

%, $Z C: 3i~, ~~a

5/Z, 3' d: 3/Z, 3/2

Od

I
~6( J(I FZ 4+ Go)

49
I

-—F2+4 GO

2o 2b 2c Za(

—(«4FZ+75F4+48 GZ) —(-BFZ+75F4 "/4GZ) I
—(8FZ -7SF4+l4 GZ) ~~~& (FZ-?5F4+ZBGZ)

2b 25 (F2+3 GZ) 25(47FZ-900f4-B4 GZ) 25
-

(FZ -ZGZ)

I4 /ZANZC 28(F +3G ) 4 Zl{-F +ZG )
2d 4—9 (3FZ+4 Gz)

I

Ia

la -—F2+6 F4
/84
Z5

lb

lc

/d

/96
I 5 FZ

I
I

I

25 2
9e

-—FZ
49
25

/b /c /d

FZ (ZFi) ((6(g(za(ZFj) f(4( 2 FZ+(GF~) Ga
(

/96 ', 2 I—Fz+84F4 —FZ 3b9825', 25 ZS

3o

FZ /9 F4
ll6
25

3b Jc
A~-2'5FZ «~)

,
'&~(25 Fi GF-i)—Fz, —FZ+ 9F4

/54 I 46
25 —Fz/54

I 25

3d

2+6F$4

"ggf6 FZ
„28

25 &6fZZB

49F
25

a: 3/~, 71~5f h: 3JZ, Ãz
c: iz, ~/z

d' /Z, SjZ

3a 3b 3c
—FZ --~yFZ (—~gFZ —fzZS „6 (50 30
7 7,'7 r

Db —FZ I-MiFZ- —RSFZ
66 I 9 Z4r .r 7

3c o p

5a -4F2-F4 4a

Sa ib

5a -5'FZ Ib -12FZ

4a

FZ" 728
5

4b

(
/2 F2+2F4-ZB G4)

——FZ+S6G4/4
5

4c
/2I +g(- —FZ-2 F4+28 G4)

I'
I

I
SFZ F4 56G+

-.—F2+5'6 G4
I4

I '5 2

4a 4b 4c
65 FZy40G4 ~~(/OFZ BG4), ~~~( OFZ+8G4)

66 F2+26&6 ' I(I'( 22 8&6)

2Cf 2b Zd

r fz+ zGz ~6( 'r FZ lzGZ}I~z/(-~F2+/2GZ)

—Fg+(2&2, ~(6(~ F~ 662}-
2d 4c 56

I

—G4



G. H. SHORTLEY AN D B. FR I I. D

Py(cos co), and then expand Pp(cos co) by the addition theorem:

2K+1
PI I(cos co)P)(cos Go) =5 C)[&)tPQ(cos M) —+2&Cll'Q~O](~p) 82(~p)c'1(JM)+2(IM)

p

to give

(2l'+ 1)(2l+ 1)
Zb~(l, m; l', M+m) = 2 C~I y O~(kM)4'&(3f)O&())tt)4'I(p) sin HI dHI dyI

2(2k+1) ), p

Jf.O~, (&~)c,(M) 02(xp)4~(p) sin 02 d&2 dy2.
'

These integrals vanish unless )p =—kM, in which case they give the value 1, so the sum over ), p gives finally the result (5).

IV. MATRIcEs FoR TRANsFQRMATIQN QF pf, df)

pg, dg FRoM L5 To jj COUFI. INO

(TAIILE IV)

In order to find the electrostatic energy
matrices needed to handle configurations like
p'f of the rare gases, d'f and d'g of spectra like
Cu II, in jj coupling, we need the transformations
from LS to jj coupling. The transformation
matrix for the almost-closed-shell configuration
l '1' is the same as that for the two-electron
configuration //' when the states are correlated
as in Chapter XII, TAS. We obtain these
matrices by simultaneous diagonalization of the
jj-coupling matrices of L& L2 (or L') and S, S,
(or S') as sketched in $6", TAS. We may note
one simplification in connection with this
diagonalization which was not noticed when
previous computations were made. In no two-
electron configuration will more than four levels
of the same J value occur, so the transformation
factorizes into matrices of at most fourth order.
For a typical J value, the four Russell-Saunders
levels are 'Jg, 'J+1J, 'JJ, 'J—1J-. The state 'J~-
rnay be obtained directly from the matrix S& 8&

since it has a value of 8~ S2 different from the
other three. The states 'J+1q and 3J—1J may
be obtained directly from the matrix of L& L2
since they possess unique values of this quantity.
The state 'J~ however has the same value of
SI S2 as the other triplets and the same L& L2
as the singlet. To obtain it directly involves the

sinzultaneous diagonalization of the two matrices
with its attendant inconvenient intermediate
matrix rnultiplications. But this may be avoided

by noting that after 'JJ, 'J+1&, 'J—1,& have
been found, the eigenfunction for 'Jg is the
unique function orthogonal to the other three.

The phases of the LS-coupling states in the
transformation matrices of Table IV are arbi-
trary but the jj-coupling phases are chosen in

accordance with the conventions of $6I2, TAS.

V. MATRICES OF ELECTROSTATIC INTERACTION

IN jj COIIFLING FoR p'f, (d"p), d'd,
d'f, d'g (TAIILE V)

We finally give the results of transforming the
electrostatic energies of section III to jj coupling

by means of the matrices of section IV for cases
of interest in the paper following this. The
electrostatic matrices for p'p and p'd are given
on pp. 307, 313 of TAS. We note that since the
electrostatic energies and the IS-jj transforma-
tions are the same, the jj electrostatic-energy
matrix for d'p is the same as that for p'd, when

the d' and the p j values are correlated with the
d and the p'" j values respectively. Hence we do
not need to give the d'p matrix. Note however,
that to conform to the jj-coupling phase con-
ventions of TAS, a phase factor ( —I)"+" ~

must be applied in switching from pd to dp or
from p'd to d'p.


