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This paper extends the tabular and formular material of
the theory of complex spectra to configurations involving f
and g electrons. In making these computations it was
found that in practically every case significant simplifi-
cation could be made over the methods previously used. In
particular, for the computation of the electrostatic energies

for two-electron-like almost-closed-shell configurations a |

simple closed formula was found which entirely replaces the
previous lengthy diagonal-sum calculation. The explicit
content of the paper is best exhibited by listing the section

headings: I. Extension of Tables of c*, b%, and a* to gp, gd,
¢f, gg. I1. Explanation of the Regularities in the Electro-
static Energies of Two-Electron Configurations and
Formulas for gp, gd, gf, gg, g2 I11. Formula Determining
the Electrostatic Energies of Two-Electron-Like Con-
figurations with Almost-Closed Shells. Values for p%¢ and
d%. IV. Matrices for Transformation of f, df, pg, dg from
LS to jj Coupling. V. Matrices of Electrostatic Interaction
in jj Coupling for p%f, (d%), d°d, d°, d°g.

PECTROSCOPIC analysis is beginning more

and more to involve configurations with f
and g electrons.! For this reason we believe it
useful to extend the tabular and formular
material of the theory of complex spectra to the
point where it will handle the simpler of the
observed f- and g-electron configurations. This
is the purpose of the present paper. The abstract
above contains a statement of the contents by
sections. In extending this material to the more
complicated configurations for which the amount
of computational labor is great, it became de-

sirable to re-examine the methods of calculation
with a view to simplifying them if possible. It
has been found that in practically every case
significant simplification could be made over the
methods ‘previously used. In one case (the
determination of the electrostatic energies for
almost-closed-shell configurations) it was possible
to find a simple closed formula to replace the
previous lengthy diagonal-sum calculation. These
simplified methods of computation: are discussed
at the beginning of each section before the
tabular results are given.

I. ExTENsION OF TABLES OF c*, 0%, AND a* TO gp, gf, gd, gg (TaBLEs I anp II)

The a's, b's, and ¢’s are the Slater coefficients needed to compute the matrix of electrostatic
interaction.? The values of the a’s and b's follow at once by 814 (TAS) from the values of the ¢'s.
The ¢'s represent the following definite integrals:

2 i
c*(Im, I'm') = (————) f Ok, m—m")O(Im)O('m’) sin 0 d6, (1)
2k+1 0 o

[I—=0| <RSI k+14+1=2g (g integral). (2)

The direct individual evaluation of these integrals by means of Gaunt’s formula 8°11 is very
laborious because of the sum occurring in this formula. We find, however, that it is possible to
express c*(l, m; l', I'—¢) as the square root of a polynomial in m and then compute from this poly-
nomial the 2/+41 entries with m=1, ---, —I with but little more trouble than the direct evaluation
of a single entry. We start by noting that an examination of Gaunt’s derivation shows that 8611
is valid for the whole range —I<m<1; =S/ <V =" Sm+m' <1,

! Compare, for example, Shenstone’s analysis of Cu II, which is discussed theoretically in the paper following this.
2 See Condon and Shortley, Theory of Atomic Spectra [which we shall denote, following Kemble, by TAS], pp.
175-180 for definitions and previous tabulations.
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TABLE I. c*(Im, I'm’) and b*(lm, I'm’). We write ¢* = 24/ (x/Dy), where Dy, depends only on k, 1, l'. In the table are listed
only the sign preceding the radical and the value of x, Dy, being given at the head of each column. Since b = (c*)?, bk = +x/D.
Note that c*(I'm/, Im) = (— 1)m—'ck(lm, I'm').
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TABLE 1.—Continued

*(m, 'm’') ¥or 141’ opp

w m m’ k= 1 3 . S 7
op +4 &1 +4/28/147 —y/  1/363
+3 +1 ’ + 21 —_ 3
+2 +1 + 15 - 6
+1 *1 + 10 - 10
0 +1 -+ 0 - 15
Fl £l + — 21
F2 £l + 1 - 28
F3 £l 0 - 36
F4 *1 0 — 45
+4 0 0 + 9
+3 0 + 7 + 16
+2 0 + 12 + 21
+1 0 + 15 + 24
0 0 » + 16 + 25
gf +4 £3 +4/28/63 — A/42/847 +4/ 420/143143 —+/  1/2629144
+3 +3 + 7 — 63 + - 1575 - 7
+2 +3 41 54 + 3375 — 28
+1 +3 0 — 30 + 5250 - 84
0 +3 0 - 9 + 6300 — 210
F1 +£3 0 0 + 5670 — 462
F2 £3 0 0 + 3150 — 924
F3 £3 0 0 0 — 1716
F4 +3 0 0 0 — 3003
+4 +2 0 + 70 — 1960 + 9
+3 +2 + 21 + 14 — 4235 -+ 48
+2 £2 + 12 - 3 — 4800 + 147
+1 £2 + 3 - 32 — 3125 + 336
0 +2 0 — 49 — 700 + 630
Fl x2 0 — 30 + 210 + 1008
F2 42 0 0 + 3360 + 1386
F3 x2 0 0 + 7350 + 1584
F4 L2 0 0 0 + 1287
+4 +1 0 — 42 + 4704 - 45
+3 =1 0 + 14 + - 4802 — 180
+2 1 + 15 + 40 + 1849 — 420
+1 1 + 15 + 15 + 15 - 735
0 =x1 + 6 —_ 1 — 1210 — 1050
Fl +1 0 — 32 — 3584 — 1260
F2 o1 0 - 54 — 3402 — 1260
F3 1 0 0 - 294 - 990
F4  x1 0 0 + 5880 — 495
+4 0 0 0 — 7056 + 165
=+3 0 0 — 63 — 1764 + 480
+2 0 0 — 3 + 84 + 840
+1 0 4+ 10 + 15 + 2166 + 1120
0 0 + 16 + 36 + 3600 + 1225

If in 8%11 we substitute I/, I'— e for Im; k, m—1'+¢ for I'm’; Im for I"”, m~+m’; we can obtain the
formula

cFl,m;V,l—e) =

(= 1)o+iteg] [@IHDE+Y) (Y —e=m)!  (+m)! P
=D g—1)g—k)12g+ 1)L el(2r— &)1 (1—m)! (k—l’+e+m)!]
(2g—2k)! (B—U'4+m+e)!
(2g—2k =) (k—1'+m—+s)!

X (= 1)3(:) (2 —5)1(2g— 20/ +5)! (3A)

In the sum,(;) is the binomial coefficient, and s runs from 0 to the lesser of ¢ and 2g—2k.
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TaBLE 11. ak(Im, I'm’). The value of this coefficient is independent of the signs of m and m’. As in the preceding table, we
print the common denomanator of several related values but once at the beginning of each group. For 1=0, a*(00, I'm’) = 5(k, 0)
for all V', m'; for k=0, a®(Im, I'm’) =1 for all values of the arguments; in the table we give values only for I, I', k>0. Note that
a*(U'm', Im) =a*(lm, I'm’).

w Im| |m’| k= 2 4 6 8
gp 4 1 + 28/385
3 01 + 7
2 1 - 8
1 1 — 17
0 1 — 20
4 0 — 56
3 0 — 14
2 0 + 16
1 0 + 34
0 0 + 40
ed 4 2 + 56/539 + 14/233524
3 2 + 14 — 21
2 2 — 16 — 11
1 2 — 34 + 9
0 2 — 40 + 18
4 17 — 28 — 56
301 -7 + 84
2 1 + 8 + 44
11 + 17 — 36
0 1 + 20 - 72
4 0 — 56 + 84
3 0 — 14 —126
2 0 + 16 — 66
1 0 + 34 + 54
0 0 + 40 4108
o 4 3 +140/1155 + 42/367014 4+  4/12269.4
3 3 + 35 — 63 - 17
2 3 — 40 — 33 + 22
1 3 — 85 + 27 + 1
0 3 —100 + 54 — 20
4 2 0 — 98 . — 24
3 2 0 o 4147 +102
2 2 0 + 71 —132
1 2 0 — 63 - 6
0 2 0 —126 +120
4 1 — 84 + 14 + 60
3 01 -2 - 21 —255
2 1 + 24 -1 +330
1 1 + 51 4+ 9 + 15
0 1 + 60 + 18 —300
4 0 —112 + 84 — 80
3 0 — 28 —126 +340
2 0 + 32 — 66 . —440
1 0 + 68 + 54 — 20
0 0 + 80 +108 4400
g 4 4 +784/5929 4196/12370314, + 16/20449 4+ 1/1206071844
3 4 +196 —294 — 68 - 8
2 4 —224 —154 + 88 + 28
1 4 —476 +126 + 4 — 56
0 4 —560 +252 — 80 + 70
3 3 + 49 +441 +289 + 64
2 3 — 56 +231 —374 — 224
1 3 —119 —189 — 17 + 448
0 3 —140 —378 +340 — 560
2 2 + 64 +121 +484 + 784
12 +136 — 99 + 22 —1568
0 2 +160 —198 '—440 41960
1 1 4289 + 81 + 1 +3136
0 1 +340 +162 - 20 —3920
0o 0 +400 +324 4400 44900




THEORY OF COMPLEX SPECTRA 743

Alternatively if in 8¢11 we substitute k2, m—1'—4¢ for Im; I', I'—¢ for I'm’; lm for I", m+m’, we
can obtain

0 vr—o (—1)stig! |’(2H—1)(21’+1) (41l —e—m)! (I+m)! 3
U T =
(g—l)l(g——l’)!(g-k)!(2g+1)!l_ el(2l—¢)! (I—m)! (k—l’+e+m)!]
(2g—20)! (I—m)!

x;(—l)s(:)(zz'—s)!(2g-21'+s)! (3B)

(2g—21—5)! l—m—e+s)!

where s runs from 0 to the lesser of ¢ and 2g—21.

These formulas are good for the full range —I<m <7; hence we need consider only ¢< !/ since the
negative values of /—e may be covered by the formula ¢*(l, m; I/, m')=c*(l, —m; I', —m'). For
€<, it may be seen that formula (3A) gives directly for (c*)? a polynomial of order 2/’ in m if ¢>2g
—2k; formula (3B) gives directly a polynomial of order 20 in m if e>2g—21l; while if e<2g—2k
and €<2g—2I both formulas give polynomials of order 2l directly. By directly we mean that the
numerator and denominator of the rational function which these formulas give for (¢*)? come ready
factorized so that the denominator may be canceled at once.?

The procedure for calculating the entries of Table I is then the following. In (3A) or (3B) take
121’ to minimize the number of polynomials required. Then for each value of % occurring in (2),
and for e=0, 1, - - - -, /', compute the ¢’s as functions of 7, using, in order to simplify the computation
and make the sums as short as possible, (3A) if e>2g—2k, (3B) if e>2g—2I (these inequalities
are mutually exclusive), and either formula if e<2g—2l and e<2g—2k. For example, one gets
all the entries for gd from nine formulas, of which the following three are typical:

¢2(gm; 42) = + [ (44m) (3+m) (2+m) (1+m) /24495 =g, —m; d, —2),
cHgm;d)=+C2m—1)[5(5—m)(4+m)/6-121-497F  =c(g, —m;d, —1),
cS(gm; d0) = +[5(36 —m?) (25 —m?) /4-169 121} =cS(g, —m;d, 0).

These are valid for —4<m<4.

II. EXPLANATION OF THE REGULARITIES IN THE
ELEcTROSTATIC ENERGIES OF Two-
ELECTRON CONFIGURATIONS
AMD FORMULAS FOR

gp, gd, gf, g8, &

Inspection of the formulas for the electrostatic
energies of two-electron configurations (TAS
§57) reveals a number of striking regularities to
which attention has been called but for which,
so far as we know, no proofs have been given.
In order that we may justifiably take advantage
of these regularities in our computations, we
first indicate their general proofs.

(@) In the case of II' (two nonequivalent elec-
trons, cf. gp, gd, gf, gg below), 'L and 3L have
equal coefficients of the F's and equal but opposite
coefficients of the G's.

3The ratio of two factorials involving m should here
be treated like the ratio of two I' functions, ignoring the
fact that the factorials may be meaningless for certain

values of m, for the resulting polynomials will always
vanish properly for such .

Consider a table, such as 172 of TAS, in which
the orbital functions are classified according to
Mg and M;. The sum of the diagonal elements
of electrostatic energy for the states in the box
(1, My), with Mg=1, M= M, gives the sum
of the energies of the N triplets of largest L
value, if there are N states in this box. This
sum is a certain linear combination of F's and
G’s. Consider now the diagonal sum for the
corresponding box (0, M) with Mg=0. This
box contains 2N states and the diagonal sum
gives the total energy of the N triplets and
N singlets of highest L value. We see from the
arrangement of the spins that the coefficients of
the F’s for this box are just twice those for
(1, M), while the coefficients of the G’s vanish.
The difference between the diagonal sum for
(0, M) and (1, M) is the energy sum for the
N singlets, and this sum therefore has the same
F coefficients but the negative of the G coeffi-
cients of the triplet sum. By starting now with



744 G. H.
the highest M value, which involves only one
singlet and one triplet, and working down, we
prove the statement (¢) by induction.

(b) I the case of nln'l (nonequivalent electrons
of the same ! value, cf. gg below) in addition to
(a) one finds that for those terms which are per-
mitted in nl? by the exclusion principle the coeffi-
cients of the F's equal those of the corresponding
G’s, while for the terms excluded in nl*, corre-
sponding coefficients of F's and G's are equal and
opposite. _

(¢) Ome can obtain the elecirostatic energies for
nl® from those for nin'l by setting FF=G* and
dividing by 2.

The proof of (¢) follows at once from the fact
(TAS p. 232) that the Russell-Saunders eigen-
functions of #/?, ‘both the vanishing and the
nonvanishing ones, may be obtained from the
corresponding eigenfunctions of nln'l by setting
n=n' and dividing by V2. Then, since G*(nl?)
= F*(nl?), a diagonal electrostatic matrix element
of 72 in LS coupling is obtained from that of
nln'l by setting G*=F* and dividing by 2; as
stated in (c). If this is done for one of the terms
of Il which is excluded from [?, the resulting

gp: lF, 3F=Fo+55 Fz:!:(

gd: 1D, 3D = Fy+110 Fa+143 Fy=(

gf: 1P, 3P = Fo+275 Fa+429 Fut 715 Foz(

17, 3] =F,—105 F;—203 Fs—
1K, 3K = Fy4-140 Fy+ 42 F4+

SHORTLEY AND B.

Gs+355 Gy)
1G, 3G =Fo—T1 FyF (71 Gs—11 Gs)
IH, 3H= F0+28 Fg:l:(28 G3+ Gs)

G2+-330 G4+715 Ge)
1F, 3F = Fo+ 11 F—286 FsF ( 5 Go+957 Gs—286 G)
1G, 3G = Fo— 65 Fp+234 Fy;4-(15 G,+883 Gs+ 78 Gy)
1H,3H=Fy— 70 Fa— 91 FsF (35 G3— 798 G4— 13 Gy)
17, 3] =Fo+ 56 Fo+ 14 F44=(70 Go+168 G4+ Ge)

G14-33 G34-10725 G5+5005 Gr)
1D, 3D = Fy+165 Fo— 143 F4—1287 F¢F ( 3 G1+77 G5-+12155 G5;—3003 Gv)
1F, 3F = Fo+ 30 Fe—299 F4+1170 Fg3=( 6 G1+97 Gs— 2990 G5+1365 G7)
1G, 3G = Fo— 94 Fo+ 39 Fy— 650 Fe¥ (10 G, +63 Gs— 9594 G;— 455 G7)
1H, 3H = Fy—159 Fo+289 Fs+ 225 Fe(15 G1—23 Gs+ 8779 Gs+ 105 G7)
45 FeT (21 G1—91 Gs— 3115 G5—

4 Fe(28 G442 Gs+ 420 Gs+ Gv)

FRIED

energy must vanish; this requires that for such
terms of I] the coefficients of F* and G* be equal
and opposite. This proves one of the statements
of (b), the other statement now follows at once
from (a), which says that the unexcluded
member of the pair of terms, 'L, 3L, has opposite
G coefficients from the excluded member, and
hence will have G coefficients equal to its F
coefficients.

We give now the electrostatic energies of
two-electron configurations involving g electrons.
We also give the {(SL) which determine the
absolute first-order Landé splitting (cf. TAS
§47). [We do not go on and calculate the com-
plete matrices of spin-orbit interaction in LS
coupling for these configurations because so far
no one has wanted to use these matrices—even
the known ones (TAS, pp. 268-269) for pd, d?, dd
—for intermediate-coupling computations be-
cause of the extreme complexity of the equations
involved. Most of .the complex configurations
for which intermediate-coupling computations
have been made involve almost-closed shells,
and for these the jj-coupling matrices, which
we do obtain, are of most interest. ]

$GF) = % fv_}é $p
$GG) =1%o ¢ot Yo &p
SCH)= 2§ ¢ot+o$p

$GD) = % fa‘% $a
CGF) =1344 $o— 184 Ca
§GG) =170 ¢o+340 Ca
SCH)Y=1180 ¢ot+2{5¢a
SCI) = 18 ¢ot16 §a

§CP)= %4 to— 34 &

$CD)= Yo ¢o— Ha2&r
SCR) = Hatot+ Hair
GG = T80 Sot 350¢r

SCH)=1%0 $ot+1%%60 &1
SCI) =234 $o 1784 8r
$CK)= %7 tot 3Haly

15 Gr)

g99: 1S, 38 = Fy+1540 F3+42002 F442860 Fs+24310 Fs=+(Go+1540 G2+2002 G4+2860 G¢+24310 Gs)
1P, 3P = Fo+1309 F,+1001 Fy— 143 Fg—19448 FgF (Go+1309 Go+1001 G4— 143 Gs— 19448 Gs)

1D, 3D = Fo+ 883 Fy—

IF, 8F = Fo+ 334 Fo— 949 Fy4 442 Fe—

299 Fy—1469 Fe+412376 Fy=(Go+ 883 Go— 299 G4—1469 Gs+12376 Gs)
6188 FyF (Go+ 334 Go— 949 G4+ 442 Gs— 6188 Gs)

1G, 3G = Fo— 230 Fp— 467 F4+1030 Fe-+ 2380 Fs=(Go— 230 Go— 467 G4+1030 Gs+ 2380 Gs)
1H,3H=F,— 665 Fo-+ 581 F;—1205 Fg— 680 FsF (Go— 665 G2+ 581 G4—1205 Ge— 680 Gs)
17, 3] =Fo— 791 Fo+ 721 Fs+ 601 Fo+4 136 Fs=(Go— 791 Go+ 721 G4+ 601 Ge+ 136 Gs)
1K, 3K =Fo— 392 Fo— 784 Fy— 152 Fo— 17 FgF (Go— 392 Go— 784 Gy4— 152 Ge— 17 Gy)
1L, 3L =Fo+ 784 Fo+ 196 Fs+ 16 Fe+ Fy(Go+ 784 Go+ 196 G+ 16 G+ Gs)

§CP)=¢(D)=¢(F) =¢(G) =¢(CH) =¢ () =¢(CK) ={CL) =34 $no+24 S

g%:  The formulas for the allowed terms, 15, 3P, 1D, 3F, 1G, 3H, 11, 3K, 1L, are obtained from gg by omitting the expressions
in the G’s. The intervals are given by {(3P)=¢(3F) =¢(CH) =¢(K) = 3 ng.
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TABLE 111, The integral Cyyy [cf. (6)].%

Cono=2 Ciz= %5 Cua= %35 Cass= %97

Con=24 = 985 2= %35 Css=29%3003
Coz=2% Ciss= 343 Coz= %405 Cas= 4()A()Ol
Coz=2%7 Cus=1% Coss=20%31 Car= "% 287
Cou=24 Cus= 3% 001

143 Cus= 4% 237
Cus=98981879

* The table gives all nonvanishing integrals for « and » << 4. The
values are independent of the order of the three subscripts.

111. ForMULA DETERMINING THE ELECTROSTATIC
ENERGIES OF Two-ELECTRON-LIKE CoON-
FIGURATIONS WITH ALMOST-CLOSED
SHELLS. VALUES FOR
p%2 AND dg

In §113 (TAS) it is shown that the coefficients
of the F's in the electrostatic energies for the
configuration I"'’, which has one electron
missing from the [ shell, are the negatives of those
for the related two-electron configuration lI'. 1t is
also shown that the coefficients of the G’s vanish
for the triplets, so that if the formulas for I’ are
known the computation is reduced to a determi-
nation of the coefficients of the G's for the
singlets. These G singlet coefficients, in the cases
where they have been previously obtained, by
the lengthy diagonal-sum calculation, turn out
to have the strikingly simple form shown by
the formulas of p. 299, TAS. We show below
the reason for this form and give for the non-
vanishing G coefficients an explicit formula whose
use eliminates completely the necessity for a
diagonal-sum calculation for configurations of
this type.

The start of the table (similar to 135, TAS)
which classifies the orbital functions for I’
according to the values of Mg and My is, for
M,s=0:

My=i+V (=104 (=17 1),

Mp=i+I'—1 (=114, 1) (=141, 17)
(=0 V=1 (=17 1 =17),

M =1+/-2 (=142, 1) (=142, 1)

(=I4+1%, V=1H)(—i+1-, V' —17)

(=i V=2 (=1, 0 —27).
(The first entry in each parenthesis gives the
quantum number m;, m, of the electron missing
from the / shell, the second entry the quantum
numbers of the I’ electron.) The table continues
in this fashion down to Mp=|I—1"|, and the
G terms in the energies of all the singlets may
be obtained by using just this part of the table.

745

In the diagonal sum for the box characterized
by Mg=0, M.= M}, the coefficient of G*(Il'),
according to 1134 (TAS), is seen to be

+2220%(1, my Uy Mp+m). (4)

Now we shall presently prove that
208, my Uy M+m)
2l+1)U+1)

Cu if B> | M|
2(2k+1)

(5)

=0 if k< | M|,

so that the sum (4), when it is nonvanishing, is
independent of M. The factor Cui is the
integral of the product of three Legendre
polynomials:

ka=f P,(cos 0) Py(cos 0) Pr(cos 8) sin 6d6. (6)
0

Its values, which may be readily obtained from
989 (TAS) are given in Table III. From (4) and
(5), and the usual diagonal-sum procedure which
starts with the box with Mg=0, M =141 and
works down the table we see at once that

In the electrostatic emergy for L the coefficients
of all G¥'s vanish except that for k=L, which has
the value

2I4+1)(2U+1)

aL+1

Since Cyy i, vanishes unless the triangular conditions
(2) are satisfied, only alternate singlets, those with
L=I+0,14+1'—2,1+1'—4, ---, |I=1'| have any
nonvanishing G coefficients. The intermediate sing-
lets, with L=1+1'"—1, I4+1I'—3, - - - have the same
electrostatic energies as the triplets of the same L
value.

From this rule and those enunciated at the
beginning of this section we may at once write
down the electrostatic energy formulas, in
particular the formulas for d°% which we shall
need in our applications to Cu Il in the suc-
ceeding paper. In p% and d°% the only non-
vanishing terms in the G’s are given by

1H: 90G,
pg or g {1F~ 726,
’ 7
lI: 9906« ( )
d%¢ or g'd {1G: 3080G;
1D: 252G2

Note that these are written in terms of Gy
rather than G* (Gx=G*/Dy, cf. Table I).
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Proof of (5).—By the definition of bk=(c*)2,
2o, my U, MA-m) =20k, M+m; 1, m)
2 ‘ L
=2 ff[®1(k, MO (M, M+m)0O:1(}, m) ][Ok, M)O(M, M+m)O2(l, m)] sin 6; sin 8, db; db,,
m 2k+1

if & 2| M|. Y and hence the sum vanish by definition for k< |M|. We now introduce integrals over ¢y and ¢, involving a
quantum number m’, which vanish unless 7’ = M +m, in which case they equal (27)7%. We may then write m' for M+m
in the O factors if we introduce a sum over #’. In this way the above expression becomes

o 4
=2

S S S [ 01100k 20%, (0. 00) O m ) @sm VBt ]
X [@1(lm)®2(lm)<h(m)5g(m)] sin 61 sin 02 d01 d@z d(pl dqoz.
The sums over m and m’ may now be evaluated by means of the spherical-harmonic addition theorem to give

_@r4n@i+1)

RISy S [ [ [ 06100k A)@1(3)F2(M)Pr(cos w)Pilcos w) sin 6, sin 6: dBy db: deps s,

where o is the angle between the directions 61, @1 and 62, 3. Now express the product Py (cos w)Pi(cos w) as a series in

TaBLE IV, Matrices for transformation from LS to jj coupling.

3, . 3 3 3
df M prf Gs P9 He dg I
2z z2e 2ée 2e
3, 3 !/ 3~ 3, ! 3, , 3, !
HsGs Hs Gs™Fa Gy He™1s /s
9
20 sz 9% 32 2 2Bz 23 $2e7 1z 12
33 w51l 35 | =L 37 57 28—
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TABLE V. Matrices of electrostatic energy in jj coupling.
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Py(cos w), and then expand Px(cos w) by the addition theorem:

2241 _
Pir(cos «)Pi(cos @)= “;—Cu')\PA(COS @) = Z2 Cur 03 (\1) O30 B2 () 23()
»

to give
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M

-ff®2(kM)$2(M)®2()\,u)11>2(,u) sin 02 d9; dos.

These integrals vanish unless \u=%M, in which case they give the value 1, so the sum over A, u gives finally the result (5).

IV. MATRICES FOR TRANSFORMATION OF pf, df,
pg, dg FROM LS T0 jj COUPLING
(TaBLE 1V)

In order to find the electrostatic energy
matrices needed to handle configurations like
p°f of the rare gases, d°f and d° of spectra like
Cu II, in jj coupling, we need the transformations
from LS to jj coupling. The transformation
matrix for the almost-closed-shell configuration
1" is the same as that for the two-electron
configuration /I’ when the states are correlated
as in Chapter XII, TAS. We obtain these
- matrices by simultaneous diagonalization of the
jj-coupling matrices of Li-Ly (or L?) and S;-S.
(or S?) as sketched in §6'2, TAS. We may note
one simplification in connection with this
diagonalization which was not noticed when
previous computations were made. In no two-
electron configuration will more than four levels
of the same J value occur, so the transformation
factorizes into matrices of at most fourth order.
For a typical J value, the four Russell-Saunders
levels are 'J 5, 3J+1;, 3J 5, 3J —1;. The state 1J s
may be obtained directly from the matrix S-S,
since it has a value of S;-S, different from the
other three. The states 3J+1; and 3J—1; may
be obtained directly from the matrix of L;-L,
since they possess unique values of this quantity.
The state 3J; however has the same value of
S:-S. as the other triplets and the same L;-L,
as the singlet. To obtain it directly involves the

simultaneous diagonalization of the two matrices
with its attendant inconvenient intermediate
matrix multiplications. But this may be avoided
by noting ‘that after 'J,, 3J4+1,, 3J—1, have
been found, the eigenfunction for 3J; is the
unique function orthogonal to the other three.
The phases of the LS-coupling states in the
transformation matrices of Table IV are arbi-
trary but the jj-coupling phases are chosen in
accordance with the conventions of §6'2, TAS.

V. MATRICES OF ELECTROSTATIC INTERACTION
IN jj COUPLING FOR %, (d%p), d%d,
d’f, d°%¢ (TABLE V)

We finally give the results of transforming the
electrostatic energies of section III to jj coupling
by means of the matrices of section IV for cases
of interest in the paper following this. The
electrostatic matrices for p°p and p°d are given
on pp. 307, 313 of TAS. We note that since the
electrostatic energies and the LS-jj transforma-
tions are the same, the jj electrostatic-energv
matrix for d is the same as that for p°d, when
the @® and the p j values are correlated with the
d and the p° j values respectively. Hence we do
not need to give the d° matrix. Note however,
that to conform to the jj-coupling phase con-
ventions of TAS, a phase factor (—1)nti—J
must be applied in switching from pd to dp or
from p°d to d°p.



