Extension of the Theory of Complex Spectra

GEORGE H. SHORTLEY AND BERNARD FRIED Mendenhall Laboratory of Physics, Ohio State University, Columbus, Ohio (Received September 2, 1938)

This paper extends the tabular and formular material of the theory of complex spectra to configurations involving fand g electrons. In making these computations it was found that in practically every case significant simplification could be made over the methods previously used. In particular, for the computation of the electrostatic energies for two-electron-like almost-closed-shell configurations a simple closed formula was found which entirely replaces the previous lengthy diagonal-sum calculation. The explicit content of the paper is best exhibited by listing the section headings: I. Extension of Tables of c^k , b^k , and a^k to gp, gd, gf, gg. II. Explanation of the Regularities in the Electrostatic Energies of Two-Electron Configurations and Formulas for gp, gd, gf, gg, g^2 . III. Formula Determining the Electrostatic Energies of Two-Electron-Like Configurations with Almost-Closed Shells. Values for p^5g and d^9g . IV. Matrices for Transformation of pf, df, pg, dg from LS to jj Coupling. V. Matrices of Electrostatic Interaction in jj Coupling for p^5f , (d^9p) , d^9d , d^9f , d^9g .

S PECTROSCOPIC analysis is beginning more and more to involve configurations with fand g electrons.¹ For this reason we believe it useful to extend the tabular and formular material of the theory of complex spectra to the point where it will handle the simpler of the observed f- and g-electron configurations. This is the purpose of the present paper. The abstract above contains a statement of the contents by sections. In extending this material to the more complicated configurations for which the amount of computational labor is great, it became desirable to re-examine the methods of calculation with a view to simplifying them if possible. It has been found that in practically every case significant simplification could be made over the methods previously used. In one case (the determination of the electrostatic energies for almost-closed-shell configurations) it was possible to find a simple closed formula to replace the previous lengthy diagonal-sum calculation. These simplified methods of computation are discussed at the beginning of each section before the tabular results are given.

I. EXTENSION OF TABLES OF c^k , b^k , and a^k to gp, gf, gd, gg (Tables I and II)

The *a*'s, *b*'s, and *c*'s are the Slater coefficients needed to compute the matrix of electrostatic interaction.² The values of the *a*'s and *b*'s follow at once by $8^{6}14$ (TAS) from the values of the *c*'s. The *c*'s represent the following definite integrals:

$$c^{k}(lm, l'm') = \left(\frac{2}{2k+1}\right)^{\frac{1}{2}} \int_{0}^{\pi} \Theta(k, m-m') \Theta(lm) \Theta(l'm') \sin \theta \, d\theta, \tag{1}$$

$$|l-l'| \leq k \leq l+l' \qquad k+l+l'=2g \quad (g \text{ integral}).$$
⁽²⁾

The direct individual evaluation of these integrals by means of Gaunt's formula 8⁶11 is very laborious because of the sum occurring in this formula. We find, however, that it is possible to express $c^k(l, m; l', l' - \epsilon)$ as the square root of a polynomial in m and then compute from this polynomial the 2l+1 entries with $m=l, \dots, -l$ with but little more trouble than the direct evaluation of a single entry. We start by noting that an examination of Gaunt's derivation shows that 8⁶11 is valid for the whole range $-l \leq m \leq l; -l' \leq m' \leq l'; -l'' \leq m+m' \leq l''$.

¹ Compare, for example, Shenstone's analysis of Cu II, which is discussed theoretically in the paper following this. ² See Condon and Shortley, *Theory of Atomic Spectra* [which we shall denote, following Kemble, by TAS], pp. 175–180 for definitions and previous tabulations.

TABLE I. $c^k(lm, l'm')$ and $b^k(lm, l'm')$. We write $c^k = \pm \sqrt{(x/D_k)}$, where D_k depends only on k, l, l'. In the table are listed only the sign preceding the radical and the value of x, D_k being given at the head of each column. Since $b^k = (c^k)^2$, $b^k = +x/D_k$. Note that $c^k(l'm', lm) = (-1)^{m-m'}c^k(lm, l'm')$.

					$c^k(lm, l'm')$ for $l+l'$	EVEN	
11'	т	m'	k = 0	2	4	6	8
gs	${{\pm 4}\atop{{\pm 3}\atop{{\pm 2}\atop{{\pm 1}\atop{0}}}}}$	0 0 0 0 0			$+\sqrt{1/9}$ 1 1 1 1 1 1		
gd	$ \begin{array}{c} \pm 4 \\ \pm 3 \\ \pm 2 \\ \pm 1 \\ 0 \\ \mp 1 \\ \mp 2 \\ \mp 3 \\ \mp 4 \end{array} $	$\pm 2 \\ \pm 2 $		$\begin{array}{rrrr} +\sqrt{70/245} \\ +& 35 \\ +& 15 \\ +& 5 \\ +& 1 \\ && 0 \\ && 0 \\ && 0 \\ && 0 \\ && 0 \end{array}$	$ \begin{array}{r} -\sqrt{168}/10672.2 \\ - 378 \\ - 540 \\ - 600 \\ - 540 \\ - 378 \\ - 168 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{r} +\sqrt{1/4089.8} \\ + 5 \\ + 15 \\ + 35 \\ + 70 \\ + 126 \\ + 210 \\ + 330 \\ + 495 \end{array}$	3
		$\pm 1 \\ \pm 1 $		$\begin{array}{cccc} & 0 \\ + & 35 \\ + & 40 \\ + & 30 \\ + & 16 \\ + & 5 \\ & 0 \\ 0 \\ & 0 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
	$\begin{array}{c} \pm 4 \\ \pm 3 \\ \pm 2 \\ \pm 1 \\ 0 \end{array}$	0 0 0 0 0		$ \begin{array}{r} 0 \\ 0 \\ + 15 \\ + 30 \\ + 36 \end{array} $	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} + & 45 \\ + & 108 \\ + & 168 \\ + & 210 \\ + & 225 \end{array}$	
gg	$\pm 4 \\ \pm 3 \\ \pm 2 \\ \pm 1 \\ 0 \\ \mp 1 \\ \mp 2 \\ \mp 3 \\ \mp 4$	$\pm 4 \\ \pm 4 $		$ \begin{array}{r} -\sqrt{784}/5929 \\ -588 \\ -168 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$+\sqrt{196}/12370^{3})$ + 490 + 630 + 490 + 196 0 0 0	$ \begin{array}{rcrcrcr} $	$+\sqrt{1/120607^{1}}_{49}^{8}$ + 9 + 45 + 165 + 495 + 1287 + 3003 + 6435 + 12870
	$\begin{array}{c} \pm 3 \\ \pm 2 \\ \pm 1 \\ 0 \\ \mp 1 \\ \mp 2 \\ \mp 3 \end{array}$	$\pm 3 \\ \pm 3$	1 0 0 0 0 0 0 0	$ \begin{array}{rrrr} - & 49 \\ - & 525 \\ - & 378 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{array}{rrrr} - & 441 \\ - & 70 \\ + & 70 \\ + & 441 \\ + & 490 \\ & 0 \\ 0 \end{array}$	$\begin{array}{rrrr} + & 289 \\ + & 507 \\ + & 540 \\ + & 300 \\ + & 18 \\ - & 198 \\ - & 924 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	$\begin{array}{c} \pm 2 \\ \pm 1 \\ 0 \\ \mp 1 \\ \mp 2 \\ \pm 1 \\ 0 \\ \mp 1 \\ 0 \end{array}$	$\begin{array}{c} \pm 2 \\ \pm 1 \\ \pm 1 \\ \pm 1 \\ \pm 1 \\ \end{array}$	1 0 0 0 1 0 0 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

740

	$c^k(lm, l'm')$ FOR $l+l'$ ODD									
u'	т	m'	k =	1		3	÷	5		7
g₽		± 1 ± 1			+ + + + + + + +	$-\sqrt{28/147}$ - 21 - 15 - 10 - 6 - 3 - 1 0 0		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	${{\pm 4}\atop{{\pm 3}\atop{{\pm 2}\atop{{\pm 1}\atop{0}}}}}$	0 0 0 0			+ + + +	0 - 7 - 12 - 15 - 16		$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
gf	$\pm 4 \\ \pm 3 \\ \pm 2 \\ \pm 1 \\ 0 \\ \mp 1 \\ \mp 2 \\ \mp 3 \\ \mp 4$	$\pm 3 \\ \pm 3 $		$+\sqrt{28/63}$ + 7 + 1 0 0 0 0 0 0 0 0		$\sqrt{42/847}$ 63 54 30 9 0 0 0 0 0 0		$\begin{array}{r} +\sqrt{420/143143} \\ + 1575 \\ + 3375 \\ + 5250 \\ + 6300 \\ + 5670 \\ + 3150 \\ 0 \\ 0 \end{array}$		/ 1/262914/ 7 · 28 84 210 462 924 1716 3003
	$\pm 4 \\ \pm 3 \\ \pm 2 \\ \pm 1 \\ 0 \\ \mp 1 \\ \mp 2 \\ \mp 3 \\ \mp 4$			$\begin{array}{c} 0 \\ + & 21 \\ + & 12 \\ + & 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	+ + - -	70 14 32 49 30 0 0		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	+++++++++++++++++++++++++++++++++++++++	9 48 147 336 630 1008 1386 1386 1584 1287
	$\pm 4 \\ \pm 3 \\ \pm 2 \\ \pm 1 \\ 0 \\ \mp 1 \\ \mp 2 \\ \mp 3 \\ \mp 4$	$\pm 1 \\ \pm 1$		$ \begin{array}{r} 0 \\ 0 \\ + 15 \\ + 15 \\ + 6 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $		$\begin{array}{c} 42 \\ 14 \\ 40 \\ 15 \\ 1 \\ 32 \\ 54 \\ 0 \\ 0 \end{array}$	• • •	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		45 180 420 735 1050 1260 990 495
	${\pm 4 \atop {\pm 3} \atop {\pm 2} \atop {\pm 1} 0}$	0 0 0 0		$\begin{array}{c} 0 \\ 0 \\ 0 \\ + 10 \\ + 16 \end{array}$	 -+ +	0 63 3 15 36		$\begin{array}{rrrr} - & 7056 \\ - & 1764 \\ + & 84 \\ + & 2166 \\ + & 3600 \end{array}$	+ + + +	165 480 840 1120 1225

TABLE I.—Continued

If in 8⁶11 we substitute l', $l' - \epsilon$ for lm; k, $m - l' + \epsilon$ for l'm'; lm for l'', m + m'; we can obtain the formula

$$c^{k}(l,m;l',l'-\epsilon) = \frac{(-1)^{g+l+\epsilon}g!}{(g-l)!(g-l')!(g-k)!(2g+1)!} \left[\frac{(2l+1)(2l'+1)}{\epsilon!(2l'-\epsilon)!} \frac{(k+l'-\epsilon-m)!}{(l-m)!} \frac{(l+m)!}{(k-l'+\epsilon+m)!} \right]^{\frac{1}{2}} \\ \times \sum_{s} (-1)^{s} {\epsilon \choose s} (2l'-s)!(2g-2l'+s)! \frac{(2g-2k)!}{(2g-2k-s)!} \frac{(k-l'+m+\epsilon)!}{(k-l'+m+s)!}.$$
(3A)

In the sum, $\binom{\epsilon}{s}$ is the binomial coefficient, and s runs from 0 to the lesser of ϵ and 2g-2k.

TABLE II. $a^k(lm, l'm')$. The value of this coefficient is independent of the signs of m and m'. As in the preceding table, we print the common denominator of several related values but once at the beginning of each group. For l=0, $a^k(00, l'm')=\delta(k, 0)$ for all l', m'; for k=0, $a^0(lm, l'm')=1$ for all values of the arguments; in the table we give values only for l, l', k>0. Note that $a^k(l'm', lm)=a^k(lm, l'm')$.

11'	m m'		k =	2	4		· · ·	6	 5	3
g₽	$\begin{array}{ccccc} 4 & 1 \\ 3 & 1 \\ 2 & 1 \\ 1 & 1 \\ 0 & 1 \\ 4 & 0 \\ 3 & 0 \\ 2 & 0 \\ 1 & 0 \\ 0 & 0 \end{array}$			$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						
gd	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		+ 56/539 + 14 - 16 - 34 - 40 - 28 - 7 + 8 + 17 + 20 - 56 - 14 + 16 + 34 + 40	$\begin{array}{r} + \ 14/23 \\ - \ 21 \\ - \ 11 \\ + \ 9 \\ + \ 18 \\ - \ 56 \\ + \ 84 \\ + \ 44 \\ - \ 36 \\ - \ 72 \\ + \ 84 \\ - \ 126 \\ - \ 66 \\ + \ 54 \\ + \ 108 \end{array}$	35%				
gf	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			+140/1155 + 35 - 40 - 85 - 100 0 0 0 0 - 84 - 21 + 24 + 51 + 60 - 112 - 28 + 32 + 68 + 80	$\begin{array}{r} + 42/36 \\ - 63 \\ - 33 \\ + 27 \\ + 54 \\ - 98 \\ + 147 \\ + 77 \\ - 63 \\ - 126 \\ + 14 \\ - 21 \\ - 11 \\ + 9 \\ + 18 \\ + 84 \\ - 126 \\ - 66 \\ + 54 \\ + 108 \end{array}$	70⅓		$\begin{array}{r} + 4/12269. \\ - 17 \\ + 22 \\ + 1 \\ - 20 \\ - 24 \\ + 102 \\ - 132 \\ - 6 \\ + 120 \\ + 60 \\ - 255 \\ + 330 \\ + 15 \\ - 300 \\ - 80 \\ + 340 \\ - 440 \\ - 20 \\ + 400 \end{array}$		
gg	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			+784/5929 +196 -224 -476 -560 +49 -56 -119 -140 +64 +136 +160 +289 -340 -400	$\begin{array}{r} +196/12 \\ -294 \\ -154 \\ +126 \\ +252 \\ +441 \\ +231 \\ -189 \\ -378 \\ +121 \\ -99 \\ -198 \\ +81 \\ +162 \\ +324 \end{array}$	370 ³ 1⁄81		$\begin{array}{r} + \ 16/20449 \\ - \ 68 \\ + \ 88 \\ + \ 4 \\ - \ 80 \\ + 289 \\ - \ 374 \\ - \ 17 \\ + \ 340 \\ + \ 484 \\ + \ 22 \\ - \ 440 \\ + \ 1 \\ - \ 20 \\ + \ 400 \end{array}$	$\begin{array}{r} + & 1/\\ & - & 8\\ + & 28\\ - & 56\\ + & 70\\ + & 64\\ - & 224\\ + & 448\\ - & 560\\ + & 784\\ - & 1568\\ + & 1960\\ + & 3136\\ - & 3920\\ + & 4900\end{array}$	1206071 ⁸ ⁄49

Alternatively if in 8⁶11 we substitute k, $m-l'+\epsilon$ for lm; l', $l'-\epsilon$ for l'm'; lm for l'', m+m', we can obtain

$$c^{k}(l,m;l',l'-\epsilon) = \frac{(-1)^{g+l}g!}{(g-l)!(g-l')!(g-k)!(2g+1)!} \left[\frac{(2l+1)(2l'+1)}{\epsilon!(2l'-\epsilon)!} \frac{(k+l'-\epsilon-m)!}{(l-m)!} \frac{(l+m)!}{(k-l'+\epsilon+m)!} \right]^{\frac{1}{2}} \\ \times \sum_{s} (-1)^{s} \binom{\epsilon}{s} (2l'-s)!(2g-2l'+s)! \frac{(2g-2l)!}{(2g-2l-s)!} \frac{(l-m)!}{(l-m-\epsilon+s)!}, \quad (3B)$$

where s runs from 0 to the lesser of ϵ and 2g-2l.

These formulas are good for the full range $-l \leq m \leq l$; hence we need consider only $\epsilon \leq l$ since the negative values of $l' - \epsilon$ may be covered by the formula $c^k(l, m; l', m') = c^k(l, -m; l', -m')$. For $\epsilon \leq l$, it may be seen that formula (3A) gives *directly* for $(c^k)^2$ a polynomial of order 2l' in m if $\epsilon > 2g - 2k$; formula (3B) gives *directly* a polynomial of order 2l' in m if $\epsilon < 2g - 2k$ and $\epsilon < 2g - 2l$ both formulas give polynomials of order 2l' *directly*. By *directly* we mean that the numerator and denominator of the rational function which these formulas give for $(c^k)^2$ come ready factorized so that the denominator may be canceled at once.³

The procedure for calculating the entries of Table I is then the following. In (3A) or (3B) take $l \ge l'$ to minimize the number of polynomials required. Then for each value of k occurring in (2), and for $\epsilon = 0, 1, \dots, l'$, compute the c's as functions of m, using, in order to simplify the computation and make the sums as short as possible, (3A) if $\epsilon > 2g - 2k$, (3B) if $\epsilon > 2g - 2l$ (these inequalities are mutually exclusive), and either formula if $\epsilon < 2g - 2l$ and $\epsilon < 2g - 2k$. For example, one gets all the entries for gd from nine formulas, of which the following three are typical:

$$\begin{split} c^2(gm; d2) &= + \left[(4+m)(3+m)(2+m)(1+m)/24 \cdot 49 \cdot 5 \right]^{\frac{1}{2}} = c^2(g, -m; d, -2), \\ c^4(gm; d1) &= + (2m-1) \left[5(5-m)(4+m)/6 \cdot 121 \cdot 49 \right]^{\frac{1}{2}} = c^4(g, -m; d, -1), \\ c^6(gm; d0) &= + \left[5(36-m^2)(25-m^2)/4 \cdot 169 \cdot 121 \right]^{\frac{1}{2}} = c^6(g, -m; d, 0). \end{split}$$

These are valid for $-4 \leq m \leq 4$.

II. EXPLANATION OF THE REGULARITIES IN THE ELECTROSTATIC ENERGIES OF TWO-ELECTRON CONFIGURATIONS AMD FORMULAS FOR gp, gd, gf, gg, g^2

Inspection of the formulas for the electrostatic energies of two-electron configurations (TAS §5⁷) reveals a number of striking regularities to which attention has been called but for which, so far as we know, no proofs have been given. In order that we may justifiably take advantage of these regularities in our computations, we first indicate their general proofs.

(a) In the case of ll' (two nonequivalent electrons, cf. gp, gd, gf, gg below), ¹L and ³L have equal coefficients of the F's and equal but opposite coefficients of the G's.

Consider a table, such as 172 of TAS, in which the orbital functions are classified according to M_s and M_L . The sum of the diagonal elements of electrostatic energy for the states in the box $(1, M_L)$, with $M_S = 1$, $M_L = M_L$, gives the sum of the energies of the N triplets of largest Lvalue, if there are N states in this box. This sum is a certain linear combination of F's and G's. Consider now the diagonal sum for the corresponding box $(0, M_L)$ with $M_s = 0$. This box contains 2N states and the diagonal sum gives the total energy of the N triplets and N singlets of highest L value. We see from the arrangement of the spins that the coefficients of the F's for this box are just twice those for $(1, M_L)$, while the coefficients of the G's vanish. The difference between the diagonal sum for $(0, M_L)$ and $(1, M_L)$ is the energy sum for the N singlets, and this sum therefore has the same F coefficients but the negative of the G coefficients of the triplet sum. By starting now with

³ The ratio of two factorials involving m should here be treated like the ratio of two Γ functions, ignoring the fact that the factorials may be meaningless for certain values of m, for the resulting polynomials will always vanish properly for such m.

the highest M_L value, which involves only one singlet and one triplet, and working down, we prove the statement (a) by induction.

(b) In the case of nln'l (nonequivalent electrons of the same l value, cf. gg below) in addition to (a) one finds that for those terms which are permitted in nl^2 by the exclusion principle the coefficients of the F's equal those of the corresponding G's, while for the terms excluded in nl^2 , corresponding coefficients of F's and G's are equal and opposite.

(c) One can obtain the electrostatic energies for nl^2 from those for nln'l by setting $F^k = G^k$ and dividing by 2.

The proof of (c) follows at once from the fact (TAS p. 232) that the Russell-Saunders eigenfunctions of nl^2 , both the vanishing and the nonvanishing ones, may be obtained from the corresponding eigenfunctions of nln'l by setting n=n' and dividing by $\sqrt{2}$. Then, since $G^k(nl^2) \equiv F^k(nl^2)$, a diagonal electrostatic matrix element of nl^2 in LS coupling is obtained from that of nln'l by setting $G^k = F^k$ and dividing by 2; as stated in (c). If this is done for one of the terms of ll which is excluded from l^2 , the resulting energy must vanish; this requires that for such terms of ll the coefficients of F^k and G^k be equal and opposite. This proves one of the statements of (b), the other statement now follows at once from (a), which says that the unexcluded member of the pair of terms, 1L , 3L , has opposite G coefficients from the excluded member, and hence will have G coefficients equal to its F coefficients.

We give now the electrostatic energies of two-electron configurations involving g electrons. We also give the $\zeta(SL)$ which determine the absolute first-order Landé splitting (cf. TAS 4^7). [We do not go on and calculate the complete matrices of spin-orbit interaction in LS coupling for these configurations because so far no one has wanted to use these matrices-even the known ones (TAS, pp. 268–269) for pd, d^2 , dd---for intermediate-coupling computations because of the extreme complexity of the equations involved. Most of the complex configurations for which intermediate-coupling computations have been made involve almost-closed shells, and for these the *jj*-coupling matrices, which we do obtain, are of most interest.]

gþ:	${}^{1}F_{,3}F = F_{0} + 55 F_{2} \pm (G_{3} + 55 G_{5}) \qquad \zeta({}^{3}F) = {}^{5}\!$
	${}^{1}H, {}^{3}H = F_{0} + 28 F_{2} \pm (28 G_{3} + G_{5}) \qquad \qquad$
gd:	$^{1}D, ^{3}D = F_{0} + 110 F_{2} + 143 F_{4} \pm (G_{2} + 330 G_{4} + 715 G_{6}) \qquad \zeta^{(3}D) = \frac{5}{6} \zeta_{0} - \frac{1}{3} \zeta_{d}$
	$r_{F}, \ \sigma_{F} = r_{0} + 11 \ r_{2} - 200 \ r_{4} + (5 \ G_{2} + 95) \ G_{4} - 200 \ G_{6}) \qquad ((\sigma_{F}) = r_{24} \ g_{g} - r_{24} \ g_{d}$ $1G \ 3G - F_{e} - 65 \ F_{e} + 234 \ F_{e} + (15 \ G_{e} + 883 \ G_{e} + 78 \ G_{e}) \qquad r_{3}(\sigma_{F}) = 17/2 \ g_{2} + 3/2 \ g_{d}$
	${}^{1}H_{*}{}^{3}H = F_{0} - 70 F_{2} - 91 F_{4} + (35 G_{2} - 798 G_{4} - 13 G_{6}) \qquad \zeta(3H) = {}^{1}H_{*}{}^{3}G_{4} + {}^{2}J_{5}{}^{2}\zeta_{4}$
	$^{1}I, ^{3}I = F_{0} + 56 F_{2} + 14 F_{4} \pm (70 G_{2} + 168 G_{4} + G_{6})$ $\zeta(^{3}I) = \frac{1}{3} \zeta_{g} + \frac{1}{6} \zeta_{d}$
gf:	$P, \ ^{3}P = F_{0} + 275 \ F_{2} + 429 \ F_{4} + \ 715 \ F_{6} \pm (\qquad G_{1} + 33 \ G_{3} + 10725 \ G_{5} + 5005 \ G_{7}) \qquad \qquad \zeta(^{3}P) = \ \frac{5}{4} \ \zeta_{g} - \ \frac{3}{4} \ \zeta_{f}$
	$D_{,3}D = F_{0} + 165 F_{2} - 143 F_{4} - 1287 F_{6} \mp (3 G_{1} + 77 G_{3} + 12155 G_{5} - 3003 G_{7}) \qquad \zeta(^{3}D) = \frac{7}{12} \zeta_{g} - \frac{1}{12} \zeta_{f}$
	$F_{1} * F = F_{0} + 30 F_{2} - 299 F_{4} + 1170 F_{6} \pm (6 G_{1} + 97 G_{3} - 2990 G_{5} + 1365 G_{7}) \qquad \qquad$
	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	$I_{1} = I_{0} = I_{0$
	$K_{1} = F_{0} + 140 F_{2} + 42 F_{4} + 4 F_{6} \pm (28 G_{1} + 42 G_{3} + 420 G_{5} + G_{7}) \qquad \qquad$
gg:	¹ S, ³ S = F_0 + 1540 F_2 + 2002 F_4 + 2860 F_6 + 24310 $F_8 \pm (G_0$ + 1540 G_2 + 2002 G_4 + 2860 G_6 + 24310 G_8)
	^{1}P , $^{3}P = F_{0} + 1309 F_{2} + 1001 F_{4} - 143 F_{6} - 19448 F_{5} \mp (G_{0} + 1309 G_{2} + 1001 G_{4} - 143 G_{6} - 19448 G_{8})$
	^{1}D , $^{3}D = F_{0} + 883 F_{2} - 299 F_{4} - 1469 F_{6} + 12376 F_{8} \pm (G_{0} + 883 G_{2} - 299 G_{4} - 1469 G_{6} + 12376 G_{8})$
	$^{1}F, ^{3}F = F_{0} + 334 F_{2} - 949 F_{4} + 442 F_{6} - 6188 F_{8} + (G_{0} + 334 G_{2} - 949 G_{4} + 442 G_{6} - 6188 G_{6})$
	^{1}G , $^{6}G = F_{0} - 230 F_{2} - 407 F_{4} + 1030 F_{6} + 2380 F_{8} \pm (G_{0} - 230 G_{2} - 407 G_{4} + 1030 G_{6} + 2380 G_{8})$ $^{1}W_{3}W - E = 665 E + 581 E + 1205 E + 680 E \pm (G_{0} - 230 G_{2} - 407 G_{4} + 1030 G_{6} + 2380 G_{8})$
	II_{1} $II_{1} = F_{0} = 000 F_{2} + 301 F_{4} + 1203 F_{6} = 000 F_{8} + (G_{0} = 003 G_{2} + 301 G_{4} + 1203 G_{6} = 080 G_{8})$ II_{1} $II_{1} = F_{0} = 701 F_{0} + 721 F_{1} + 601 F_{2} + 136 F_{0} + (G_{0} = 701 G_{0} + 721 G_{1} + 601 G_{2} + 136 G_{0})$
	$K^{*} = F_{0} - 392 F_{0} - 784 F_{4} - 152 F_{e} - 17 F_{0} \mp (G_{0} - 392 G_{0} - 784 G_{4} - 152 G_{e} - 17 G_{0})$
	^{1}L , $^{3}L = F_{0} + 784 F_{2} + 196 F_{4} + 16 F_{6} + F_{8} \pm (G_{0} + 784 G_{2} + 196 G_{4} + 16 G_{6} + G_{8})$

 $\zeta({}^{3}P) = \zeta({}^{3}D) = \zeta({}^{3}F) = \zeta({}^{3}G) = \zeta({}^{3}H) = \zeta({}^{3}I) = \zeta({}^{3}L) = \zeta({}^{3}L) = \frac{1}{4}\zeta_{ng} + \frac{1}{4}\zeta_{n'g}.$

 g^2 : The formulas for the allowed terms, ${}^{1}S$, ${}^{3}P$, ${}^{1}D$, ${}^{3}F$, ${}^{1}G$, ${}^{3}H$, ${}^{1}I$, are obtained from gg by omitting the expressions in the G's. The intervals are given by $\zeta({}^{3}P) = \zeta({}^{3}F) = \zeta({}^{3}H) = \zeta({}^{3}K) = \frac{1}{2}\zeta_{ng}$.

TABLE III. The integral C_{uvw} [cf. (6)].*

$C_{000} = 2$ $C_{011} = \frac{2}{3}$ $C_{022} = \frac{2}{5}$ $C_{033} = \frac{2}{7}$ $C_{044} = \frac{2}{9}$	$C_{112} = \frac{4}{15} C_{123} = \frac{6}{35} C_{134} = \frac{8}{363} C_{145} = \frac{10}{999} C_{145} = \frac{10}{99} C_{145} = \frac{10}{9} C_{$	$\begin{array}{c} C_{222} = \frac{4}{35} \\ C_{224} = \frac{4}{35} \\ C_{233} = \frac{8}{105} \\ C_{235} = \frac{29}{231} \\ C_{244} = \frac{40}{693} \\ C_{246} = 19 \\ 143 \end{array}$	$\begin{array}{c} C_{334} = & 477\\ C_{336} = & 2093003\\ C_{345} = & 497001\\ C_{347} = & 797287\\ C_{444} = & 367001\\ C_{446} = & 497287\\ C_{448} = & 9892187\end{array}$

* The table gives all nonvanishing integrals for u and $v \leq 4$. The values are independent of the order of the three subscripts.

III. FORMULA DETERMINING THE ELECTROSTATIC ENERGIES OF TWO-ELECTRON-LIKE CON-FIGURATIONS WITH ALMOST-CLOSED SHELLS. VALUES FOR p^5g and d^9g

In $\S1^{13}$ (TAS) it is shown that the coefficients of the F's in the electrostatic energies for the configuration $l^{m-1}l'$, which has one electron missing from the *l* shell, are the negatives of those for the related two-electron configuration ll'. It is also shown that the coefficients of the G's vanish for the triplets, so that if the formulas for ll' are known the computation is reduced to a determination of the coefficients of the G's for the singlets. These G singlet coefficients, in the cases where they have been previously obtained, by the lengthy diagonal-sum calculation, turn out to have the strikingly simple form shown by the formulas of p. 299, TAS. We show below the reason for this form and give for the nonvanishing G coefficients an explicit formula whose use eliminates completely the necessity for a diagonal-sum calculation for configurations of this type.

The start of the table (similar to 1¹³5, TAS) which classifies the orbital functions for $l^{m-1}l'$ according to the values of M_s and M_L is, for $M_s=0$:

$$\begin{split} M_L = l + l' & (-l^+, l'^+)(-l^-, l'^-), \\ M_L = l + l' - 1 & (-l + 1^+, l'^+)(-l + 1^-, l'^-) \\ & (-l^+, l' - 1^+)(-l^-, l' - 1^-), \\ M & = l + l' - 2 & (-l + 2^+, l'^+)(-l + 2^-, l'^-) \\ & (-l + 1^+, l' - 1^+)(-l + 1^-, l' - 1^-) \\ & (-l^+, l' - 2^+)(-l^-, l' - 2^-). \end{split}$$

(The first entry in each parenthesis gives the quantum number m_l , m_s of the electron missing from the *l* shell, the second entry the quantum numbers of the *l'* electron.) The table continues in this fashion down to $M_L = |l - l'|$, and the *G* terms in the energies of all the singlets may be obtained by using just this part of the table.

In the diagonal sum for the box characterized by $M_s=0$, $M_L=M_L$, the coefficient of $G^k(\mathcal{U}')$, according to 1¹³4 (TAS), is seen to be

$$+\sum_{m} 2b^{k}(l, m; l', M_{L}+m).$$
 (4)

Now we shall presently prove that

$$\sum_{n} b^{k}(l, m; l', M+m) = \frac{(2l+1)(2l'+1)}{2(2k+1)} C_{ll'k} \quad \text{if } k \ge |M| = 0 \qquad \text{if } k < |M|, \qquad (5)$$

so that the sum (4), when it is nonvanishing, is independent of M_L . The factor $C_{ll'k}$ is the integral of the product of three Legendre polynomials:

$$C_{ll'k} = \int_{0}^{a} P_{l}(\cos\theta) P_{l'}(\cos\theta) P_{k}(\cos\theta) \sin\theta \,d\theta.$$
(6)

Its values, which may be readily obtained from 9⁶9 (TAS) are given in Table III. From (4) and (5), and the usual diagonal-sum procedure which starts with the box with $M_S=0$, $M_L=l+l'$ and works down the table we see at once that

In the electrostatic energy for ¹L the coefficients of all $G^{k's}$ vanish except that for k=L, which has the value

$$\frac{(2l+1)(2l'+1)}{2L+1}C_{ll'L}.$$

Since $C_{ll'k}$ vanishes unless the triangular conditions (2) are satisfied, only alternate singlets, those with $L=l+l', l+l'-2, l+l'-4, \dots, |l-l'|$ have any nonvanishing G coefficients. The intermediate singlets, with $L=l+l'-1, l+l'-3, \dots$ have the same electrostatic energies as the triplets of the same L value.

From this rule and those enunciated at the beginning of this section we may at once write down the electrostatic energy formulas, in particular the formulas for d^9g which we shall need in our applications to Cu II in the succeeding paper. In p^5g and d^9g the only non-vanishing terms in the G's are given by

Note that these are written in terms of G_k rather than G^k ($G_k = G^k/D_k$, cf. Table I).

Proof of (5).—By the definition of $b^k = (c^k)^2$,

 $\Sigma b^{k}(l, m; l', M+m) = \Sigma b^{k}(l', M+m; l, m)$

 $=\sum_{m}\frac{2}{2k+1}\int\int \left[\Theta_1(k, M)\Theta_1(l', M+m)\Theta_1(l, m)\right] \left[\Theta_2(k, M)\Theta_2(l', M+m)\Theta_2(l, m)\right]\sin\theta_1\sin\theta_2\,d\theta_1\,d\theta_2,$

if $k \ge |M|$. b^k and hence the sum vanish by definition for k < |M|. We now introduce integrals over φ_1 and φ_2 , involving a quantum number m', which vanish unless m' = M + m, in which case they equal $(2\pi)^{-1}$. We may then write m' for M + m in the Θ factors if we introduce a sum over m'. In this way the above expression becomes

$$= \sum_{m} \sum_{m'} \frac{4\pi}{2k+1} \int \int \int \left[\Theta_1(kM) \Theta_2(kM) \Phi_1(M) \overline{\Phi}_2(M) \right] \left[\Theta_1(l'm') \Theta_2(l'm') \overline{\Phi}_1(m') \Phi_2(m') \right] \\ \times \left[\Theta_1(lm) \Theta_2(lm) \Phi_1(m) \overline{\Phi}_2(m) \right] \sin \theta_1 \sin \theta_2 \, d\theta_1 \, d\theta_2 \, d\varphi_1 \, d\varphi_2.$$

The sums over m and m' may now be evaluated by means of the spherical-harmonic addition theorem to give

where ω is the angle between the directions θ_1 , φ_1 and θ_2 , φ_2 . Now express the product $P_{l'}(\cos \omega)P_l(\cos \omega)$ as a series in

df °I7 9 2 1 $\frac{5.9}{22}$ 1 ³H₅³G₅[']H₅ 13 412 110 -215 15 170-2115 21/21-1/21 170 135-121 21 312-213 115 -312 317 316 ³H₄³G₄³F₄ ¹G₄ [₅³H₅³G₅'<u>H</u> 512 512 512 512 712 512 T12 2 412 133-515521165 -6 617-1215612 8 9111-51776155 415 286-3546 214 <u>5</u> 2 2155 6130-1012-1016 915 5135 -8 -21105 7 1817 -10-6135 1910 7 177-12 13-12310 42 32 2111 36 2017 1215 18115 3922 10121 15133 -2122 1813 1015 6115 -313 512i 8115 617 $\frac{1}{2}\frac{9}{2}$ 11957166121146155 37 41110-115 5 1013 1 7 8155-915 135 30 41390-2133 317 31110 36 -447 215 4121 ³G₃ ³F₃ 'F₃ ³H4³G4³F4[']G4 32 32 -1 115 215 217 612-21110 6110 -315 135-413021105 372215213-2 16 5 1012 614-613-2142 -16 21 -155-613 317 1 2 2 217 -114 121 39 22 30 1415 172 72 32 2115 211056110 2135 115 -3 213 42 717 1385 2135 372 1513-121 412 617 21154-2111 215 215 D ³D 352 1 1 5721 1 5252 15-316 3170 616 21154-10111 21462 °F2°D2′D, -115 311657135-4110-21105 512 512 512 512 512 512 512 712 712 512 512 712 517 <u>3</u> 2 61105 -3 2115 416 110 -15 -10 512 513 3111 7121 2016 617 352 3 7 c155-2110521306135 416-110 3 2115 4 312 -1 -16 . 135 3115 174 -17 174 315 -6 316

TABLE IV. Matrices for transformation from LS to jj coupling.

			3à		36	3	c	3d
195	a: 5/2,7/2 c:	3/2,7/2 30 7	20F2+132F4+36	063) <u>10</u> (- <u>48</u> F2+	66F4-72G3)	₹(30F2-26	+F4+120G3) <u>115</u> ($\frac{13}{5}F_2 - 66F_4 + 72G_3$
u	b: %2,%2 d:	3/2, 3/2 3b		$\frac{1}{7}\left(\frac{348}{5}F_2-2\right)$	09F4+144G3)	$\frac{130}{7}(\frac{19}{5}F_2-\frac{1}{5})$	55F ₄ -2463) 1 <u>6</u> (³⁶ ₅ ₇₂ +66 ₇₄ -72 ₆₃)
06	60	3c				5F2 + 5	120 7 G3 15	$\left(-\frac{6}{5}F_{2}+\frac{12}{7}G_{3}\right)$
0b -24 F ₂ -66 F ₄	6a -10F2-3F4	. 3d						$\frac{56}{5}F_2 + \frac{216}{7}G_3$
5a	56	L	5c	20		26	2c	2d
$5a \frac{74}{7}F_2 + \frac{123}{7}F_4 +$	7265 110 (12 F2+12 F2	-3665) 121(-121	$F_2 - \frac{12}{7}F_4 + 24G_5$	2a -10F2+	$33F_4 - \frac{1}{2}$	€ 16 F2	⁶⁹ ₇ ₇ ₇ + ³⁹⁶ ₇ F ₄	$\frac{16}{7}(-\frac{22}{5}F_2+165F_4)$
56	$-\frac{60}{7}F_2 - \frac{11}{7}F_4 +$	18065 1210(-17	$F_2 - \frac{1}{7}F_4 - 12G_5$	26	- <u>12</u> 5	2+33F4	16(27F2+165F4) $\frac{288}{35}F_2 - \frac{396}{7}F_4$
5c		-71		2c			-15 F2	- <u>12</u> 16 F2
4a	46	4c	4d	Zd			×.	$\frac{12}{5}F_2$
4a 12 F2 - 36 F4	-24110 F4	(2F2+72F4) 15	<u>5</u> (3F2+10F4)	-	1a	,	Ь	Id
46	12 F2+11 F4 117	(5F2+33F4) 12	(-36F2-22F4)	10 -150 7 F2-6	297 F4+40G11	15(-72F2-13	= F4-4G1) 170($-\frac{18}{35}F_2 - \frac{33}{7}F_4 + 4G_1$
4c		13 F2	215 F2	іь		-552 F2+6	F4+2G1 114	$\frac{72}{35}F_2 + \frac{132}{7}F_4 - 2G_1$
4d			-6F2	Id			-	$\frac{84}{5}F_2 + 28G_1$
	51 01	31 81 10	4a	C 15/ 48 E +	46 30F-616G)	4 [[4]28E-18	c 2F.+616G.) 1221	$\frac{4d}{23F_{2}-65F_{2}+616G_{2}}$
$d^{9}\alpha$	a: 3/2, 9/2 c: h: 5/2 7/2 d	3/2, 9/2 40 2	012+314+1230	308 - 3	3 4 010 4) 64 5 46 16 6	13 (67 E _ 1)	05-4166) 1	3 2 0014 01004)
9	0. 72,72 0.	, , , , 4 0		5 2	3 4 01004	3(3'2" 98 - 1	4312	5 2 10 14 616 6
16	70	40				3 2	9 41/	$7(\frac{15}{15}, 2, \frac{19}{9}, 4)$
16 -110 F2-143F	$ra -36F_2 - 14$	F4 4a						<u>15 ^r2⁺9 ⁰4</u>
6a	6b	(Se 28	3a	36	26-1-	3c 	$\frac{3d}{(15,65c)}$
$\begin{bmatrix} 6a & \frac{120}{15}F_2 + \frac{500}{9}F_4 + 1 \\ \hline \end{array}$	546 135(<u>15</u> F2+50 F4-4	4G6) VI4(-5F2	-3+4+6606 3a	15 2+ 9	r4 1110(-75 r2	72 - 4	$6(\frac{1}{5}r_2 + \frac{1}{9}r_4)$	$1330(-5^{-}2^{+}9^{-}4)$
66	$-\frac{15+7}{3}F_2-\frac{57}{9}F_4+4$	406 10(-5F2-	3F4-132G6) 3b		1 3 2	9 4 1	$5(\frac{1}{5}r_2 + \frac{1}{9}r_4)$	13(22F2-9-F4)
6c		-150 F2	+3966 ₆ 3c				- <u>15</u> F2	-105 15 F2
5a	56	5c	5d 3d					$\frac{11}{3}F_2$
$5a \frac{196}{3}F_2 - \frac{1121}{9}F_4$	$\sqrt{182}\left(\frac{1}{15}F_2 - \frac{40}{9}F_4\right)$	190 9 139 F4 1	$78(\frac{1}{5}F_2 + \frac{33}{9}F_4)$	208	2a	2	572 V	2d
56	$\frac{617}{15}F_2 + \frac{533}{9}F_4$ (42)	$(\frac{2}{5}F_2 + \frac{2}{9}F_4) +$	$\overline{21}(-\frac{1}{5}F_2-\frac{5}{9}F_4)$	20 3 F2-1	9 F4+140G2	154 154	9 F4-28G2) 1/2(-	$\frac{11F_2 - \frac{11}{3}F_4 + 8F_{2}}{3}$
5c		130 F2	$\frac{750}{15}$ $\sqrt{2}$ F ₂	26		$-\frac{104}{3}F_2+\frac{10}{3}F_2$	9 F4+ 5 G2 44	$F_2 + \frac{5}{3}F_4 - \frac{55}{5}G_2$
5d			$-\frac{339}{15}F_2$	2d				$-77F_2 + \frac{507}{5}G_2$
			2a		26	2	c	2d
$d^{9}d$	a: 5/2, 5/2 c:	3/2, 5/2 20 3/2 3/2 20	7 (-4F2+75F4+4	862) 12 25(-8F2+	75F4-14G2)	12 25 (8F2-75	5F4+14G2) 2121	(F2-75F4+28G2)
00	D. 72,72 U. Od	-72, -72 2b		28 25	F2+3G2)	$\frac{1}{25}(47F_2-9)$	000F4-84G2)	$\frac{4\sqrt{21}}{25}(F_2 - 2G_2)$
0a - 56 F2-421	4+6G0 VE(-7F2-42)	(+2G0) 2c				$\frac{28}{25}(F_2)$	+362) [$\frac{4\sqrt{21}}{25}(-F_2+2G_2)$
Od	-49 F2+4	Go Zd				20		$\frac{49}{25}(3F_2+4G_2)$
10	///	L	Id	30	,	36	Jc	3d
$ a = \frac{184}{25}F_2 + 6F_4$	174 (-24 F2-12F4) 174	$\left(\frac{24}{25}F_2 + 12F_4\right) \sqrt{1}$	4(-13 F2+18 F4)	3a 116 25 F2-	19F4 16(-1	2F2-6F4)	$\sqrt{6}(\frac{12}{25}F_2+6F_4$	$\frac{54}{25}F_2+6F_4$
16 25 2 .	$-\frac{196}{25}F_{2}$	$\frac{21}{5}F_2 + 84F_4$	98 35 F2	36	15	$\frac{14}{5}F_2$	$\frac{46}{25}F_2 + 9F_4$	-2816F2
/c		- <u>196</u> F2	- <u>98</u> F,	3c		×	$\frac{154}{25}F_2$	28 25 16 F2
Id	· · · · · · · · · · · · · · · · · · ·	25 -	$-\frac{49}{35}F_{2}$	3d				$-\frac{49}{25}F_2$
L				L	4a	4	6	4c
50	a: 3/2, 7/2		5a -4F2-F4	4a 28 F2+	7F4+28G4	12(12 F2+	2F4-2864) 12($-\frac{12}{5}F_2 - 2F_4 + 28G_4)$
p'f	b: 3/2, 5/2			46		$-\frac{14}{5}F_2$	+ 56G4 -	5F2-F4-56G4
	d: 1/2,5/2	5a		40				$-\frac{14}{5}F_2 + 56G_4$
<u>3a</u>	3b 3c 3d	5a -5F2	16 -12 F2	L			·····	
3a 23 Fz - 61	5F2 99 13F2 99F2	20	26	2d		40	46	4c
36 66 7	F2 = 15 F2 - 4 15 F2	20 -79F2+7	1262 16(-15 Fz-1	2G2) 127(-9F2+1	2G ₂) 4a	₹F2+#0	G4 ¥5(¹ / ⁷ / ² − 8	64) 135(-7F2+364)
30	0 0	26	1 4 F ₂ +120	2 114(=7F2-	6G ₂) 4b		$-\frac{3}{7}F_2+240$	4 V7(-7Fz-8G)
30	0	2d		42 G ₂	4c			3 64

TABLE V. Matrices of electrostatic energy in jj coupling.

 $P_{\lambda}(\cos \omega)$, and then expand $P_{\lambda}(\cos \omega)$ by the addition theorem:

$$P_{l'}(\cos \omega)P_{l}(\cos \omega) = \sum_{\lambda} \frac{2\lambda + 1}{2} C_{ll'\lambda}P_{\lambda}(\cos \omega) = \sum_{\lambda} 2\pi C_{ll'\lambda}\sum_{\mu} \Theta_{1}(\lambda\mu)\Theta_{2}(\lambda\mu)\overline{\Phi}_{1}(\mu)\Phi_{2}(\mu)$$

to give

 $\sum_{m} b^{k}(l, m; l', M+m) = \frac{(2l'+1)(2l+1)}{2(2k+1)} \sum_{\lambda, \mu} C_{ll'\lambda} \int \int \Theta_{1}(kM) \Phi_{1}(M) \Theta_{1}(\lambda\mu) \overline{\Phi}_{1}(\mu) \sin \theta_{1} d\theta_{1} d\varphi_{1} \\ \cdot \int \int \Theta_{2}(kM) \overline{\Phi}_{2}(M) \Theta_{2}(\lambda\mu) \Phi_{2}(\mu) \sin \theta_{2} d\theta_{2} d\varphi_{2}.$

These integrals vanish unless $\lambda \mu \equiv kM$, in which case they give the value 1, so the sum over λ , μ gives finally the result (5).

IV. Matrices for Transformation of pf, df, pg, dg from LS to jj Coupling (Table IV)

In order to find the electrostatic energy matrices needed to handle configurations like $p^5 f$ of the rare gases, $d^9 f$ and $d^9 g$ of spectra like Cu II, in *jj* coupling, we need the transformations from LS to jj coupling. The transformation matrix for the almost-closed-shell configuration $l^{m-1}l'$ is the same as that for the two-electron configuration ll' when the states are correlated as in Chapter XII, TAS. We obtain these matrices by simultaneous diagonalization of the *jj*-coupling matrices of $L_1 \cdot L_2$ (or L^2) and $S_1 \cdot S_2$ (or S^2) as sketched in §6¹², TAS. We may note one simplification in connection with this diagonalization which was not noticed when previous computations were made. In no twoelectron configuration will more than four levels of the same J value occur, so the transformation factorizes into matrices of at most fourth order. For a typical J value, the four Russell-Saunders levels are ${}^{1}J_{J}$, ${}^{3}J+1_{J}$, ${}^{3}J_{J}$, ${}^{3}J-1_{J}$. The state ${}^{1}J_{J}$ may be obtained directly from the matrix $S_1 \cdot S_2$ since it has a value of $S_1 \cdot S_2$ different from the other three. The states ${}^{3}J+1_{J}$ and ${}^{3}J-1_{J}$ may be obtained directly from the matrix of $L_1 \cdot L_2$ since they possess unique values of this quantity. The state ${}^{3}J_{J}$ however has the same value of $S_1 \cdot S_2$ as the other triplets and the same $L_1 \cdot L_2$ as the singlet. To obtain it directly involves the simultaneous diagonalization of the two matrices with its attendant inconvenient intermediate matrix multiplications. But this may be avoided by noting that after ${}^{1}J_{J}$, ${}^{3}J+1_{J}$, ${}^{3}J-1_{J}$ have been found, the eigenfunction for ${}^{3}J_{J}$ is the unique function orthogonal to the other three.

The phases of the *LS*-coupling states in the transformation matrices of Table IV are arbitrary but the *jj*-coupling phases are chosen in accordance with the conventions of \S^{612} , TAS.

V. MATRICES OF ELECTROSTATIC INTERACTION IN *jj* COUPLING FOR p^5f , (d^9p) , d^9d , d^9f , d^9g (TABLE V)

We finally give the results of transforming the electrostatic energies of section III to *jj* coupling by means of the matrices of section IV for cases of interest in the paper following this. The electrostatic matrices for $p^5 p$ and $p^5 d$ are given on pp. 307, 313 of TAS. We note that since the electrostatic energies and the LS-jj transformations are the same, the jj electrostatic-energy matrix for $d^{9}p$ is the same as that for $p^{5}d$, when the d^9 and the p j values are correlated with the d and the $p^5 j$ values respectively. Hence we do not need to give the $d^{9}p$ matrix. Note however, that to conform to the *jj*-coupling phase conventions of TAS, a phase factor $(-1)^{i_1+i_2-J}$ must be applied in switching from pd to dp or from p^5d to d^9p .