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The problem of determining accurately a molecular
potential curve from spectroscopic data on the system is
analyzed, and the difficulties are discussed in detail. In
general the principal difhculty arises from the importance
in the energy expression of terms in high powers in the
quantum numbers; to deal with this, recourse may be
taken to a method employing graphical integration.
Formulas based on the first order of the W.B.K. approxi-
mation are usually but not always adequate. One can ob-
tain markedly better results in determining potential
curves by dealing directly with the energy levels which it
is desired to reproduce, rather than by the usual method
of making the curve reproduce a limited number of

spectroscopic constants. A method of successive approxi-
mations has proved to be particularly effective in giving
accurate results. Formulas are given for the convenient
manipulation of potential curves of the types suggested
by Morse, Poschl and Teller, Hylleraas, Dunham, and
also a generalization of the Morse curve. This last curve
has proved to be most satisfactory, combining great
flexibility with relative ease of manipulation; explicit
solutions for vibrational wave functions are not obtainable
for it, however. The discussion is illustrated by extensive
computations on the lowest 'Z, state of H2, for which a
potential curve very accurate in the range of nuclear
separations 1.3 ~&r ~~2.9 ap is obtained.

$i. INTRODUCTION

N the course of a careful theoretical study of
- - the iso-2so. 'Z, state of H2 by a variational
method, two of us' have found values for the
energy of this state which diRer in a surprising
manner from the values given by a Morse curve
constructed in the usual way to represent the
experimental results. The computed and ob-
served values of the energy agreed well at the
potential minimum, for a nuclear separation
r=1.87m~. For r=1.3a~, however, the computed
energy was lower than the Morse curve energy
by more than 0.1 electron volt, and for r )2.7a&
a disagreement in the same direction, but of
smaller magnitude, was found. Since our varia-
tional process could lead only to energy values
above the exact theoretical value, this apparent
contradiction of theory and experiment caused us
to make a careful check on our theoretical work,
but no errors were detected. This led us to make
a critical examination of the Morse function as
an approximation to the potential curve accu-
rately derived from all available spectroscopic
data, which showed that it is surprisingly in
error even in the neighborhood of the minimum.
Our efforts to find a better representation,
accurate over the relatively small range of r in
which we were interested, showed that this is a
problem of unexpected difficulty, and that it is
easy to overestimate the accuracy with which

' H. M. James and A. S. Coolidge, J. Chem. Phys. 5,
730 (1938}.
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potential curves can be constructed by the
methods used in the past.

In the present paper we wish to discuss the
problem of determining analytical approxima-
tions to molecular potential curves from spectro-
scopic data, to describe more accurate methods
than have been used heretofore, and to exhibit
the accuracy of various methods, old and new,
as applied to the iso.2so- 'Z, state of H2.

Two general methods have been employed in
constructing potential curves. First we may
mention that of Rydberg. ' This is a graphical
method designed to produce a curve which will

give the observed vibrational and rotational
energies, when these are computed by the Bohr
theory with half-integral quantum numbers (or,
what is the same thing, the usual approximation
of the Wentzel-Brillouin-Kramers method in
wave mechanics). To this approximation the
energy levels depend only on the form of that
part of the potential curve which lies between
the limits of classical motion of the system for
the energy in question. It is thus possible to
construct the potential curve step by step, the
energy E, of the vth vibrational level and spacing
of the rotational levels of that vibrational level

providing two conditions on the construction of
the potential curve for energies between E„ 1

and Z, . Though an excellent method for deter-
mining the general form of the curve, it is of

'R. Rydberg, Zeits. f. Physik '73, 376 (1932); 80, 514
(1933}.
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rather limited accuracy as concerns details,
principally because of its graphical character.

The second method consists in the representa-
tion of the potential curve by an analytical
expression having a generally appropriate char-
acter and containing a' number of parameters;
these parameters are adjusted to values appropri-
ate to each molecular state considered. The
curve most widely employed is that of Morse, ~

while other useful curves are those of Rosen and
Morse, 4 Manning and Rosen, ' Poschl and Teller'
and Hylleraas. 7 In each case the spectroscopic
constants associated with a given curve can be
determined, usually by approximate methods, as
functions of the parameters in the curve; these
parameters are then determined by so adjusting
them as to reproduce the observed spectroscopic
constants as well as possible. (The Inethod of
Hylleraas departs slightly from this procedure,
as will be discussed later. )

In applying this method one encounters three
difficulties, each of which may be of practical
significance: the rotational levels associated with
the analytical curve are always, the vibrational
levels usually, known only as more or less satis-
factory approximations; the "spectroscopic con-
stants" of the state are not definite constants,
but depend on the amount of observational
material available and the care with which the
energy levels are approximated by power series;
the curves to be fitted to the data are of limited
fiexibility, and there may be a wide choice as to
which of the observed spectroscopic properties of
the system the approximate potential curve is to
reproduce.

In the next three sections of this paper we shall
discuss these difficulties in more detail, and shall
describe a. technique for dealing with them to
best advantage, when the accuracy desired will

justify some care in the determination of the
curve. We shall then give formulas useful in
fitting to observational data in various ways the
curves of Morse, Poschl and Teller, and Hylleraas,
and certain series discussed by Dunham. ' Finally
we shall present and compare the results of

3 P. M. Morse, Phys. Rev. 3V, 57 (1929}.
4 N. Rosen and P. M. Morse, Phys. Rev. 42, 210 (1932).
~ N. F.Manning and N. Rosen, Phys. Rev. 42, 953 (1933).' G. Poschl and E.Teller, Zeits. f. Physik 83, 143 (1933).' E. A. Hylleraas, Zeits. f. Physik 90, 643, 661 (1935).
~ J. L. Dunham, Phys. Rev. 41, 721 (1932}.

fitting curves in a large number of ways, illus-
trating thereby certain principles involved in the
adjustment of curves of limited Hexibility, and in
the deduction of the nature of the errors in a
potential curve from the errors in the spectro-
scopic constants or energy levels associated
with it.

$2. SIGNIFICANCE OF SPECTROSCOPIC CONSTANTS

We may regard as the primary spectral data
for any given state the term values of the vibra-
tion-rotation levels, or the energy differences of
these levels. From this it is customary to derive
"spectroscopic constants, "the definition of which
is subject to some arbitrariness. Thus one may
write

E„,Ir =E„+B,K(-K+1)—D K'(K+1)'+
The energies E„~ are expressed in wave num-
bers. For any given v there will be a limited
number of rotational levels known, and the
coefficients E„,8„-~ of this expansion will not
be uniquely determined; the values depend on
the number of terms used in setting up the
expansion. Regarding Z„B„~~ ~ as functions of
v approximately fixed for integral v, but not for
other values of v, we see that in the expansions

the spectroscopic constants co„co,x„B., are
not definite quantities, but may depend, among
other things, on the amount of spectral data
available and the number of terms used in the
expansions. In particular it must be realized that
these expansions cannot be relied upon to give
term values for vibrational levels outside of the
set used in constructing them.

This point is nicely illustrated by the work of
Hylleraas' on the '2, state of N2. With this state,
for v up to 15, Z, can be expressed quite accu-
rately by a series ending with the term in co,x„.
extrapolation of this series leads to a dissociation
energy in error by 60 percent. As a second
example we take the results of Sandeman" on the
isa.2so. 'Z, state of H2, which form the experi-
mental basis of the computations to be presented
in this paper. He finds that the observed term

' E. A. Hylleraas, Zeits. f. Physik 90, 661 (1935).j' I.Sandc:pp@p, Proc. Roy. Soc., Edinburgh 55, 49 (1935).
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diRerences, for v up to 7, are practically all must be expected, to be of this order, and to
reproduced to within a few hundredths of a wave increase rapidly with v.

number by the series"

Z„=4.90+2665.9252(v+-', ) —72.79390(v+-,')'
+1.429492(v+ —,')' —0.1473890(v+2)d
+0.01246012(v+ —,')' —0.000585323(v+-')'

8„=34.22051 —1.694884(v+2)
+0.03454932(v+-', )' —0.002034446(v+ —',)'
+0.00000733776(v+-,')'.

The occasional deviations of greater magnitude
he attributes to perturbations by other electro'nic

levels, which have no place in a discussion of
potential curves and will be ignored in this
paper. He also gives a series containing a smaller,
but still relatively large, number of terms;

E„=5.00+2665.4861(v+-', ) —72.18137(v+-',)'
+1.068784(v+-,')' —0.04863957(v+-')'

also fitted by least squares, and of course repro-
ducing the observed term. differences less accu-
rately. Omission of terms in (v+-,')' and (v+ —,')'
has here changed the coefficient of (v+ —', )d by a
factor of three, and even the coefficient of
(v+-,')', almost always used in curve fitting, is
changed by one percent. But even in the more
elaborate expression the cutting oR of the series
changes the coefficients by amounts which are
appreciable in calculating Z, for v) 7. One must
expect an expansion adequate to represent all the
vibrational levels" to continue we11 beyond the
terms here given, with fairly regularly decreasing
coefficients. Extrapolating Sandeman's series, we
would expect as the next term +0.00002(v+-', )',
which for @=7 would contribute some 27 cm '
to E,. Neglect of this and higher terms in the
series has been compensated, for v ~& 7, by proper
modifications of the other constants, but this
compensation will not extend outside the range
in question. Thus for v=, j.o, when the contribu-
tion of the term in (v+ —',)' would be some ten
times greater, the error in the representation

$3. ENERGY LEVELS OF A POTENTIAL CURVE

We now turn to the Problem of determining
the energy levels of an analytic potential curve
U(r), having a minimum, which it is convenient
to take as the zero for energy, at r= r, and an
asymptotic value U(~) =D which it approaches
so rapidly that there is only a finite number of
discrete vibrational levels E.. (We shall through-
out express U in cm ', and r in Bohr radii. )
For this there is one generally useful method,
that of Wentzel-Brillouin-Kramers, which pro-
vides an asymptotic expansion which converges
at first very rapidly; so that only two terms, at
most, need be taken. To this approximation we
write, for the case of no rotation, Z„=E„'+E„";
E,' is the first W. B. K. approximation, E„"the
correction which arises from the second approxi-
mation. Employing the results of Du nham"
we find

P„'d p =2~8, '(v+-', ), ,

=2~8.*(v+-',), (2)

where p=r/r„B. =Rm/pr'2, U'=d U/dr,

(P„")'=Z„'+Z„" U, —

and R is the Rydberg constant, p the reduced
mass of the nuclei, m the mass of the elec-
tron. The case of rotation may be treated
similarly by introducing the eRective potential
U(p)+B,Z(%+1)/p', assuming an energy ex-
pansion of the form Z=Z, '+Z,"+X(X+1)'
X(8,'+8„")+higher terms in X(X+1), and
equating to zero separately the coeAicient of
each power of E(X+1) in Dunham's relations.
We thus 6nd

"We have added the constant term in B„which was
obtained in the computations to be described later.

"There is, of course, no uniquely de6ned correct ex-
pansion of the functions Z„B., which are specihed only for
a finite number of points.

Bg I g dp=Bg p Pg dp, 3

» J. L. K)unham, Phys. Rev. 41, 713 {1932).
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+(»'/») f(((')'~ '(I'"') '&~

(&'I4)f&'~ '(p"—) "&I (4)

he de6nes coefficients a„by
&(r) =:~DP(1+~i(+~28+ ).

When analytical evaluation of these expressions
is impracticable they can be evaluated numeri-
cally, by assuming values of E and using Eq. (1)
or (2) to determine the corresponding value of r(,

afterward interpolating to integral values of v.
Dunham has given the results of this method in

very useful form, expanding E„etc., in series
like those employed by spectroscopists:

K= Yoo+ Yio(s+-', )+Y20(s+-', )'+ (~)

B =' Yoz+ Yz((v+-,') + Y21(()+2)'+ (6)

Fxpanding U(r) about r, in powers of

g = (r r,)/». ,
—

He gives formulas for F~ and F~;", the parts of
F~; arising from the 6rst and second approxima-
tions of the W. B. K. method, as functions of the
a so far as this is possible without going beyond
a6, namely, uP to F2p, F4p, Fyy", F3i', Fp2",
F22 F13 Fp4 ~

In applying the results of Dunham, the prin-
cipal limitation does not arise from the lack of
higher terms in the W. B. K. approximation,
which are of the order of the uncertainties arising
from the imperfect separability of nuclear and
electronic coordinates, i.e., arising from the
essential vagueness in the definition of a mo-
lecular potential function. Rather, it is due to
the lack of such coefficients F~; as depend on
a7, ~ ~ ~, and may play an essential role in deter-
mining the location of the levels for moderately
large values of v. The extension of Dunham's
formulas is of course possible; we believe, how-
ever, that it is more practical to estimate the
necessary additional F's by a process which is
the inverse of Rydberg's,

'

determining by nu-
merical integration the values of E, and B„ for
large v, and so adjusting the values of the higher
F's as to reproduce these values. Thus, by
graphical integration of Eq. (1) with various
values of Z„', we obtain the corresponding (in
general nonintegral) values of v. The resulting
curve of E, against v is tangent to the line E=D
for some finite value v=vp such that the next
largest integer is the number of discrete vibra-
tional levels. Similarly, the curve for B.' (the
main term in 8„), is obtained from Eq. (3);
it vanishes for a= vp, but it can be shown that at
this point all its derivatives are in6nite, so that
the end-point should be disregarded when 6tting
the curve by a power series. These curves are, of
course, subject to the errors of numerical
integration as well as those due to neglect of the
higher terms in the W. B. K. approximation, but
they suffice to determine the higher F's with
ample precision when they are to be used only
for lower v's, where they have the character of
small correction terms.

An example of this procedure is illustrated in

Fig. 1, which is based upon the curve numbered
14 in Table II. As will be described later, this
curve was set up to reproduce the values of
Fip' ' ' F4p Fp] ' ' F3]. given by Sandeman for
is02so 3Z~ H2, no control of the higher F's was
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Here u and 6 are the values of p at the classical
turning-points, and c(g &b. We obtain the
following results:

E 10000 15000 20000
8 3.705 6.33 9.64
B 27.53 23.25 17.47

23000 24459
12.7 16.5

11.38 0.

These results lead to the following values for the
higher Ys:

I 5p = 0.01061,
Y7p = 0.0000202,
Y = —0.0001,
Y6] = 0.0000005.

Y6p = 0.000705,
F8p = —0.00000022,
Y„=-0.000004,

Fig. 1 shows E, and B, as computed with these
F's, and for comparison the values computed
with, first, only the F's with reference to which

possible, and they were estimated by graphical
integration. The procedure in the case of Eq. (1)
is obvious; in the case of Eq. (3) the occurrence
of infinities in the integrand was avoided by a
change of variables:

the curve was constructed, and, second, the
complete results of Sandeman, introduced for
later reference. The higher V's derived here make
appreciable contributions to E, and B„even for
quite low values of v. Thus they contribute
14 cm ' to E, and —0.044 cm ' to 8„ for v=4,
while for @=9 they contribute 396 cm ' to E,
and —0.76 cm—' to B,.

$4. DETERMINATION OF EXPERIMENTAL

POTENTIAL CURVES

We shall consider as an "experimental poten-
tial curve" any potential curve having as its
energy levels the observed discrete energy levels
of the molecule. Such a curve is of course not
uniquely defined by the finite number of ob-
served energy levels, but a reasonable, smooth
curve which reproduces these energies should be
well defined and of good accuracy everywhere.
If strong perturbations affect the electronic

- state in question there may exist no curve
whatsoever with the desired properties; a poten-
tial curve for this state is then of significance only
in an intermediate stage in the theoretical treat-
ment of these levels.

The usual process in determining an experi-
mental potential is to refer, not to the energy
levels, but to certain of the spectroscopic con-
stants, determining a potential curve U(r) such
that a limited number of the Fs have the same
values as the corresponding spectroscopic con-
stants co„co,x„ in some analysis of the elec-
tronic state. The energy levels of the curve
then differ from the observed energies insofar as
the spectroscopic constants not used in deter-
mining the curve differ from the corresponding
uncontrolled Ps of the curve. Now the spectro-
scopic constants appearing in the analysis are
chosen to give the best possible fit on the assump-
tion that those constants not' explicitly intro-
duced are zero. Then even if one determines the
potential curve using all the available constants
there remain errors in the energy levels due to
the higher F's of the curve, which will not in
general be zero, and which may affect the energy
levels appreciably even for low values of the
quantum numbers. In any case, it is clear that
the greatest difficulties will arise in properly
determining the higher energy levels, and it will
be correspondingly difficult properly to deter-
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mine the potential curve near the classical
turning points for these higher levels. The magni-
tude of the errors which wi11 appear in the energy
levels even under the most favorable circum-
stances is illustrated in Fig. 1, while Fig. 2 will

illustrate the errors in the potential curve when
less careful methods of curve fitting are em-
ployed.

This difficulty can be overcome, so far as the
limited Hexibility of the potential curve will

permit, by a process of successive approxima-
tions based on the observed energy levels rather
than the derived spectroscopic constants. Let it
be desired to determine a potential curve of a
particular form which will approximate as well as
possible to the experimental curve up to a height
E„above the minimum. This is clearly to be
accomplished by making the differences in the
energy levels of this curve, for Z, &E„,approxi-
mate as well as possible, say in a least-squares
sense, to the observed energy level diff'erences.

The behavior of the energy levels and the
potential curve outside of the specified region
will be disregarded. As a first approximation to
the desired curve we take a curve constructed in
the usual way to reproduce a certain set of
spectroscopic constants, which we call the con-
trolled constants. Let the values of the uncon-
trolled Y's for this curve be determined; these
will have roughly the same values as for the final
curve. Deducting from the observed energy
values the contributions to E, , ~ of these uncon-
trolled F's, we obtain a set of values which we
would like to reproduce by a series containing
only the controlled Y's. Fitting such a series
to these values by a least-squares process we
obtain new values for these V's, which serve to
determine the second approximation to the de-
sired curve. Next, the values of the uncontrolled
Ps for this curve can be determined and in turn
employed in a repetition of this procedure, and
so on, until repetition produces no essential
improvement.

%e have applied this process in representing
the 1s0.2so-'5, state of H2 by a Poschl-Teller
curve, and find that it converges rapidly, requires
no excessive labor, and produces a curve which
bears comparison with another curve involving
twice as many disposable constants fixed in the
usual way. This curve is the curve 6 of $6; where

its construction and characteristics are indicated
in more detail; some of its properties are tabu-
lated in Tables II to VI.

It should be possible to form estimates of the
errors in any approximate potential curve on the
basis of the errors, as compared with experi-
mental values, of the corresponding spectroscopic
constants or, much better, of the energy level
separations. From the point of view of the Ryd-
berg process, one sees that an excessive computed
difference of B, and E,+g indicates that the
potential curve is on the average too narrow in

the range between these energies, while an
excessive value of 8„ indicates that the mean
value of the classical turning points for the vth
vibration is too small. From the point of view of
perturbation theory, it is clear that a depression
of the potential curve in any region will depress
most strongly those energy levels with turning
points in the given region, and will increase or
decrease the corresponding values of 8, according
as the depression affects the inner or the outer
branch of the potential curve. The latter effect
is more clearly indicated by the behavior of the
quantity r„= (Rm/B„p) i, the effective nuclear
separation for the vth level, the error in which
should be a rough measure of the average lateral
errors of the two branches in the neighborhood
of E,. It is also clear that an error in the curve of
alternating sign will lead to errors of generally
smaller magnitude in the energy levels affected.

These considerations lead also to some general
principles which are useful when methods of
determining a potential curve less careful than
that described above are to be employed. For
instance, a curve. which reproduces perfectly the .

observed vibrational levels of a molecule may
still contain very large errors if the rotational
levels do not also come out right. Thus, in

choosing a set of controlled constants for the
construction of a curve one ought to include
rotational as well as vibrational constants; a
rough equality in the number of constants of
each type used will probably lead to most satis-
factory results. Correspondingly, to insure a
reasonably wide range of application of a par-
ticular form of analytic curve it should contain
at least four variable parameters, of which two

can be used to give proper character to the
rotational levels of the curve. Thus four-param-
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Tsm. E I. Constants of e Morse curve in terms of various spectroscopic constants.
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eter curves such as those of Poschl and Teller or
Rosen and Morse have a marked superiority to
the three-parameter curve of Morse. Another
obvious consideration is that, when one is
interested only in the form of the potential curve
near the minimum, as, for instance, in deter-
mining vibrational wave functions for low v, one
should choose the parameters without regard to
errors in the dissociation energy indicated by the
curve.

These ideas will be illustrated in $6 of this
paper.

$5. FORMULAS FOR THE DETERMINATION OI

POTENTIAL CURVES

We here present in a uniform notation for-
mulas useful in determining from experimental
data potential curves of Morse, Poschl and
Teller, Hylleraas, and the generalized Morse
function suggested by Dunham. Ke write any
potential curve having an asymptotic value D as

&(0) =DF(t), 5= (r r.)/r'—
In addition to D and r„a third parameter P
occurs in all these curves, while the energy
formulas are conveniently expressed in terms of a
constant C, where

C' =4R„mP'/Ijrg'.

(We purposely avoid de6ning curves in terms of
symbols such as 8, and co., which we reserve for
use as empirical spectroscopic constants. )

The calculation of the energy levels of any of
these curves, referred to the minimum as the
zero of energy, can well be based on Dunham's
formulas. For the purpose of curve fitting it is
convenient to have expressions for the constants
defining these curves in terms of certain of the
Y's. Upon identifying Y&p' with ~„—Y2p with
~,x., Yp~' with B„and —Y~~' with a., one
obtains formulas for computing these constants,
as shown below. The error arising from the
neglect of higher order terms is trivial in com-
parison with those due to the essential short-

comings of this method of curve fitting
already discussed.

Morse curve

The Morse curve is defined by the three basic
parameters.

F~r —$1 e—2PI]2

One finds

Ypp' ——0, Ypp" =0,
Ygp' ——2 CD'"-,

C2
I —C2/4P2

Y„'= —(3C'/16P'D-:) (2P —1).
Y)p vanishes for all / &2, while 7~p" vanishes for
all l; the Morse curve, for X=O, shares with the
parabola the property of yielding the exact
solution of the energy level problem in the first
approximation of the W. B. K. method.

To find the constants of a curve in terms of
given spectroscopic constants, one may use
Table I, which gives the value of each of the
quantities at the top in terms of the quantities
in bold-faced type.

Poschl-Teller curve

To define the Poschl-Teller curve we introduce
a fourth parameter 7.'

Fp=1+sinh' r/sinh' (r+Pt)
—cosh' r/cosh' (r+Pg).

This goes into the Morse curve as v —& ~,
I =coth 27~1. For the Poschl-Teller curve also
exact values can be found for the Y~p, though
they are not given by the first W. B. K. approxi-
mation. Defining

D' =D[(cosh4 r+ C'/16D) '
—(sinh' r+ C'/16D) l]'

we find

Ypp ——D —D',
Y&p = 2CD ',
Ymp = —&',
Y« ——0,

Closed expressions for the rotational terms do not
exist, but they can be computed from Dunham's
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formulas with sufhcient accuracy. For Dun-
ham's a„we find

ao ——4Dp',
ag ———2I.P,
g, = (5L,' —8/3) P'
as ———(12I'—10I)p',

98 272'
g4=

j
28I.4 I—'+— jp',

45)
164

a;= —
j

64K' —96I-'+—I. jP"'.
5 i

Then Zoo' = 0, Zoo" = -', C'(I-' —1),
7'go = 2CD',
F2o' = —C',

~ —C2/4p2

7„'= —(3C'/16P4D') (2I P 1). —
For the determination of the constants of the
curve one may use either the first. or the second
line of the corresponding table for the Morse
curves, except for the last column. To find r one
must assume in addition a value for o.„soIving
either

2 sinh' r = (1—9&v 'B.'/D[6B '+ a& u ]') ' —1

in the first case, or, in the second

2 sjnh~ r= (1—36&g,x+, /[6B +co n ] )
''—1

Lotmar'4 has given comparable formulas, but
they are erroneous, because of a confusion of r,
with ro, a quantity defined in Poschl and Teller' s
original paper, and in our notation given by
r, =r.(1 r/p). —
Hylleraas curve

The Hylleraas curve involves three more
parameters k, k~, k2, in terms of which are
defined the intermediate quantities

k —k2 b-
1+k2

k —kg

x =e'0+~) &&, u =
k —(kg+ k2)

1+kg+ k2

F-
1+�k

(1+a)(1+c)(x+5) '
Then FII ——

(x+a) (x+c)(1+5)
This passes into Ji~ upon making k =k~=0, so
that a =b, c=0; I I is also the special case k =0,
kg ——-', (tanh r —1), kg ——-', (coth r —1).

Exact values are not available for the energy
levels. We have determined Dunham's u„ for
particular curves of this type both by a straight-
forward expansion of the potential in powers of
t and by a set of formulas too cumbersome to
reproduce. As far as a4, these formulas may be
expressed in terms of the quantities u J y 82 83 c4,
defined in Hylleraas' paper" and lead to the
expressions:

&0 '=0 y'oo"=-'C'(gP —a2),
Fgo' ——. 2 CD',
~2o = —C'a
Fog' ——C'/4p',
&ii'= —(3C'/16P4Di) (2a&P —1).

To set up a Hylleraas curve which will repro-
duce certain selected spectroscopic constants,
one begins by finding a set of Dunham's a
(using a method of successive approximations if
high accuracy is desired) such that when they
are substituted in Dunham's formulas the desired
Y will emerge. The task of determining a
Hylleraas curve which will reproduce these a
is most conveniently accomplished by means
of the following formulas, in which we put
R =2P(1+k)

('D'/ao') I SR' —12a~R' —(18aP—24a~)R' —(144a3—144a2a~+36aP)R+144asg~ —144a~'+9aP j
=24R'+ (144am —108aP)R —(288a~+ 180aP —432a~a2) .
8640a4 j4(ao/D) +4(ao/D) '[—R+ up]+ [R' —2agR+a P] j
=12(ao/D) I

—512R4+360agR'+[2340aP —3120am]R'+[7200a3 —8640ama&+2880aP]R
+2160aP+ 1080a2a P —1125aP }
+24(up/D) j226R' —406agR'+ [1200ag —720aP]R'+ [—3600a3+3120agag —540a,']R'
+f3600a3a~ —2160a2' —3240ama P+ 1395aP]R+ [2160am'a~ —1080ama P+45a ~'] j
+ I

—1136R'+3432agR'+ [—4320a2 —96aP]R4+ [21600aa—15840a2ag+2160aP]R'
+[—43200a3a~+23760aP+24120a~aP —7155aP]R'+ [21600a~aP —38880a22ag

+6480a2a P+810aP]R+[8640aP —1620apaP+ 270a P]},
p =5(«ID)'

(1+k)=R(D/ao) i,

kgkg = 1+-', (D/ap) ':(ag —R),
—(kz+kg) I 24+ 12 (D/ap) 1(ay —R) }=48+36(D/ao) (al —R) + (D/up) I (12am —3gP) —12azR+SR j .

14 W. Lotmar, Zeits. f. Physik 93, 528 (1935).
'~ It is to be noted that the u1. ~ a4 of Hylleraas'-paper are simply related to, but not identical with, these quan-

tities in our notation.
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TABLE II. Constants of potential curves. TABLE III. Dunham coefficients of potential curves.

CODE

1
2
3

5
6
7
8
9

10
11

TYPE

M 1.8678
M 1.8678
M 1.8678
M 1.8678

P-T 1.8678
P-T 1.8698
H 1.8678
H 1.8678
H 1.867.8
H 1.8678
H 1.8672

D P

24460 0.72836
24637 0.72573
19440 0.81700
20204 0.82725
24637 0.72573 0.70697
26619 0.69633 0.66959
24460 0.72806
24460 0.72806
23248 0.74708
24460 0.72836
23762 0.73930

k1

—0.05382 —0.02775 1.22820
0.12221 —0.36200 0.33728
0.17427 —0.40643 0.32949—0.08041 —0.01249 1.65297
0.27643 —0.54098 0.36442

In addition, we have considered the three curves (with r, =1.8677)
12 V($) =519'22@[1—1.6438)+1.9588P —2.0945P+2.2 j75$4],
13 V($) =51913'[1—1.6409)+1.9525@—2.0840P

+2.260)4 —2.965P+4.15P] ~

14 V($) =24459X2 [0.72550+0.02948X+0.10522X2+0.05281X3
+0.05525X4+0.02573Xs+0.00601Xs]; X =1—e '~~' P =0.8552.

F($) =pc [1—e '«]"
f1=2

If it is desired to reproduce given values of r„D,
ap, a&, a2, a3, the first of these equations will

serve to determine R; the remaining equations
then give the constants of the curve, as well as a4.
If, rather, the value of D given by the curve is
of no. interest, and it is desired to reproduce
values of ap, ai, a2, a3, a4, r, then use of the first
two equations will-allow one to find the values
of R and D needed to reproduce the given a4,
and the values for the parameters of the curves
follow as before.

Hylleraas gives another method of adjusting
his curve, based on a method which, if con-
sistently carried through, would give just the
principal parts of Dunham's terms, the Y~p' and
F~i'. However, he breaks off the vibrational
series with Y3p, and arbitrarily substitutes a
fractional expression (his Eq. (28)) which gives,
upon expansion, the proper values for these
quantities, and in addition a further set of Y~p'

which have no relation to the problem. Thus his
expression for the vibrational energies does not
accurately reproduce the energy levels of the
curve, as he himself states. In the case of
1$0.2$|T'2, H2 this approximate expression is a
very poor approximation, and breaks down
completely when one attempts to make it
reproduce the observed values of co„co,x„cv,y, .

Extended Norse curve

The extended Morse curve is defined by

CODE

1
2
3
4
5
6
7
8
9

10
11
12
13
14

ap a1 a2

51906 —1.45672 1.23785
51906 —1.45146 1.22893
51906 —1.63400 1.55747
55308 —1.65450 1.59680
51906 —1.63400 1,93292
51628 —1.59806 1.89923
51861 —1.6337.3 1,99851
51861 —1.63373 1.99851
51903 —1.63396 1.96115
51906 —1.63400 1.93292
51950 —1.65287 1.99520
51922 —1.64380 1.95880
5 1913 —1.64090 1.95250
51913 —1.64090 1.95250

Q3 a4

—0.77280 0.38776—0.76446 0.38219—1.09068 0.61386—1.13224 0.64525—2.2407 2.6672—2.24733 2.72171—2.94412 5.96758—2.36007 2.67414—2 22259 2 36103—2.73312 5.96937—2 11494 1 96573—2.09450 2.27750—2.08400 2.26000—2.08400 2.26000

a5

—3.1560—3.2602

—2.3378

—1.6746
0—2.9650—2.9650

as

2.232

1.384
0
4.150
4.150

lation differs little from that of Dunham's power
series function. In either case one first finds the
a„needed to reproduce the desired I'. The c„
of the extended Morse curve can then be
determined from the relations

up 4p'Dcp-—

Gpsy=4P D( —2cp+2cp),

GpG2=4p D(gpc2 6cp+4c4)~

Gpcp=4P'D( —2c&+10cp
—16c4+8cp),

opQ4=4P D(P /4 pcp —12cp+34~3c4 40cp+16cp),

QpQp=4p D( —/pep+11 g4pcp 53gpc4

+106/pep —96cp+32c7),

@pap ——4P'D(»~7pI pcp —9"pep+64&~pc4

—200cp+304cp —224c7+64cp).

p may be chosen so as to satisfy the auxiliary
condition, g„c„=1, if it is desired to reproduce
the observed dissociation energy D, or it may
be used simply as an adjustable parameter to
satisfy some other condition.

(6. ILI.USTRATIVE COMPUTATIONS ON

1$0.2$0 Zg H2

In Tables II to VI we summarize the results
of a variety of treatments of the isa.2so- '2, state
of H2. This work was based on Sandeman's
analysis of this state; as given in (2, except that
some of the cruder curves were fitted to data
derived from the results of Richardson and
Davidson. " The difference for these curves is
inappreciable.

1'O. W. Richardson and P. M. Davidson, Proc. Roy.
the c's being adjustable parameters. Its manipu- Soc. A125, 23 (1929).
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TAaLE IU. Values of Yq;.

CURvE Yoo" Yio' Yio" Yoo' Yoo" Y4o' Yo1 Yot" Yll' YiP Yn'

1 0
2 0
3 0
4 0
5 482
6 5.24
7 5.66
8 566
9 5.18

10 4.82
11 5.16
12
13, 14 4.90

2665.34 0
2665.34 0
2665.34 0
27.51.3 0
2665.34 —0.26
2655.41 —0.26
2664.2
2664.2
2665.3 —0.67
2665.34 +4.60
2667.40 —0.61
2665.92
2665.81 +0.11

—72.609—72.087—91.356—93.663—72.087—66.223—68.66—68.66—70.630—72.087—72.920—72.794—72.549

0 0
0 0
0 0
0 0
0 0
0 0

0.1068
0.2080

0.033 0.2842
1.0715—0.016 1.2406
1.4295—0.235 1.4286

0 34.216
0 34.216
0 34.216
0 34.216
0 34 216
0 34.144

34.216
34.216—0.063 34.216
34.216—0.1146 34.240
34.221—0.1468 34.223

—0.012

—0.008

—0.002

—0.003

—1.2037—1-.1899—1.6709—1.6709—1.6709—1.5754—1.6709—1.6709—1.6708—1.6709—1.7217—1.6949—1.6895

+0.0005

+0.0006

—0.0008

—0.0053

—0.03288—0.03276—0.03647
+0.02419—0.0007 1.

0.00292—0.0777
0.0212
0.0212—0.0826
0.0476
0.03455
0.03456

—0.000218

—0.00375

—0.00466

—0.00203

Table II specifies the constants which define
the several curves, while Table III presents the
derived values of the Dunham coefficients, as
far as they have been worked out. Table IV
gives for the curves the computed values of F~,

'

and, in certain cases, of F~;", to illustrate the
rapidity of convergence of the W. B. K. process.
Table V exhibits the divergences between the
curves, gives values for curve 14, the best of
these curves, and the differences from this of
the other curves. The location of these curves
with respect to each other involves some degree
of arbitrariness. In practice one would use the
observed energy level separations to determine
the form of the potential curve; the absolute
location of the curve would be adjusted. to
produce as satisfactory an agreement as possible
between computed and observed term values.
We have considered the curves to be so located
that the lowest computed energy level coincides
with lowest observed energy level, a process
designed to give maximum accuracy of the curve
in the general neighborhood of the minimum.

Finally, Table VI exhibits the errors in Z, and
in r„=(Rm/pB„)'*, the effective nuclear separa-
tion for the determination of the rotational terms
of the vth vibrational state. Our method of
adjusting the curves gives automatically zero
error in E0, to exhibit the differences in the
curves near the minimum we give also the
deviation of the minima of the curves from the
minimum of curve 14, which we believe to be
essentially correct.

A comparison of Tables V and VI affords a
test of the correlations between errors in curves
and errors in energies, as discussed in $4, by

taking curve 14 as the standard of comparison.
(Because of the smallness of the errors of the
energies of this curve, Table VI gives essentially
the deviations of the energies of the other curves
from those of curve 14.) The turning points are
roughly 1.6 and 2.2 for v=0, 1.45 and 2.5 for
v=1, 1.35 and 2.8 for v=2, and 1.3 and 3.0 for
v=3; the errors for a given v in Table VI should
be correlated with those in Table V for the
corresponding ranges in r. Fig. 2 shows the
correlation graphically for two of the cruder
curves.

We now discuss the individual curves, explain-
ing their construction and estimating their
defects. For the latter purpose we shall take
curve 14 as a provisional standard, later at-
tempting an estimate of the errors in this curve,
as compared to the ideal curve for the state.

TABLE V. Deviations of potenti al curves from curve 14,
(given in first line}.*

CURD r=1.8 1.5 1.7 1.9 2.1 2.8 2.5 2.7- 2.9

14
1-14
2—14
8-14
4-14
5-14
6-14
7-14
8-14

9a-14
9b-14
10—14
11-14
12-14
13-14

8487—891—906—438
+112
+82—27

+1010
+78
+3—2

+5785—13—50—7

2855 487 15 660—151 —4 +5 +15—154 —4 +5 +15—42 +9 +10 0
+109 —1 —81 —1

+1 —1 +1 +1
+2 +11 +1 —9

+52 +5 +5 +5
+21 +5 +5 +5
+6 +6 +5 +5
+1 +1 0 0

+39 —2 —2 —2
0 —8 +1 +2
0 0 0 0
0 0 0 0

1958 8619
+50 +91
+52 +98—26 —106
+56 +65—1 —10—10 —2—8 —22

0 +2
+6 +5
+1 0—4 —82
+8 +1
+8 +50

0 +11

5461 7868
+119 +119
+131 +188—258

+2 —141—89 —87
+8 +19—65 —135

0 —5—5 —80—10 —85—88. —167—2 —6
+838
+122 +788

*Curves are adjusted to have the same lowest vibrational level. For
curves 1 to 6, this can be calculated exactly. For curves 7, 8, and 9a the
Hylleraas approximation has been used, 9b is the same curve as 9a
relocated with the aid of the Dunham formulas, which have also been
used for curves 10 to 14. Curve 14 is estimated to be correct within
1 cm ~ from r =1.5 to 2.5 inclusive, too low by about 2 cm ' at 2.7,
and by about 8 cm ~ at 2.9. At 1.3 its value is unreliable because of the
steepness of the curve.
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Thor. H VI. Errors i' reproductiorz of erzergy levels by the poterzticcl curves. *

ERROR
CURvE METHoD AT MINIMUM v = 1

VI'BRATION

ERRORS IN Bg
v=2 v=3 v=4 METHoD v =0

ROTATION

ERRORS IN r, &(104
v=2 8=3

1
2
3
4
5
6
7
8

10

11
13
14

1
1

1
5
5

r5

5.3
5.2

10.0—32.4
0.5
3.6
4.9
4.9
4.8
4.8
0.0
5.0—2.0—0.6
0.0
0.0

—4.2
3.2—41.7

39.6—3.4—1.6
2.9
3.2
0.8
0.6—0.3
0.'3
5.0
0.0—0.1
0.0

—17.6—14.4—1,30.1
28.1—14.9
0.4
5.9
8.2
0.1—1.3—5.0
2.2

11.5—1.8—1.0—0.1

—44.0
37 ~ 1—269.0—38.8—38.'5

2.1
6.3

14.4—1.0—8.2—19.4
8.0

22.0
7 07—5.4—1.0

—163.6—77.0
0.5
3.2

24.2
1.8—21 ~ 2—49.1

21.5
40.0
21.2—17.9—3.4

2 —63
2 —65
2 3
2 —1
2 0
3 10
2 6
2 —1

—1
1
6

—2
0
0

—177—183
37

12—8
66—2

—.2

69

—269—281
119—7

- 41

206—1

20
216

—1 —6
59 127

470

12
0
6

32
1

18

—339—356
256—14 —30
91 155—7 10

447 —6

+ The approximation used in computing each set of entries is indicated in columns 2 and 8. 1 indicates use of an exact expression; 2, use of a
trinomial expression in v+z', 3, use of all the terms given by Dunham; 4, use of Dunham's terms supplemented by results of numerical integrations;
5, use of the formula of Hylleraas.

Morse curves

Curve 1 is the Morse curve as generally
constructed, reproducing experimental values of
B„or., and D, while curve 2 is designed to
reproduce the experimental B„or„or,x,. In the
case of this particular state it happens that
these two methods of construction give almost
the same results, for the relation required by
the Morse curve, D = coP/4&v, x„is nearly satisfied
by the experimental values, Usually a con-
siderably greater difference will be found. The
second method is preferable in determining the
curve near the minimum. The errors in the
computed E, show that these curves tend to
give excessive separations of classical turning-
points, while the too-slow increase of r, with v

shows that they are too symmetrical about the
minimum. Fig. 2 shows the net effect of these
errors, the curves being much too low on the
left and slightly too high on the right.

The Morse curve 3 was constructed in an
attempt to improve the results by a better
fitting of the rotational' constants. It reproduces
the observed o., as well as 8, and or„or,x, then
comes out much too large, so that the vibrational
levels are very low. Fig. 2 shows that the result
is an error which below V= 4000 is approximately
symmetrical; both sides of the curve are moved
outward, with addition effects on E„but com-
pensating effects on r, .

In constructing curve 4, which also gives the
observed values of 8, and o,„we concerned
ourselves not with reproducing any vibrational
constants, but with obtaining a good fit for the
vibrational energy levels with v~&4. Both or,

and or,x, are then badly in error, but over the
interesting range as a whole the energy levels
and the potential curve itself are more satis-
factory than for any other of the Morse curves.
This is a good example of the advantages of
direct fitting of energy levels over the repro-
duction of a limited number of spectroscopic
constants; the fiexibility of the Morse curve is,
however, too limited to permit a really satis-
factory fit.

Poschl-Teller curves

Curve 5 is a Poschl-Teller curve giving the
observed or„or.x„B.and n. . As with the
Morse function, practically the same curve is
obtained if D is fixed instead of co,x,. (It is not
possible to fix both D and or,x, by sacrificing a
rotational constant. ) The errors in the energy
levels indicate that the curve is quite good near
the minimum, but that the classical turning
points tend, with increasing v, to lie too far
apart and too far to large r. Thus the curve
must clearly lie too low on the right, as is
verified by Table III, but the nature of the
error on the left-hand side is not indicated by so
simple an argument.
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Curve 6 has been obtained by our method of
energy level fitting, the energy levels used in its
construction being those for v &~4. Since the
vibrational levels of the P.-T. curve are exactly
known, V~0 and F20 could be chosen once for all
to minimize the mean square errors in the
computed E,. Similar minimization of the errors
in the B„by adjustment of Fo&' and Y»',
required the use of successive approximations,
which converged rapidly. The computed E„and
B„ indicate that this curve has turning points
too far apart at the bottom, (it must then be
too shallow), too close together for v=2, 3, and
too far apart above this; too far to the right for
v =0, 4, and too far to the left in the intermediate
region. In short, the errors of this curve are
clearly small and of fluctuating sign, as also
appears from Table IV. Since the sign of this
error does fluctuate, it would of course be
unjustified to assume that the magnitude of
the errors in U is the same as that of the errors
in E,. In fact, the mean square error in the
computed E, is 1.2 cm ', while for U(r) over the
corresponding region it is about ten times as
great. Comparison of this curve with curve 4
will indicate the great advantage of having one
extra parameter to adjust by this method,
though it is possible that the difference is
unusually large for this state because of an
especially appropriate character of the P.-T.
curve.

Hylleraas curves

Curve 7 is a Hylleraas curve constructed as
recommended by that author. According to his
approximate formula for the vibrational levels
these are excellently reproduced, the error re-
maining less than 10 cm ' even up to v=7. The
rotational terms are very bad, and indicate
that beyond the range of @=2 the curve is as
defective as the Morse curves 1 or 2, but in the
opposite sense. This is caused by failure to
control Fg~ (the spectroscopic y.) which comes
out large and with the wrong sign. (The same
lack of control exists in a similar fitting of the
Poschl-Teller function, but it happens that the
resulting error is there less serious. ) Curve 8
represents an attempt to improve this curve by
altering the value of the Hylleraas fi: so as to get
a satisfactory value of y., while curve 9 was

obtained by a general readjustment of constants
to improve further the vibrational levels, as
given by the Hylleraas approximation. The
excellence of this result is, however, completely
illusory; when E, and r, are computed for
curve 9 from the more accurate formulas of
Dunham it is found that the vibrational levels
rapidly fall below the observed values as v

rises, while r, rises abruptly. Computation of
the potential curve itself shows that it is little
better than the Poschl-Teller curve 5, except
that it remains accurate over a somewhat larger
range of r. We have not computed the exact
levels of curves 7 and 8, but the magnitude of
the errors in the Hylleraas approximation is
evidently the same, since the errors in the
computed potential curves, as compared to
curve 14, are not of the character to be expected
from the errors in E„and r, as given by that
approximation.

Abandoning the Hylleraas approximate energy
formula, we have determined curve 10 to give
the experimental or„co,x„~,y„D, B, and u, .
The large size of the second order W. B. K. term
V~0", and the inappropriate nature of the higher
spectroscopic constants makes the result rela-
tively poor.

Finally, abandoning preoccupation with the
spectroscopic constants, we have determined
curve 11 to give more satisfactory values for the
energy levels, by a single application of the
method of Il4, with curve 9 as the starting point.
The resulting curve is much the most satisfactory
of the Hylleraas curves, and should be subject
to further improvement by further application
of this method.

We cannot recommend the Hylleraas curve
as generally useful, since the curves to be
described next give equal or greater flexibility
and are more easily manipulated.

SERIEs ExPANsIoN oF U

Curve 12 is a Dunham curve constructed
with the coeKcients ao to a4 given by Sandeman,
and designed to make the F& come out equal
to the observed expansion coeS.cients as far as
~,x. and y, ."We have also determined a set of

"Sandeman states that, for this set of u, Fjo" has the
very large value 16.5. This seems to be in error; we find
the value —1.78, which is still much larger than the usual
values.
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a„up to a6 such that application of the full
Dunham formulas gives V~; which, up to V40,

and F», are essentially equal to the correspond-
ing constants in Sandeman's expansion. We have
used these constants in determining curve 13,
again setting equal to zero the a not explicitly.
determined. The difference of curves 12 and 13
thus illustrates the effect of failure to consider
F40', P3~', and the P~;".

Finally, the extended Morse function, curve
14, has been determined, with the same set of a„
as for curve 13. These two curves agree in their
first eight derivatives at their minima, but their
different behavior as r becomes larger produces
the differences exhibited in Table IV. Their
energy levels are identical, so far as the formulas
of Dunham will permit their computation; these
values appear in Table VI as the levels for
curve 13. A careful investigation of the higher
vibrational levels, with results already stated in

$3, served to determine more exactly the levels
of curve 14 as shown in Table VI; the corrections
for the higher levels are by no means negligible.

We may now undertake to estimate the errors
in this curve in comparison with the "true"
curve which gives the observed levels. Evidently
this error' is of the order 1 cm ' for the range of
v= 2, for within this range the most important
error is one of 0.0002 in r2, corresponding to a
depression of the order of 2 cm ' at the outer

turning point. Beyond this curve 14 becomes
lower than the correct curve by a steadily
increasing amount. Since this curve was taken
as the standard in the preliminary estimation
of the errors in the other curves, it follows that
the entries in Table IV might now be corrected
by subtracting the errors of curve 14. The only
curve good enough to warrant this small cor-
rection is curve 6, which is evidently a better
approximation for large values of r than is
indicated by this table.

In order to check theoretical calculations the
experimental potential curve must be located on
the absolute energy scale, with zero energy that
of the completely dispersed system. On this
scale the energy of a normal H atom is —109678
cm '. Sandeman" computes a dissociation energy
for H2+ of 21363&5 cm ', a value checked
experimentally, though with slightly less pre-
cision, by Beutler and Junger. " Beutler and
Junger'0 also find for the ionization energy of
1so.2so. 'Z, H2 the value 29344&2 cm '. From
these values one finds for the lowest energy level

of this latter state the value —160385&6 cm '.
Using this result, and applying to curve 14 a
correction of 2 cm ' at r = 2.7 and 8 cm—' at
r=2.9, we obtain the following most probable
experimental values for the total and binding
energies of this state:

r= 1.3
—U(cm ') 153218
Z(ev) 1.9885

1.5
158850
2.6833

1.7
161218
2.9754

161690
3.0337

21
161045
2.9540

2.3
159747
2.7940

2.5
158086
2.5891

2.7
156242
2.3616

2.9
154334
2.1262.

An appreciable uncertainty in'these results,
for points not too close to the minimum, arises
from uncertainties in the values of the funda-
mental constants. U is accurately given as a
function of (=(r r,)/r, . The value —of r„ in
cm; as deduced from B„depends on the values
of h and p. In atomic units its value depends
on the quantity Rm/g, which we have taken to

be 119.371, corresponding to a ratio of 1838.6
for proton to electron mass. Recent discussions

of the fundamental constants indicate that a
I

slightly larger value of Rm/p might be pref-

erable. For comparison, we give a table of
binding energies computed with Rm/p = 1 19.50

(mass ratio 1836.6):
r 1.3
E(ev) = 1.9853

1.5
2.6815

1-7
2.9747

1.9
3.0336

2.1
2.9546

2.3
2.7950

2.5
2.5904

2.7
2.3631

2.9
2.1278.
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