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The counting losses due to the finite recovery time of
Geiger-Muller counter circuits and recorders are investi-
gated. A description and critique of several experimental
methods is given. The parallel method reported here gives
the most accurate results. By this method the counting
losses in a system consisting of a Geiger-Miiller counter
coupled by means of a Neher-Harper circuit to a scale-of-
one recorder were determined. The method compares the
counts registered by the scale-of-one against those regis-
tered by a vacuum tube scale-of-128 in parallel with it.
The resolution times of both the scale-of-one and the G-M,
Neher-Harper combination are thus found. The theo-
retical equations of.Ruark and Brarnmer and Alaoglu and
Smith are verified. The limitations and applicability of
the Schiff'-Volz formulation are also determined. Depar-

tures from the Ruark-Brammer formula for the Neher-
Harper circuit are found at high counting rates. A corrected
formula is derived. The speed of the Neher-Harper type
of extinguishing circuit, determined in these experiments,
is compared against the maximum counting speed possible
with G-M counters. It is found that such circuits already
approach the speed of the G-M tube itself. Existing
vacuum tube scaling circuits and frequency meters are
shown to be already faster than the G-M tube itself. The
methods for correcting recorders and counter circuits for
counting losses are given. These losses amount to about
20 percent for a Cenco recorder and one percent for most
G-M counters at input rates of 1000 counts per minute.
The losses increase rapidly with the input counting rate.

INTRODUCTION

HE statistical fluctuations in the number of
disintegrations per minute of a radioactive

substance give rise to the problem of low effi-

ciency in the recording with simple apparatus of
the individual disintegrations. In the case of a
Geiger-Miiller counter furnishing pulses to a
scale-of-one recorder, it is well known that a large
fraction of the counts are not registered by the
recorder because of its finite resolution time even
at rather low. counting rates. Because of the
statistical fluctuations in the time intervals be-
tween disintegrations, many of the counts come
so close together as to fail to be resolved by the
recorder. Since the short time intervals are the
most probable, this effect is very large and in-

creases rapidly with the counting rate. The re-
covery time of the Geiger-Miiller counter and its
coupling and quenching circuit (such as the
Neher'-Harper circuit) also causes counting losses
due to this effect. Since the counting losses de-

pend on the counting rate, the shape of observed
radioactive decay curves will be distorted.

It is the purpose of the present paper to in-

vestigate the counting losses in a scale-of-one
recorder and in the Geiger-Miiller counter and
Neher-Harper' coupling circuit, and to test the

'H. V. Neher and %'. %. Harper, Phys. Rev. 49, 940
(1936).

statistical theories of these losses which have been
proposed.

METHoDs

The efficiency of a recorder is defined as the
ratio of the output counts to input counts. To
test the eAiciency of a recorder in the most direct
way a known number of counts having a random
distribution must be fed into it and the number
registered observed. This procedure would have
to be repeated for various input counting rates
to obtain the efficiency as a function of the
counting rate.

However, it is not possible directly to obtain
such a known and variable random source of
counts so that more indirect methods must be
employed. Several methods may be used which
may be designated as follows; (1) the film

method P (2) the multiple addition test method
(3) the inverse squa. re method; (4) the variable
area method and (5) the parallel method. ' We
have in the past extensively investigated methods
1, 2, and 5 while methods 3 and 4 have sometimes

2H. Lifschutz, O.. S. Duffendack and M. M. Slawsky,
Phys. Rev. 51, 1.027 (1937).

'O. S. Duffendack, H. Lifschutz and M. M. Slawsky,
Phys. ; Rev. 52, 1231 (1937).

4 H. Lifschutz and O. S. Duffendack, Phys. Rev. 53, 941
(1938).The present report modifies the conclusions given
in this note.
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been used by others in a qualitative way, mostly
to test the speed of certain recording circuits.

A brief description and critique of the above
methods may be given. In the film method, the
electrical output of a G-M counter and Neher-
Harper circuit actuated by a constant radioactive
source was recorded by a commercial Western
Electric sound system on standard 32 mm film.
This sound system had an over-all frequency
response flat to i0,000 cycles per second. This
was about 150 times the speed of the single scale
recorder to be calibrated. The recording of the
G-M pulses was made at such a slow couriting
rate that the counting losses in the recording
were very small and a quite accurate Poisson
distribution of pulses was obtained on the film.
This distribution was quantitatively tested by
the method of Marsden and Barratt' in which
the number of intervals of various lengths be-
tween pulses on the film was determined. A plot
of the probability, P(x), of an interval of length,
x, versls the interval, x, showed, good agreement
with the theoretically predicted curve with a
Poisson distribution. Of course small deviations
would probably be masked by statistical fluctua-
tions and the limited sensitivity of the method.
The number of pulses on the film was counted
visually. The film was then used as a known
source of random counts by playing it back with
the use of a standard sound head and photo-cell
amplifier. The pulses from the film were fed to a
single scale recording circuit operating a Cenco
counter. The input to this recorder was de-
termined from the measured running speed of the
film and the total number of counts. The input
rate was varied by varying the speed of the film.
Thus a calibration curve for the single scale
recorder could be determined.

The multiple addition test method is an ap-
proximation method. It makes use 'of a number
of weak natural radioactive sources, the number
of counts from which have been measured in-

dividually by the circuit being calibrated. The
sources are so weak that the counting losses from
one source are assumed to be negligible. These
calibrated sources are then used in combination
and the sum of the individually determined
values is taken as the true input. A simple source

' Marsdea and Barratt, Proc. Phys. Soc, 23, 367 (1911}.

holder with substitution dummy sources keeps
the radiation scattered into the G-M counter
constant. When only two sources are used this
method reduces to the well-known simple addi-
tion test used for testing the linearity, with
source strength, of counter circuits. However,
the simple addition test cannot be used for
calibrating a counter circuit. At most it can be
used to determine when the departure from
linearity becomes large, i.e. , at what counting
rates counting losses become appreciable.

The inverse square method makes use of the
inverse square law of the variation of input
counts of the source as a function of the distance
from the counter. The variable area method em-

ploys a diaphragm which screens off the source
from the counter. By varying the area of an
opening in the diaphragm, it is assumed that the
input counting rate to the G-M tube may be
varied proportionately.

Before describing the parallel method the limi-

tations of the previous methods may be pointed
out. The film method determines the losses in the
recording circuit of the G-M system only and not
in the G-M tube and quenching circuit itself. The
other three methods include the effect of losses
in the G-M circuit. Statistical fluctuations are
very small in the film method, extremely large in

the multiple addition method, and fairly large in

the inverse square and variable area method. In
the film method the number of pulses on the film

is fixed; fluctuations arise because of the possi-
bility of changing distributions. The fluctuation~
are of the order (AX) i, where hX is the number
of counts lost. In the multiple addition method
the fluctuations in the individual calibrations go
as Ã~, where X is the total number of counts
recorded. When the sources are added the total
error in the strength of the combined source due
to the errors in the individual sources caused by
fluctuations may be very great. This makes it
necessary to record an enormous number of
counts. This consumes too much time at the low

counting rates which must necessarily be used.
The fluctuations in methods 3 and 4 are propor-
tional to Ã2 and are greater than that in the
parallel method where again the fluctuations are
of order (AX)l. The width of the pulses in the
film method changes as the speed of the film is
changed. This restricts the input counting rate to
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certain limits such that the width of the pulses
remains less than the resolution time of the re-
cording circuit. Difhculties arise in methods 3
and 4 because of scattering, the lack of true point
sources, and the non-uniformity of the flux of
radiation over the diaphragm area. . Also geo-
metrical uncertainties in applying the inverse
square law to the G-M counter cause difhculties.
Many other limitations in the above methods
relating to accuracy of results, flexibility, ease of
application, requirements of special apparatus
and sources, speed of the method and limits of
counting range over which they are practicable,
could easily be pointed out. In short, all the
above difhculties may be best overcome by em-

ploying the parallel method. The precision and
range of the results of this method are such that
it only will be discussed further. The data to be
presented also refer only to this method. Results
were long ago obtained by the parallel method
with thyratron scaling circuits. It was not until
the recent development of high speed vacuum
tube scaling circuits, . however, that complete
results were obtainable over wide enough input
counting rates to allow a real test of the theory.
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and a scale-of-eight (both of the vacuum-tube
type) in series. The resolution time of the vacuum
tube scaling circuits was shown to be 6.5)(10 '
second for input pulses of width 3.25&(10 '
second. ~ The scaling ratio of 128 employed was
so large that counting losses in the Cenco
counter fed by the scaling circuit could be taken
as negligible and actually will later be shown to
have been zero. The G-M tube used was con-
structed of.a solid nickel cylinder (about 2 cm
long and 1.2 cm in diameter) and 3 mil tungsten
anode wire. It was filled with hydrogen to a
pressure of 136 mm of Hg. The method of
preparation was as given previously' with the
addition of thorough outgassing of the nickel
cathode by means of an induction furnace to
ensure a more permanent freedom from foreign
gases. The counter had a long plateau of over
600 volts, which was quite flat over most of this
range. The counter voltage used was 1200 volts;
the counter threshold was at 1000 volts. A
stabilized power supply was used to furnish this
voltage to the counter. Inspection of the pulses
generated by this counter, by use of a cathode-ray
oscillograph showed the counts to be sharp,
single pulses of uniform amplitude without the

i45v + l200 v -IIO v +560v

EXPERIMENTAL ARRANGEMENT AND PROCEDURE

The experimental arrangement for the parallel
method is shown schematically in Fig. 1. The
G-M counter is actuated by a constant radio-
active source and is coupled by means of the
Neher-Harper circuit to a scale-of-one and a
scale-of-128 recorder in parallel. The circuit dia-
gram of the Neher-Harper circuit and scale-of-
one' is shown in Fig. 2. The scale-of-128 consisted
of the high speed vacuum-tube type recently de-
scribed' and was obtained by using a scale-of-16

' J. R. Dunning, Rev. Sci. Inst. 5, 387 (1934).' H. Lifschutz and J. L. Lawson„Rev. Sci. Inst. 9, 83
(&937).

FIG. 2. The Neher-Harper circuit and scale-of-one re-
corder. Resistance values are in megohms and capacitance
in microfarads. The ampli6er indicated in Fig. 1 is not shown
in this diagram.

presence of trains of spurious pulses of varying
amplitude as often seen in poor counters. It was
concluded that, except for losses due to its finite
resolution time, this counter furnished a true
Poisson distribution of pulses when actuated by
a radioactive source and was thus suitable for
testing the statistical counting loss theories which
were fundamentally based on such a distribution.

The parallel method compares the number of
counts recorded by the scale-of-one against that
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recorded by the scale-of-128. If the counting
losses in the G-M circuit are negligible the
scale-of-128 reading may be taken as the true
number of counts, np, because the scaling circuit
records all the counts coming from the N-H
circuit. In this way the true input to the scale-of-
one is determined and the output is simul-
taneously observed. This allows a direct calibra-
tion of the scale-of-one and also a direct test of
any counting loss theory by giving the output as
a function of the input. Since the input to both
recorders is the same because the readings are
simultaneous, it is clear that the statistical
fluctuations in this method are very small. If the
losses in the G-M circuit are not negligible for
the counting rates used, the scale-of-1. 28 does not
record the true input, np, but does record all the
pulses coming from the Neher-Harper circuit.
Since the reading of the scale-of-one and also that
of the scale-of-128 is a function of np, the simul-
taneous readings of the two recorders are de-
scribed by two equations from which the un-

known, np, may be eliminated. The way in which
quantitative results are obtained may be found
by examining the theory.

THEORY

Ruark and Brammer, and Alaoglu and Smith,
have given statistical theories of the counting
losses in recorder circuits and have included the
effect of losses in the G-M circuit. They have
derived the following formulae for the observed
readings of the recorders as a function of the
true random input, np.

np
nn=

n 1+npo
if r„&~no. . (1b)

Here nj is the observed reading of the scale-of-
one, n„ that of the scaling circuit, n is the scaling
ratio used, ~~ is the resolution time of the scale-
of-one and 0- that of the Neher-Harper circuit.
We distinguish 7~ and ~ as ~„refers to the

' A. E. Ruark and F. E. Brammer, Phys. Rev. 52, 322
(j.937).

L. Alaoglu and N. M. Smith, Jr. , Phys. Rev. 53, 832
(1938). See also W. B. Lewis, Proc. Camb. Phil. Soc. 33,
549 (1937).

np
ng exp ( —(rq —o)np) if rq & o., (1a)

1+npo

Cenco counter stage fed by the scaling circuit.
These r's are of the same order of magnitude.
Here, n=-128 and for convenience we will write
hereafter r for v. ~, and n~28 for n„e which gives

n128
np

i +'JSp0
(1c)

n'i—
1+npr

(2b)

In order to test the theory, the circuits used
must satisfy the assumptions made in deriving
the formulae. In referring to Eq. (1a) it is clear
that with r )o and o.—'&0 Eq. (1a) becomes

1—np

In other words the recorder circuit used to test
Eq. (1a) must be a Type I recorder. The scale-of-
one shown in Fig. 2 is such a recorder even though
the Cenco counter is driven by a thyratron since
the thyratron circuit is so much faster than the
mechanical counter itself. This scale-of-one was
also chosen because it is a widely used circuit
which is very simple, reliable and faster than
most other scales-of-one developed to date. '

' See, e.g. W. H. Pickering, Rev. Sci. Inst. 9, 180 (1938}.

The recovery time is defined as the time inter-
val after a count which must be allowed before
the circuit is ready to record another count.
Clearly the statistics of a recording circuit will
be different according to whether or not the re-

. covery time of the circuit is affected by the oc-
currence of another count during the period of
recovery. This circumstance gives rise to two
formulae describing the two opposite extremes of
recorder behavior. For recorders such as the
Cenco counter, which can be re-excited during
the period of recovery, the efficiency formula for
the case of a true random input is

n1 np exp ( npr) ~ (2a)

This type of circuit is designated as Type I. A
Type I recorder requires that a count, to be re-
corded, must be preceded by an interval v during
which no count arrives at the recorder. If the
recovery time is completely unaffected by addi-
tional counts coming in during the recovery
period we obtain a Type II recorder for which the
efficiency formula is

np
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Other conditions of the theory that must be
met are that the recovery time of the Xth stage
of scale-of-two in the scaling circuit does not ex-
ceed 2~ '0.

, or, in other words, if we consider the
first stage, its recovery time must not exceed that
of the Neher-Harper circuit. From the measured
resolution time of the scaling circuit given previ-
ously and preliminary measurements of o. showing
it to be of the order 10 ' —10 4 second, it is clear
that we have satisfied this condition. Likewise,
it is clear that the condition ~1 ~& 0. is met and also
the condition ~128 &~ 128 0-, since the scaling ratio
of 128 is so great. Moreover, rough preliminary
measures of ~ and o- may easily be made which
also show that these latter conditions are met
and later these conditions may be checked again
with the final values of ~ and o-.

We conclude that the circuit arrangement
chosen satisfies all the conditions for providing a
test of the theory.

The Eqs. (1a) and (1c) are now used to elimi-
nate the unknown input no and give

n, =n, 2, exp L
—nip, (r —o)/(1 —nip, o)]. (4)

If one takes dni/dnipp ——0, a maximum of ni is
found when

t n(irpp—o') ].
0' =

n128

Defining the percent loss P as

P1 OXO( gpnpni)/nip p,

taking dP/dnip, and letting nipp &0, —we 6nd the
slope, So, of the percent loss curve at the origin
is given by

dP/dnipp=Sp=(r o'))(100, nlpp~0. (6)

Eqs. (5) and (6) allow both r and o to be found
from experimental observations of $0 and the
value of n128 when n1 is a maximum.

The experimental procedure is now clear. By
using a constant radioactive source and varying
its distance from the G-M qounter, the experi-
mental curves ni ——fi(nip/) and P=f&(n&zp) may
be obtained. The values of v and cr are found from
these curves as described above. The values are
put back into the equations and the curves above
computed theoretically. This gives a check of the
theory. Moreover, ~ and 0. may also be found by
independent methods and compared against the
values of v and 0. found from the experimental
curves. These values of ~ and r wi11 be denoted
by ~direct and &direc& The value of vQirecg was
found by applying periodke saw-tooth pulses from
a sweep-circuit oscillator to the scale-of-one re-
corder and increasing the frequency till the
maximum counting speed of the recorder was
reached. This was determined from the reading
of the recorder itself over a time interval meas-
ured with a stop watch. From the definition of
recovery time it is clear that

roireot = 1/nmax (periodic).

Similarly, cr&;„,& was found by observing the
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maximum randonz counts from the Neher-Harper
circuit by means of the scale-of-128. This was
accomplished simply by bringing up a strong
source. Eq. (1c) shows that

0 direct = 1/s128 mex. (raudoru).

EXPERIMENTAL RESULTS

Figures 3 and 4 show the experimental curves
for nj and P as functions of n~28. The predicted
maximum in n~ is observed. It will be noted that
this maximum is very broad which makes an
accurate determination of n~28 at the maximum
very dif6cult. On the other hand, the slope at the
origin in Fig. 4 may be accurately determined
and so also the value of v. —o. The value of o. is
very sensitive to the value taken for n&~s at the
maximum. . Since in the case here considered o- is
quite small relative to ~ it was decided to use for
o. the value of o.~;„,~ and for r —o. the value from
the slope of the percent curve. These values were
put into the theoretical equations to calculate the
points marked "Ruark-Brammer Theory. " It is
seen that the agreement with the experimental
curves is very good. These curves were taken by
using a grid resistor, R, in the Neher-Harper
circuit of 20 megohms, a correct value for the
G-M tube used.

In order to allow a more complete test of the
theory, o. was purposely increased by increasing
the Neher-Harper grid resistor to 100 megohms
and the experiments repeated. The results are

shown in Figs. 5 and 6. The decrease in the slope
of the percent curve is found as predicted. The
value of o. relative to ~ w'as now large enough to
determine 7 and o. from the observed slope
and maximum in spite of the broadness of
the maximum. By taking as observed values
n~2s ——3850&125 counts per minute, and v. —o-

=1.066&(10 'sec. the theory gives o. =0.27&10 '
sec. and ~=1.34)&10 ' sec. Over the limits given
forn~28, o. varies from0. 24/10 'sec. to 0.30X10
sec. These limits include the value of o.~;„,, &

=0.286X10 ' sec. The values of v. and o- deter-
mined from the curves as above were put into the
theoretical equations and the curves calculated
again as shown in Figs. 5 and 6. The agreement
between theory and experiment is again very
good. Although the value of o. is very sensitive to
the value of n~28 taken, the shape of the curve is
not especially sensitive to o. so that the agreement
with experiment is substantially the same over
the limits of o. given as for the curves shown with
o. =0.27)(10 ' sec.

The comparison of the values of ~ and o- with
v-~;„,~ and o.g;„,~ is shown in Table I where, as
previously stated, for 8=20 megohms, o. was
taken equal to o.~;,«~. The values of od;„.~ were
also checked with a vacuum tube frequency
meter. " It will be noted that the theoretical
value of v remains practically constant in the
two determinations while only o. varies. This is,
of course, exactly as it should be.

"H. Lifschutz, Phys. Rev. 53, 950 t', 1938).
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The original counting loss theories of Schiff"
and Volz" attempted to account for counting
losses in a G-M system by introducing a single
recovery time, ~, to include both the effects of
the counter circuit and the recording circuit.
They derived the equation

n) =npe (9)

Clearly the Ruark-Brammer and Alaoglu-
Smith formulae reduce to this when a.=0. If the
losses in the Neher-Harper circuit could be
neglected, the theoretical Schiff-Volz curves

"L.I. Schiff, Phys. Rev. 50, 88 (1936).
"H. Volz, Zeits. f. Physik 93, 539 (1935).

& = 1/&i maxi (10)

where n&, - is the maximum random counting

shown in Figs. 3 to 6 should agree with the ex-
perimental curves for then n»8 ——np. Clearly they
do not, showing in a striking way the effect of
the resolution time 0- and also showing at what
counting rates the losses in the counter circuit
become appreciable. As expected, the agreement
of the Schiff-Volz theory is much better for the
case in which R= 20 megohms than in the case
8=100 megohms since in the former case 0. is
smaller.

It is easily shown from Eq. (9) that
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rate. The theoretical Schiff-Volz curves shown in
Figs. 3 to 6 were calculated by determining 7

from the maximum of n~ shown in Figs. 3 and 5.
The v's determined in this way were respectively
1.39)(10 ' sec. and 1.31&(10 ' sec. If there were
no losses in the G-M circuit, the Schiff-Uolz
theory would give the slope of the percent loss
curve at the origin as 100Xr, since then n~28= np.
Actually values of 7 are found by this method to
be 1.25)(10—' sec. and 1.066X10 ' sec. , which are
very low as expected.

As shown above, ~, determined from the max-
imum of n~, is less in the case A=100 megohms
than in the case R=20 megohms. The observed
maximum of n~ increases as 0 increases, since,
due to 0-, the short intervals are cut out by the
G-M circuit. Thus the recorder is able to ap-
proach more nearly its maximum periodic count-
ing rate. Accordingly, it is to be expected that v.

determined experimentally from n&, would
automatically give the correct kind of average
value including the eRects of both the counter
and the recording circuits. For this reason the
use of a single resolution time to give the over-al1

egciency of the entire counting system turns out,
in practice, to give a good approximation to the
truth. This is shown by Fig. 7, where n j is plotted
against no (not ni28) from the data for the case
A=100 megohms. The experimental curve is
computed from the Ruark-Brammer theory since
this has been shown to agree with experiment.
The graph is plotted up to such values of np as
correspond to the maximum of n~28 in Fig. 5. One
must conclude that the SchiR-Volz method is
adequate to correct a G-M Type I scale-of-one
system for counting losses up to its maximum
counting rate with a high degree of accuracy.
This is fortunate since v is so easily determined
experimentally from Eq. (10).

EXPERIMENTAL PRE CAUTIONS

The statistical fluctuations in the parallel
method are quite small as shown by the smooth-

TAsLE I. Values of r and 0 in seconds.

R =2 &(107 OHMS R =108 OHMS
THEORY DIRECT THEORY DIRECT

1.37 )&10 ' 1.43 )( 10 ' 1.34&(10 ' 1.43)& 10 '

0.114)&10 2 0.114)&10 0.27 &&10 ' 0.286&(10 '

ness of the experimental curves. The number of
counts per point usually was about 10,000 to
15,000. The slope of the percent loss curve at the
origin may, under these conditions, be deter-
mined with an accuracy of one or two percent.
In order to obtain reproducibility all conditions
of the experiments must remain quite constant.
The circuit constants must not vary too much,
nor the voltages. Different G-M tubes have differ-
ent 0 even though of similar construction and
used with the same N-H circuit. This is easily
shown by the very diRerent values of the max-
imum random counts obtainable. The capacity of
the G-M tube and its leads also influences o. quite
sharply. The leads should be kept short and
separated. If the counter is not electrostatically
shielded, the body capacity of an observer influ-
ences the counting rate quite markedly, espe-
cially at high counting rates. 'In short it is essen-
tial to keep the capacity of the counter with
respect to its surroundings constant. If an electro-
static shield is used to keep the charges on the
glass walls of the G-M tube from changing, " a
very large increase in 0. is observed as measured
by the maximum counting rate. The counter used
in these experiments was used without a shield.
Any effects due to charges on the walls (which
were quite small for this counter) were avoided
by allowiog the charge to come to equilibrium
@fter changing the source strength. Effects due
to photosensitivity were also avoided by light
shielding.

THE NHHER-HARPER CIRCUIT

The experimental method considered above, as
already stated, is not especially sensitive to the
eRect of 0. for values of o- relative to v- as given
above. Since the losses in the Neher-Harper
circuit are independent of the use of fast scaling
circuits or frequency meters, the only way to
take account of these losses is by correcting
theoretically for them. Of course, faster counters
and quenching circuits would also get around
this difficulty up to certain counting rates. How-
ever, it seems that such faster circuits have not
yet been developed. "The highest counting rates

'4 J.L. Lawson and A. W.Tyler, Phys. Rev. 53,605 (1938)."See e.g. I. A. Getting, Phys. Rev. 53, 103 (1938);A. E.
Ruark, Phys. Rev. 53, 316 (1,938); H. V. Neher and W. H.
Pickering, Phys. Rev. 53, 316 (1938); E. Y. Yetter, Phys.
Rev. 53, 612 (1938).
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FrG. 7. Showing the approximate validity of the use of a single resolution time.

so far reported have been obtained by using the
Neher-Harper circuit. Getting" reports values
for the multivibrator type of quenching circuit
of 1.2X10' counts per minute and probably
higher values if part of the counting range of the
G-M tube is sacrificed.

The counting losses due to o. are shown in Fig.
8 according to the Ruark-Brammer formula. The
value of o- used corresponds to the average of
most counters we have tested. In view of the
magnitude of these losses it is important to know
whether or not the Neher-Harper circuit does
follow closely the Ruark-Brammer equation

np

1+npo.

or, perhaps, the equation

showed this decrease had maximum counting
rates varying from 50,000 to 175,000 random
counts per minute. The eRect was found both
with the scale-of-128 and the frequency meter.
This decrease is what would be expected if
Eq. (12) were followed or might be due to a
slight departure from Eq. (11).To test this point
further, the following method was devised.

The grid resistor of the N-H circuit was con-
nected by switches so that it could quickly be
changed from 107 to 10' ohms. The counting rate
due to a constant source was determined with the
scale-of-128 for each of these grid resistor values.
The grid bias was also changed with the resistor
to the proper value. This procedure was repeated
for all counting rates up to the maximum. Let
the observed counts with the two resistors be n~

and n8. Then

n=no exp ( noa)— (12)
np

(13)

The parallel method gives rather good support
to Eq. (11), as we have seen within the limits of
its sensitivity to o-. However, all counters we have
tested depart from Eq. (11) at high counting
rates in that they reach a maximum counting
rate which is followed by a very marked decrease
as the source strength is still further increased.
This is in disagreement with Eq. (11), which, as
noted by Ruark and Brammer, indicates a max-
imum constant value for n. Counters which

Ã8—

1+npo 7

np

1+npo 8

Thus np may be eliminated giving

n 8

(16)

1 in&(o8 ov)-
n, (o, o,)—

--- X100=100X
n, 1in(o, o)-
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The slope of the percent curve at the origin

dP/dnv ——100(o.p —o,), n7 &—0

a11d
+7 IQBX

08=
+8 max

(18)

The experimentally observed percent loss
curve could be compared with that calculated
from Eqs. (16) and (18).This could also be done
by the use of a formula for the N-H circuit
similar to Eq. (12). Rough preliminary results
show a decided disagreement with Eq. (12) and
fair agreement with Eq. (11) up to nq, . A
variant of this method may possibly be that of
keeping the grid resistor constant and varying
the N-H grid bias alone, as the observed count-
ing rate is a function of this bias.

In view of the tendency to follow the equation

n =np/(1+npo)

up to counting rates near the observed maximum
and also the observed departure from this equa-
tion as shown by the failure to maintain a con-
stant maximum counting rate, it is of interest to
try to look more deeply into the mechanism of
the G-M counter and N-H combination. The
G-M counter has a deionization time, ~q, which
is given by the time it takes for the electric field
in the counter to sweep out the positively charged
ions after the discharge is extinguished. Thus, 7g

may be taken as constant. It also has a discharge
time, 0., which has a lower limit equal to 7& and
which has a value which depends not only on the
G-M tube but also on the extinguishing circuit.
Since the counter tube cannot be re-excited by an
incoming particle during the discharge period, o,
the counter itself may be classed as a Type II
recorder. The extinguishing circuit introduces
still another resolution time, p. The resolution
time, p, of the N-H circuit would be approxi-
mately equal to 0 if the succeeding circuits had
no thresholds. To see this, consider a discharge in
the G-M counter. In the extinguishing process,
as is well known, the potential on the counter is
reduced to the threshold value or very slightly
below. The voltage then starts to recover at a
rate depending mainly on the RC value of the
N-H circuit. If another discharge occurs in the
G-M counter when the potential has recovered

20

5000 10 000 l5 000 20000 25.000

FIG. 8. The counting losses in the G-M circuit.

to a value only slightly above the threshold
value, the electrical impulse developed will be
very weak since these impulses are equal to the
overvoltage. The pulse thus fails to be recorded
because the succeeding circuits require a certain
minimum signal for response. Such circuits are
the discriminator circuit, the first stage of scale-
of-two in the scaling circuit or the mechanical
counter stage if no scaling circuit is used. In this
way the time constant of the N-H circuit does
introduce an effective recovery time, p) 0. It is
clear that a count coming within a time greater
than 0. and less than p of a preceding count will
not only fail to be recorded but will re-excite the
Neher-Harper circuit. In other words we may
reasonably take the efficiency formula as that of
a Type I recorder. If one assumes 0. to be reason-
ably constant, the usual derivation gives for the
over-all efficiency

n=(np/(1+npo)) exp (—np(p —o)) if p)o' (19)

where n is the number of counts from the N-H
circuit. This, then, is the corrected Neher-Harper
equation. If p and 0. are approximately equal,
this equation reduces essentially to

n =np/(1+npo-)

at counting rates considerably below the max-
imum. This explains why the parallel method
showed agreement with this equation, since the
counting rates were well below the maximum.
The exponential "guillotine factor" in Eq. (19)
is then responsible for the observed decrease after
the maximum counting rate has been reached.
This requires p) 0. Since the Neher-Harper cir-
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cuit cannot recover the voltage till the counter
has stopped discharging, it is clear that p)o-
always. However, p and a are not independent.
The variation of o. by changing the N-H grid
resistor shows a dependence of 0. o'n p. Ruark and
Brammer describe the situation by saying that
the counter and circuit "work together" as a
single unit so that the dependence is described by
the relation p =0-. This approximate relation,
p —o, plus the relation p)o. and. Eq. (19) thus
seem capable of explaining all the experimental
facts. Qualitative tests of Eq. (19) with the in-
verse square method show a more or less ex-
ponential decay after reaching the maximum
counting rate. However, it is clear that a more
detailed justification of Eq. (19) would be de-
sirable, especially in order to throw more light on
the exact relationship between p and 0-. This
might lead to circuit designs which would allow
o. to be decreased. It seems in the present case
that enough arnplification was already used to
reduce p to a value not much greater than 0-. No
important increase in counting speed thus seems
possible by increasing the amplification between
the N-H circuit and the recorder.

The decrease in amplitude of the pulse gener-
ated by the G-M tube as described above may
easily be shown in the following simple experi-
ment. The output of the Neher-Harper circuit is
applied directly to the plates of a cathode-ray
oscillograph. A strong source (say one mg of
radium) is moved continuously toward the G-M
counter. As the input counting rate increases the
amplitude of pulse in the oscillograph will be
seen to drop until it almost vanishes. This effect
cannot be ascribed to the regulation of the high
voltage supply since the drop j.n applied voltage
due to regulation is observed to be very small
compared to the over voltage applied to the
counter.

Lyshede and Madsen" have measured the de-
ionization time of G-M counters by forced
quenching of the counter. The quenching was ac-
complished by applying periodic pulses from a
thyratron oscillator to the counter in a special
circuit. When the frequency was increased to
such an extent that the counter discharge was
not extinguished by successive pulses a direct

"J.M. Lyshede and J. C. Madsen, Zeits. f. Physik 108,
777 {&938).

np
and n =——

n 1+npo-
if v ~&rio-.

measure of the deionization time was obtained.
Values of 10 4 second were found for air filled
counters. Hydrogen counters were three or four
times faster. These values agreed with calcula-
tions of the time taken to sweep out the positive
ions using the mobility of the ions, size of the
counter, and electric field distribution. This
agrees with similar calculations we had made (un-
published) about two years ago.

The deionization time fixes the maximum
counting rate possible with G-M counters roughly
as 10' counts per minute. Taking account of the
counting losses, one could thus measure input
rates up to about 10~ per minute. The fastest
counter we have measured in combination with
the N-H circuit gave a maximum counting rate
of the order 2 &&10' counts per minute. This is the
same value as reported by Neher and Harper' for
one of their counters. Thus about a fivefold in-
crease in speed may be possible with faster
quenching circuits. However, one must conclude
that existing quenching circuits are already cap-
able of allowing a close approach to the maximum
counting speed possible. It is also clear that exist-
ing vacuum tube scaling circuits and frequency
meters are already much faster than necessary
for G-M work as the resolution time of these
circuits is less than the deionization time of the
counters themselves. For practical purposes, one
is interested in attaining a close approach to the
maximum speed in order that the necessity for
coi'recting for counting losses may be avoided at
ordinary counting rates, as these losses set in at
relatively low counting rates. It should be
stressed that whether or not counting losses are
great depends not only on the counting rate at
which one is working, but also on the 0- of the
particular counter being used, which may be
quite large.

CONCLUSION

Alaoglu and Smith' have derived the statistical
formulae giving the counting losses for a scaling
circuit and including the effect of 0. They find

np
nn= [1—I[n()(r —no.), n]],

n(1+npa).
if r )no. (19)
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Here n is the scaling ratio and the function tion the vacuum tube frequency meter already
I(no(r —No), n) is the ratio of the incomplete reported" is of interest. This frequency meter
I'-function I'(no(r —no.), n) to the complete employs the same circuit as the vacuum tube
I'-function, I'(n). The upper limit of the incom- scaling circuitr discussed above. A scaling circuit
piete I'-function is mo(r —no). The details may be of this type may thus be built in which one of the
found in the paper of Alaoglu and Smith. The stages of scale-of-two also serves as a frequency
interesting feature of these equations is that the meter. This frequency meter could thus be used
counting losses in the mechanical recorder stage for measuring 0 even though n(r/o. The addi-
fed by the scaling circuit drop out when ~~& no. tion of a tank circuit would not be necessary.
as shown by Eq. (20). This fixes the maximum For common values of r and o which actually
scaling ratio it is necessary to use. Of course, it is occur, namely 7 =1.5)&10—' sec. and 0 =5&10—'
assumed in the derivation that the resolving time sec. we obtain n =30. Thus a scale-of-32 would in
of the scaling circuit itself is less than 0.. In the most cases suffice for the determination of 0- from
parallel method reported here, the relation was the maximum as well as to prevent losses in the
satisfied so that the losses in the Cenco counter mechanical counter stage. We have found that a
stage were zero. It is also desired to point out vacuum tube scale-of-eight follows a vacuum
here, that Eqs. (I9) and (20) may also be tested tube scale-of-16 in parallel with it up to about
by using the parallel method, as was first pointed 30,000 counts a minute showing that the losses
out to the authors by Smith. The simplest case in the Cenco counter stage were negligible up to
would be that of comparing a scale-of-two follow- such counting rates. For this case a. was about
ing Eq. (19) against a circuit following Eq. (20) IO ' sec. As Alaoglu and Smith show, a cuts out
such as the scale-of-128 used in the present ex- the short intervals and allows the lower ratio
periments. A series method similar to the parallel scaling circuit to follow the higher ratio one up
method, which could also be used, would involve to higher counting rates than would be the case
observing the number of counts in scales-of-one if a true random input came from the Neher-
connected to the output of successive stages of Harper circuit. We may conclude then that a
scales-of-two in series. vacuum tube scale-of-eight is sufhcient for most

The question of the best way to correct for the counting rates if means are provided for measur-
counting losses due to 0. in actual experimental ing and correcting for the losses due to 0-, which
work may be brieHy discussed. The parallel losses would be the same no matter what the
method in which the scaling circuit used is scale of the circuit.
compared against a scale-of-one is not sensitive It is a pleasure to acknowledge the very helpful
enough to accurately measure small values of a. discussions of the theory and its applications to
The determination of 0- from measurements of the parallel method which we have had with
the maximum random counting rate depends on Mr. N. M. Smith, Jr; The help of.Dr. M. M.
fulfilling the relation 7 ~& ng. This might require Slawsky with the earlier work, and the discussion
a larger ratio scaling circuit than is available. To with and encouragement of Professor S. A. Goud-
overcome this o- may purposely be increased. A smit is also deeply appreciated. Finally, support
frequency meter affords a convenient way of from the Horace H. Rackham Fund is gratefully
measuring 0. from the maximum. In this connec- acknowledged.


