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The mass defect of Li® has been calculated with the use of a symmetric Hamiltonian. Per-
turbation theory was employed in the main part of the work, and an upper limit for the con-
tribution of all functions to the first and second order perturbation energies was obtained.
This upper limit is 10 percent smaller than the experimental binding energy. It was then shown
on the basis of variational calculations that perturbation theory, carried to this stage, over-
shoots the mark, and the upper limit to the binding energy is reduced to 26 Mev, which is 6 Mev

* short of the experimental value. These figures are based on a set of nuclear constants which
favor large mass defects. The perturbational effect of all doubly excited configurations upon the
3D state of Li® was investigated and compared with the effect of similar functions upon the
3S state. The result is that the first order 3D —3S splitting, which is about 2 Mev, is enlarged to

6 Mev, both levels being depressed.

HERE is now considerable evidence sug-
gesting that a nuclear Hamiltonian function
which is symmetrical in neutrons and protons,
and in which the coordinate part of the inter-
action between two particles is of simple ex-
ponential type, will not be capable of correlating
all experimental data. First Rarita and Present,!
using an elaborate variational method to calculate
the mass defect of H3, showed that with the same
set of constants the mass defect of He* comes out
too great. Their most accurate variational calcu-
lation was made with potentials of the form
e~/s, while somewhat more qualitative con-
siderations involving the use of ‘“‘equivalent two-
body methods’ and leading to the same results,
were presented in connection with other forms of
potential. Following up these interesting indi-
cations two further searching variational calcu-
lations were made* 3 in which potentials of the
type exp (—7%/a?) were used and in which a
single method was applied to both the H? and the
He* problems, the results being further corrobo-
rated by employing two different sets of functions
(functions of individual particle coordinates and
of relative coordinates). While in these papers
interest was concentrated chiefly on the mathe-
matical aspects of the question of convergence, a
discrepancy similar to that of Rarita and Present
1W. Rarita and R. D. Present, Phys. Rev. 51, 788
(12311?'Margenau and D. T. Warren, Phys. Rev. 52, 790
(1937); D. T. Warren and H. Margenau, Phys. Rev. 52,
1027 (1937).

3H. Margenau and W. A. Tyrrell, Jr., Phys. Rev. 54,
422 (1938).

came to light (obscured, perhaps, in the first
paper by an underestimate of the rate of con-
vergence). The discrepancy was less strong
because Margenau and Warren had chosen a
smaller value of g, the ratio of Heisenberg to
Majorana forces. Indeed it was shown afterward?
that the discrepancy in the binding energies of
H? and He* can be made very small by choosing
g=0.175. This, however, leads to a bound LS
state for the deuteron, which, at present at least,
is incompatible with known facts.

Another difficulty exists in connection with the
excited states of the alpha-particle which, ac-
cording to the interpretation by Crane of his and
his co-workers’ experiments,* should be stable.
According to theory® they are unstable for all
acceptable values of nuclear constants. A similar
situation holds with regard to the excited states
of He?: Bonner® finds a stable state experi-
mentally; theory” denies its existence.

As soon as we depart from consideration of the
lightest nuclei,. definite theoretical predictions
become difficult. Inglis® has calculated the
binding energy of Li® and has concluded the

4 Crane, Delsasso, Fowler and  Lauritsen, Phys. Rev. 48,
125 (1935).

5 H. Margenau, Phys. Rev. 53, 198 (1938); S. S. Share,
Phys. Rev. 53, 875 (1938).

6 T, W. Bonner, Phys. Rev. 53, 711 (1938); Baldinger,
Huber and Shaub, Helv. Phys. Acta XI, 245 (1938).

7 L. I. Schiff, Phys. Rev. 54, 92 (1938).

8 D. R. Inglis, Phys. Rev. 51, 531 (1937). To compare
the results of Inglis with ours, note should be taken of
errata listed by Inglis, Phys. Rev. 53, 880 (1938). The
algebraic expressions for Ep® given by Inglis are some-
what in error.
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existence of another discrepancy : With a reason-
able choice of the force constants, the calculated
mass defect is too small. There is, however, some
question as to the convergence of the contri-
butions of the higher excited states. The interest
of this example in view of the increasing doubt as
to the validity of the symmetric Hamiltonian has
led us to reinvestigate this problem by a different
and more- painstaking procedure. The present
work, though its results differ in some details
from those of Inglis, rather strengthens the
conclusion that the theoretical mass defect is too
small. It goes beyond the scope of the latter in

the following respects: (1) A variational method

isusedin an attempt to correct the perturbational
procedure; (2) An upper limit for the second
order perturbational contribution to the binding
energy is derived; (3) -the second order effect on
the 3D state as well as the ground state is
calculated. Besides, the whole calculation has
been conducted with a different (but equivalent)
set of functions so that an independent check on
previous results is provided.

ASSUMPTIONS AND METHOD

Only the symmetric Hamiltonian is used in the
present paper, the interactions being written in
the following form:

ii=—A(w+mPy;+bQii+hP;;Q;))
exp (—ri?/a?).

For 4 and e we use throughout the values
35.60 Mev and 2.25X 1013 ¢cm, which seem in
best agreement with scattering data. The other
numerical parameters in (1) are varied, attention
being concentrated chiefly upon the following
two sets:

w=—2/15;m=14/15;b=7/15; h=—4/15 (a)
=—1/12 =10/12 =5/12 =-2/12. (b

They will henceforth be designated as choices (a)
and (b). Both satisfy the usual requirements;
the first corresponds to g(=b-+%)=0.20, the
second to g=0.25, two rather extreme cases.
Furthermore, they are so adjusted as to give as
large as possible a mass defect for Li® and yet
satisfy the requirements.® The functions used are

9 G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936);
N. Kemmer, Nature 140, 192 (1937).

H. MARGENAU AND K. G. CARROLL

TABLE 1. Individual particle functions.
p=(a/m)% exp (—gr*/2).

(15) =

(25) = (34) ar*— 38)p

(35) = (24 5)H{grt = 5gr*+150)p
(2020 =g Lin)p

(2p0) = (20)izp

(3p1) =(249)¥(gr*— 54) (x kiy)p
(Bpo) =(%50)¥(gr*—35)2p

(4p+1) = (2859)¥(g%r* —Tgr*+354)(x iy)p
(4p0) = (%559)¥(gr*—"Tgr*+334)2p

(3d2) = (25)1g(x £iy)%
(3d 41) = (2)¥q(x+1y)zp
(3do) =(38)3q(352—7)p

(4d2) = (39)3q(gr*—75) (x =19)%p
(4d 1) = (37)1q(gr*— 15) (x xiy)2p
(4do) =(241)%(gr*—715)(r*—32%)p

(4f 5) = (16) ¥} (w £iy)%

4f o) = gHetiy)zp
(4f £1) = (A 0)2q¥(522—r?) (x iy)p
(4f0) = (88)3q¥ (3822 —1)zp

functions of individual particle coordinates;
therefore the kinetic energy operator contains,
besides the terms in V2, terms in V;-V; which
correct for the motion of the center of mass.? 8
In the greater part of the paper the Schrédinger
perturbation theory up to second order terms is
employed; later a variational procedure is dis-
cussed. The former involves formally the calcu-
lation of nondiagonal energy elements H,;/, H’

-being the perturbing operator, the latter involves

H;;. Since the unperturbed energy does not
possess nondiagonal elements, H,;/ may be
replaced by Hy;. This keeps the relation between
the two procedures more in evidence.

Numerical calculations of the type here pre-
sented involve many details which cannot all be
mentioned. Our aim is to clarify the method and
to present examples of critical points in the
procedure. If matters essential to an under-
standing of the work seem omitted, the reader
will probably find them discussed in various
references.? 3 8 The next sections deal with an
application of perturbation theory to the prob-
lem. Their aim is, after selection of a suitable set
of functions for the ground state (¥,) and for the
higher unperturbed states (¢;), the evaluation of

E=Hopt Y IHM!Z.
1 E()""‘E,'

(2)
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Yo must be so chosen as to possess the correct
symmetry of the ground state; the other y’s need
not have this property.

FuncTioNs

All unperturbed functions are linear combi-
nations of products of six single-particle func-
tions. We first discuss these single-particle
functions. To be manageable in the integrations,
they must be Gauss exponentials multiplied by
polynomials. For convenience, these polynomials
should make the functions orthogonal. This leads
immediately to the selection of either Hermite
polynomials or Legendre polynomials, -as the
simplest sets. Calculations including ‘‘doubly
excited states’’ (see below) have been made with
the use of both, the results being, of course,
identical. This not only checked the correctness
of the calculation, but also showed Legendre
polynomials to be superior in practice, giving
rise to fewer functions associated with a given
degree of excitation. Inglis used Hermite func-
tions throughout.

Legendre functions have the further advantage
of being eigenfunctions of the angular momenta
of individual particles, so that they can be
designated easily in the customary spectroscopic
way. The functions contain the common parame-
ter ¢ which will later be adjusted for minimum

.energy. Table I is a list of normalized functions
required here.

The unperturbed energies E; appearing in (2)
are simply the sums of the six single-particle
energies ¢ belonging to the functions in Table I.
The- ¢'s are best expressed in terms of the
“oscillator quantum number”’ % associated with
each of these functions, thus:

e=(n+Hhv=(n+3)(#/M)qg. (3)

The correspondence between the functions and #
is given in Table II.

_ TaBLE II. Correspondence between the normalized
Sfunctions and n.

FUNCTION 7 FUNCTION 7 FUNCTION 7

1s 0 2p 1 3d 2
2s 2 3p 3 4d 4
3s 4 4p 5 5d 6 etc.
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To construct the ¢; it is most convenient to
introduce the isotopic spin quantum number 7,1
and to define four generalized spin functions:

771=6(Szr —%)6(73" _%)y
772=6(351 %)6(7?v _% ’
73=208(ss, —3)8(7¢, 3),

14=08(s2 3)0(7, ).

The ground state function for the Li® nucleus
must satisfy the following conditions :!

S.,=>s., =1,
k
Te=37¢,1=0,
k
V=25, 171, =0,
k

(4)

where the summation is extended over the six
particles. The last of these is not exact if the
Hamiltonian contains spin dependent forces. Its
imposition amounts to an omission of constituents
representing spin distributions different from the
normal one (+ — + for the neutrons, as for the
protons) in the ground state function. The effect
of these upon the masses of H? and He* is known
to be small,l" 2 so that the approximation made
here in maintaining the last condition is probably
sufficient. The three conditions limit the set of
7’s to

71(1)12(2)13(3) n4(4) 72(5) 14(6)

and permutations of arguments among these 7’s.
It is here understood that 5 and 6 are the two
particles which, because of the Pauli principle,
are in excited states. The advantage in intro-

. ducing the n-functions is that they enable us to

write the complete y-functions as single de-
terminants instead of a product of two determi-
nants, one for the neutrons and one for the
protons. If now the single-particle functions are
designated by # with an appropriate subscript,
every ¥; has the form

10 B, Cassen and E. U. Condon, Phys. Rev. 50, 846
(1936).
1 Cf. E. Wigner, Phys. Rev. 51, 106 (1937).
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|#11(2) < 101(2)

()

where in our case #=06, and the %’s are those
listed above in some permutation. Henceforth
this determinant will be abbreviated into
qumri' : 'uznnml-

Functions like (5), while obeying conditions
(4), do not represent the correct total angular
momentum, nor in general the correct total
spins. The lowest state for Li® is presumably that
for which L=0, S=1, T=0. In order to satisfy
these conditions, linear combinations of functions

like (5) must be taken. The procedure for this is -

well known from the theory of atomic spectra.
The function which satisfies all these conditions,
and which will be taken as our ¥, is

1 1\%
1//0=(g“'5) {|sn1°sn2°S13°S74° P1m2- P1ma|
4‘[57)1"'5774'15—17”'?17]4] .
+ [sn1e - snaponapons] }. (6)

It corresponds to the configuration (1s)4(2p)2.

Combination (6) is orthogonal to all other
functions arising from this configuration. Hence
there are no vanishing denominators in  the
summation of (2), and this relieves us of the
necessity of selecting proper linear combinations
for all the other y;. These may then be taken in
the crude form (5).

TaBLE II1. List of doubly and quadruply
excited configurations.

CoNFIGU- No. or CONFIGU- No. oF
RATIONS FUNCTIONS RATIONS FuNcTIONS
Doubly excited Quadruply excited
(15)42p3p 6 (1s)22p4p 6
(1s)4(2s)2 1 (15)2(3p)* 3
(15)%(3d)? 5 (15)3252p3p 42
(15)3(2p)22s 26 (15)33d2p3p 126
(15)3(2p)23d 78 (15)33d2pAf 210
(15)2(2p)* 36 (15)33s(2p)? 26
(15)%4d(2p)2 76
(15)2(25)2(2p)? 18
(15)2(3d)2(2p)? 54
(15)2(2p)%3p 96

un(n)-na(n)  wuwp(n)n.a(n)-

H. MARGENAU AND K. G. CARROLL

wn(1) - 9a(1)  wa(1) - 9.e(1)
u12(2) - 1,2(2)

uln(l) : 'ﬂrn(l)
u1a(2) - 1ra(2)
< ’ ‘ (5)

U1n(n) - Nrn(n)

SELECTION OF EXCITED-STATE FUNCTIONS AND
DETERMINATION OF THEIR NUMBER

Excited-state functions are best classified
according to their degree of excitation, i.e., the
value of Y #m; minus this sum for the ground
state, the latter being obviously 2. The functions
belonging to a given degree of excitation may
again be subdivided into groups belonging to
different configurations, and these groups can be
constructed almost mechanically by writing
down the permutations of a given set of symbols.
This procedure will be illustrated by reference to
the first of the configurations listed in Table III,
which is an exhaustive tabulation of the doubly
and quadruply excited configurations.!?

Suppose we wish to construct the functions
belonging to (1s5)%(2p)3p. We note first all
combinations of orbitals which satisfy Y m,.=0
(S-state). They are (omitting the four s-orbitals) :
2p43p1, 2p13p1, and 2pe3po. A function is
obtained by assigning six orbitals to a fixed
arrangement of 5’s in such a way that no two
equal orbitals have the same 7%, since otherwise
the determinant (5) would vanish. Thus in
our case a pair of distributions arise from each
set of orbitals and we get the possible distri-
butions listed in Table IV. Thus we have ob-
tained six functions, the first of them being
(/6D sy« - -sna-2p_1ma-3pims|, etc. After one
has constructed all functions belonging to a given
configuration, it is easy to single out by inspection

TABLE IV. Possible disiributions.

m 72 73 m n2 m
s s s s 2p_1 3p
s s s s 3, 2P
s s s s 2p1 3p-1
s s s s 3p_a 2p1
s s s s 2p0 30
s s s s 3po 2P0

2 Configurations which do not combine with the ground
state have been omitted.
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those which will not combine with the ground
state. The numbers appearing in Table III do
not include these functions. It is essential in
calculations of this sort to have a complete and
nonredundant list of all excited functions, and
the present method is one which will yield it
almost automatically. Functions belonging to
the same configuration do not have the same
matrix elements with the ground state, but
divide into a small number of groups having
equal elements.

CALCULATION OF MATRIX ELEMENTS

Hy; consists of three parts:® first the terms
—(5/6)(B*/2M)>_xVi?; second the cross terms
(1/6)(#*/2M) > >1Vi- Vi;  third the potential
energy, a sum over (1). The first may be trans-
formed by the relation

72 7

———2 Vi =Ey——a* (X rid)y. (7)
2M & AIM &

We introduce the abbreviations

T=#r/Ma?=8.10 Mev; o=qa’. (8)

The nondiagonal elements of the first part of
therefore reduce, in view of (7), to the integrals

—~f¢/o ( v Jdr=

To
_—;f¢°*(§grk2)¢id7’

and these latter reduce to simple elements of the
form (u;|gr®|uz), where the u’s are single-
particle functions. Of these, only the following
are different from zero:

(1s[gr*|25)=(3/2)},
(2p=1]gr* | 3p=1) = (2po] qr* | 3po) = (5/2)*.

Here again the simplicity in the use of Legendre
functions is apparent.

Next we consider the second part of H. By a
well-known theorem connecting momentum and
coordinate matrices we have

M
fux*Vu,,dr = g;(e,, — &)y,

18 See, for instance, reference 2, Eq. (11).

709

and since e =7To(n\+3/2) because of (3) and
(8), we find

fux*Vu,,dr =g (ny—m) (@*)rp.

The expression (1/6)(4#2/2M)3 1>iVy-V, is there-
fore equivalent to (1/6)T¢) i>iAnAnigry 1.
Here we have written Ax for the difference of the
oscillator quantum numbers of the two single-
particle functions between which the matrix
element is to be computed An==1. Thus it is

"seen that the second part of Hy; breaks down

into products of two elements, each of the form
An(ui|gir|us). A list of the nonvanishing ele-
ments of this kind which are needed in the present
work follows. The three values in brackets are the
vector components of the elements, and 7’
written for gir.

An(s|7'|2px1) =3[1, +1, 0],
An(2s|r'| 2p=1) = (§)'[ 1, F4, 0],
An(s|7'|2p0) = (3)*[0, 0, 1],
An(2s|7'|2p0) = ($)*[0, 0, —1],
An(2px1|r'|3de) =3($)}[ -1, F4, 0],
An(2pi1|r'[3d-s) = ($)*[1,4, 0],
An(2p1|7'|3ds) = (5)[1, —7, 0],

An(2p_1]7'|3d_y) = An(2p1 | 7| 3d1) = (3)'[0, 0, 1],

An(2po|7’|3dx1) =3[ 1, =4, 0],
An(2po|7’|3do) = (%)%[0, 0,17.

We now turn to the evaluation of the matrix
elements of the potential energy, which is a little
more tedious. The fundamental formulae are
easily developed. Denote two general functions
like (5) by ¥4 and ¥5:

Ya= (l/n !)%I%n‘flu‘ .
Yve=(1/n )% urin,:- -

Then, if H is symmetrical with respect to an
interchange of any two particles,

'ulnnrnl )

* u)\nnpn! .

I{AB= f(ullnrl' ‘et ulnn‘rn)

X H | urimp1- - ©)

‘u)nn,,nfdr.
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The first factor of the integrand here is no longer
a determinant but a product of # single-particle
functions. If H is a sum of terms each involving
the coordinates of but one particle, as was the
case with the V2-part of the energy, (9) reduces
immediately to the single integrations discussed
before. If H is a sum of terms involving the
coordinates of two particles, as with the V;-V;-
part and the potential energy, further reduction
proceeds as follows.

Introduce the symbol 6; Wthh is defined to be
1 if every uim.s=1trem,s for s%1, j; i.e., 0;; is zero
whenever the functions of more than two
particles are different; it is 1 if the two non-
matching functions refer to particles 7 and j.
Then, if we let H=V=>3_:>;V4, (9) becomes

VAB=2{ @i i) Vs

>7

Xtni(0) 05 (D) ri () moi(F)dr
- f w16y mei(d) - w3 nei) Vi
><ux,-<¢>nm-<i>um<j>npi<j>dr]eﬁ.

Here as well as in Eq. (9) the integration is

understood to include a summation over spins.
Now V= Vi/+ Vi Qs;, where V' and V" act

on the particle coordinates alone. This leads to

the further decomposition
Vap=Vas'+ Vas". (10)

In V,p', .the summation over spins may. be
performed with the use of the relation

Z'ﬂa(l)nb(z)"lc(l)'r)d<2)=6<a" C)ﬁ(b, 6)) (11)
so that
VAB'=2{ [unttu viazma
>3
Xunj(2)dr8(ri, pi)6(r;, pj)
- f (D (2) V' (12)tns(1)
Xuri(2)d75(r, p3)o(rs, Pi)}%‘ (12)

H. MARGENAU AND K. G. CARROLL

This is the formula used in evaluating the Wigner
and Majorana parts of the matrix elements.

In V4p'/, the spin summation involves a
Q-operator in the manner

Zna(l)nb(2>Q12ﬂc(1)"ld(2)EQ(arb:.C!d)' (13)

This summation also reduces to é-functions in a
simple way because

Onme=nan1;  Omms=mnms;  Qnina=nans;
Onans=n114; Qnena=noms;  QOnsns=nans;
and Qt=0Q.

When these relations are inserted in (13) and (11)
is used, the Q(a, b; ¢, d) are found. We then obtain

vAB"=z{ Juu@ v @2y

>7

Xuri(2)dr- Q(rs, 743 pis £4)

—f’uli(l)uli(z) V"' (12)un;(1)

Xuri(2)dr- Q(rsy 745 piy Pi)}f)i:‘- (14)

Thus far we have traced the decomposition of
the general matrix element into simpler integrals

fua(l)ub(Z) exp (—7122/a2)u¢(1)ud(2)d%1d‘rg. (15)

Their calculation may also be systematlzed The
integrations over the x, y, and 2 coordinates are
independent, so that (15) is a product of three
factors, each of the form -

1
gzm=—ff£ﬂ£2m
T
1 2.
Xexp I:‘ (1+") (824 £9%) +"£1£2:Id£1d£2‘
a/ - o

Only relatively few of the g’s occur; they are
listed in Table V where we have written
u=1/(¢+42). All formulae necessary in the
calculation of Hy; have now been developed ; the
remainder of the work is numerical.
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REsuLTs FOR THE GROUND STATE

The first order energy Hyo is identical with that
of Inglis (cf. his errata), since the lowest Hermite
and Legendre functions agree.

Hopo=(19/4)To— {5+10w—8k
+[8—2(w+h) —18(w+b) (e +2)*

+5(0+2)2} (¢/0+2) 1B+1.430",

The last term is the Coulomb energy, which has
been neglected in the higher approximations.
The contributions of this and the doubly excited
states in accordance with formula (2) are listed in
Table VI for three values of ¢ near the energy
minimum. One of these values was checked
independently by using Inglis’ method of oscil-
lator functions. It is seen that the sum falls quite
short of the experimental binding energy, 32
Mev. The second order contributions are smaller
by about 4 Mev than those listed by Inglis; the
difference is explained in his errata. Choice (b)
gives less binding energy than Choice (a), as is
also true for the alpha-particle.

A calculation of the contribution of all
quadruply excited states is very laborious if all
terms of the Hamiltonian are included. Since this
contribution is smaller® we have computed it
retaining only Majorana forces, and for the single
value o=1. The value chosen for mA4 is —28.7
Mev. (This gives the correct energy of the alpha-
particle.) For this case Hyo(= —35.6 Mev) is far
smaller than the values in Table VI, because the
large value of the first order kinetic energy is not
affected by this choice. But the second order
contribution for Majorana forces only, —7.8

Mev, is quite comparable to the value obtained

including all the interactions. We may thus have
confidence that the contribution of the functions
of higher excitation computed with Majorana
forces alone is a good approximation. It turns out

TaBLE V. List of g's [u=1/(c+2)].

go=g=(au)} g0 =(15/8)g(1 —u)?
gs=(15/8)gu(1 —u)?
en=(1/2)gu ga2=(3/8)g(1 —3u+7u?—5u3)

g20=(1/2)g(1—u)

go0=(3/4)g(1—u)?
ga =(3/4)gu(1—u)
g2e=(1/4)g(1 —2u+3u?)

233 =(3/8)gu(3 —6u+5u2)

g80=(105/16)g(1 —u)4

gn=(105/16)gu(1 —u)3

g2 =(15/16)g(1 —4u +12u2 —16u3+Tut)
g3 =(15/16)gu(3 —9u +13u2 —7u8)

g1 =(3/16)g(3 —12u 44242 — 60ud 435u4)
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TABLE V1. Summary of numerical results.
Doubly excited states.

CHOICE @ CHOICE b
a 1 1.2 1.4 1 1.2 1.4
Hoo -100 —10.8 —10.7 —-7.3 —7.7 —7.1 Mev
Ep® —6.8 7.2 —7.4 —-6.0 —6.4 —6.7 Mev
Sum. | —16.8 —18.0 —18.1 | —13.3 —14.1 —13.8 Mev

to be —4.1 Mev (Inglis, reference 8, calculated
—3 Mev).

It is obvious that contributions due to suc-
cessive stages of excitation do not decrease
rapidly enough to permit an estimate of the
convergence limit. There is, however, a way in
which one may ascertain a lower limit of the
second term in (2). We note that

, | Ho;|? Sa Ss
E® = - +G,
K2 EO—EI Eo—Eg E0~E4

where Sz and S, are the sums of | Hy;|? taken over
all doubly and quadruply excited states, re-
spectively. They have already been calculated.
G is the remainder of the sum, in which the

smallest denominator is Ey—Es= —67¢. Hence
> [H0i|2—52—54
|G| <
YK

But by matrix algebra, > i|Ho:|?=(H2)oo

- (Hoo)Z. Thus
(H2)00_H002—S2—S4

|G| <
6T o

(16)

Of all quantities needed, only (H?),, remains to be
calculated. A simplification arises from the fact
that the matrix elements appearing in G are free
from kinetic energy terms (selection rules!),
which means that we may leave out all kinetic
energy terms in (F?)go, Hoe?, S2 and Sy, for they
would cancel. Thus we can restrict the calcu-
lation to ( V%) 4. Again, this was done for Majorana
forces only, with (mA)=B=28.7 Mev.

V2=BY iniJ i+ 2 s indsiJinPiiPik
+ X i i iiPiiT kiPri}.

The corresponding three terms in (V%) are
given by :

(V) 0o=B2{0.984+1.364+1.01} =3.35B2
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Moreover, (Vyo)2=2.50B2%,5,=0.29B2,S,=0.16 B,
giving
|G| <6.6 Mev.

This bound is almost certainly several Mev too
great. Summarizing our results so far, we may
say, even referring to the more advantageous
choice of constants in Table VI, that the first and
second order perturbational contributions to the
binding energy of Li® are in fofo smaller than
(18.14+-4.1+6.6) Mev=28.8 Mev. In the next
section we shall show that the perturbation
method, carried up to the second order, yields too
large a result for the binding energy in this
problem.

VARIATIONAL THEORY!

The variational procedure here adopted is that
outlined in reference 2. It was carried out before
the present perturbational calculations were
made, unfortunately with a slightly different set
of constants, namely those used in reference 2.
Since we are only interested in a general corre-
lation between variational and perturbational
results a repetition of the laborious variational
work with another choice of constants did not
seem worthwhile.

The major difficulty lies in the large number of
functions which, for obvious practical reasons,
must be reduced. It is because of this necessity
that a complete variational treatment of the six-
body problem is very unlikely to be achieved.
But it is possible, by surveying the tendency of
such a calculation and correlating it with a less
perfect procedure which can be carried through,
to correct the result of the latter.

The functions used are the oscillator functions
employed by Inglis.®8 The ‘“types”’ will here be
numbered in the order in which they appear in
his Table IV. Only some, not even all, of the

TABLE VII. Lowering of Hoo by perturbation and
variation methods (in Mev).

NUMBER OF SECOND ORDER PERT. ‘VARIATIONAL
FUNCTIONS INCLUDED CONTRIBUTION —Hoo
6 —5.53 —4.19
8 —6.85 —4.85
10 —7.05 —5.12

14 The results of this section have already been presented
at the Washington Meeting of the A. P. S., April 1938.
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doubly excited states have been used, but the
eleven types here chosen give more than 80
percent of the total perturbational contribution. .

In reducing the number of functions the known
Hy; elements served as a guide. Types with small
H,; were rejected. The remaining functions were
combined in such a way that all ¢, having equal
H,; were given the same coefficient, and hence
could be taken as a single variation function.
This produces as many independent functions as
there are types. The word “function” in Table
VII refers to such rigid linear combinations. The
effect of this initial fixation of some of the
functions upon the variational result could be
investigated ; but we feel that it is inappreciable.

The work now involves the calculation of all
elements H;; for the functions selected, and a
subsequent reduction of the determinant. The re-
sult is equivalent to an inclusion of all higher per-
turbations in the Schrédinger-Rayleigh scheme,
provided that they converge. The direction and
extent of its deviation from the second order
perturbation result indicate the correction
necessary.

To explain this we indulge in a digression on a
relation between the method of linear variation
functions and perturbation theory. If the
functions employed are orthogonal, the former
leads to the equation for the energy

IH,,—&JEI:O,%,]:O,l?L (17)
and E is the true solution in case the functions
form a complete set. Now if in (17) all non-
diagonal elements, except the H,; and their
conjugates, are neglected, the determinant may
at once be expanded by adding rows with

‘suitable factors, and (17) yields

o | Hol?
Hyp—E+3 ———
=1 E'—Hi,;

X (Hyu—E) -+ (ITn—E)=0.

On replacing the denominator E—H;; by
Ey— (H,) ;; this becomes identical with (2), after
cancellation of factors producing the higher
roots. The second order perturbation result is
thus seen to differ from the truth in 2 respects:
(1). It neglects all nondiagonal elements except
those in the first row and column. (2). It neglects
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the difference between perturbed and unper-
turbed energies in the diagonal terms. Now one
can easily see that inclusion of nondiagonal
terms lowers the root E; as to (2) we note that
replacing E—H;; by Eo— (H,)s: lowers the root
if, for the preponderant functions, |E—H;;|
> | Eo— (Hy) i/, raises it otherwise.

In the He* problem® the H;;-terms neglected
in the perturbation scheme were of considerable
size; their effect overshadowed the inequalities of
the diagonal energy differences. This is the
reason why the variational method gave a
greater binding energy than the other. For Li$,
we find the reverse to be the case: Nondiagonal
elements are small (cancellation between a
greater number of functions) ; the diagonal energy
differences are predominantly larger than the zero
order differences. The net effect is a greater
perturbational than variational contribution.
Table VII shows this clearly. The calculations
were made for ¢=1. The functions used are
1,2,3,7, 8, 16)+(6, 18)+ (4, 5) in Inglis’ table
of types.

CoNCLUSIONS REGARDING THE GROUND STATE

The present investigation is made with the
symmetric form of the Hamiltonian, the nuclear

constants being specified in two definite ways.

Our conclusions will be based upon choice (@)
which is probably at the favorable limit of the
permissible range of force parameters for pro-
ducing as large as possible a binding energy of
Li%. With this choice, second order perturbation
theory leads to a value certainly smaller than
—28.8 Mev for the energy of Li¢. Of this —10.7
Meyv are due to excited configurations.

Furthermore we have shown in the last section
that perturbation theory magnifies the effect of
the excited configurations. If the initial trend
which is evident in Table VII persists, we may
say that the true contribution of the excited
states is not more than 75 percent of the
perturbational one. This leads to the value
—(18.14+2-10.7) Mev =-—26 Mev as a lower
bound for the computed energy of Li®. The
present analysis of the problem thus corroborates
the conclusion of Inglis that a symmetric
Hamiltonian is inadequate to produce agreement
with the experimental value, —32 Mev.
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TABLE VIII. List of perturbing doubly excited configurations.

CoNFIGU- No. or CONFIGU- No. or
RATIONS FUNCTIONS RATIONS FUNCTIONS
(15)2p3p 2 (15)3(2p)22s '
(1s)42p4f 4 (15)3(2p)23d 22
(15)4(3d)? 3 (15)2(2p)* 12

ErreEct oF EXCITED CONFIGURATIONS
ON 3D-STATE

In the papers by Feenberg and Wigner'® and by
Feenberg and Phillips!® the first order energies of
the low lying levels of a large number of nuclei
have been calculated. The question arises as to
how much the first order arrangement of levels
will be disturbed by second order effects. Li®
offers an easy opportunity for testing this
matter.

The result will be sufficiently significant if we
work with Majorana forces only and make a 2nd
order perturbation calculation including only the -
doubly excited states. For the 3S state this
procedure has already been carried through: it
yields a lowering of 7.8 Mev for B= —28.7 Mev.

The first order function for the 3D state is

111}
%:(—6—') |smsnzSTIaS7)4P1’72P1’74I'

It has a first order energy
Hyp=E(S)—30%(c+2)""2B,

and therefore lies in this approximation (with
o=1) about 2 Mev above the ground state. It is
perturbed by the doubly excited configurations
given in Table VIII.

The lowering effect of these functions is 3.8
Mev for ¢=1, 3.9 Mev for ¢=1.2 and 1.4.

In this approximation, then, the first order
3D —3S energy difference is altered by 4 Mev. A
correlation between computed first order levels
and experimental data is therefore in general not
to be expected. One should observe, however,
that the order of the terms remains unchanged,
which is in agreement with Feenberg and

Wigner's expectation.

1 E. Feenberg and E. Wigner, Phys. Rev. 51, 95 (1937).
8 E. Feenberg and M. Phillips, Phys. Rev. 51, 597
(1937).



