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This paper reviews the theory of nuclei composed of
alpha-particles alone, and extends it to cases where in
addition to the alpha-particles, a single neutron or proton
is present, and also to those light nuclei in which a single
neutron or proton is missing from the complete alpha-
particle structure. In the latter cases the missing particle
- is considered as a neutron or proton ‘‘hole.”” In the first
section of the paper, the configuration of the alpha-
particles is considered .together with the motion of the
neutron, proton, neutron hole, or proton hole, in the field
of the fixed alpha-particles for nuclei lighter than fluorine.
Rough values for the binding energies are obtained and

compared with the results of the Hartree model. In the
second section of the paper, rotations of the same nuclei
are discussed, and the symmetry properties of the funda-
mental states, as well as the symmetry properties and the
approximate spacing of some of the excited states are
obtained. The symmetry properties of the fundamental
states are in agreement with those obtained from the
independent-particle model. Furthermore the excited
states as obtained from the two models show a marked
parallelism, although a greater number of levels is pre-
dicted by the alpha:-particle model than by the inde-
pendent-particle model.

INTRODUCTION

HE liquid-droplet model of the nucleus

which has been recently discussed by Bohr
gives an adequate description of many nuclear
processes, and also provides us with some very
general statements about nuclear binding ener-
gies and the distributions of excited states.
More detailed results, however, may be obtained
only with the help of models based on more
specific ‘assumptions. Two models of this kind
have been proposed, namely, the independent-
particle model and the alpha-particle model.
The main difference between these two models is
that, while in the .independent-particle model
each neutron or proton is assumed to be subject,
in the first approximation, to the average force
obtained from all other neutrons and protons, in
the alpha-particle model the interaction of two
neutrons and two protons (constituting an alpha-
particle) are first considered, and then the
interaction of these groups with each other and
with particles outside of the groups are con-
sidered later.

It is undoubtedly true that no one is more
aware of the weaknesses inherent in the use of
the independent-particle model of the nucleus
than those theoretical workers who have been
making calculations on this basis. Such calcu-

lations are based on the model in which each of
the nuclear constituents moves in a field obtained
by averaging over-the positions of the other
particles and it neglects, therefore, in the first
approximation the phase relation of the nuclear
constituents. The success of a similar model in
explaining atomic structure is due to the fact
that all electrons are subject to the nuclear
attraction, which is greater than the interaction
between the electrons, and that the latter
interaction, too, is a Coulomb force, that is, a
long range force. It has been pointed out fre-
quently that the absence of a central body in
nuclear structure and the short range interaction
between the constituents tend to make the
Hartree or independent-particle approximation
a very poor one. If the interaction is assumed to
be of an exchange type, the independent-particle
picture becomes even less justified. The impres-
sion that a considerable degree of success has
been attained by this model, created perhaps
especially among experimentalists, may be due
to the fact that it is mainly the successes of the
theory, and not its shortcomings, which are
published, or at least which are emphasized in
publication. It is well to remember in this
connection that Breit and Rabi! stated at a

1 G. Breit and I. Rabi, Phys. Rev. 46, 230-231 (1934).
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very early date in the development of nuclear
theory that: “According to the usual ideas of
nuclear structure the constitution of a nucleus
resembles that of a polyatomic molecule or else
a liquid. It is questionable whether there is
much meaning to a central field which one must
necessarily assume in order to assign an orbital
quantum number to a particle under these
conditions.”

An older picture of the nucleus,? to which the
above quotation implicitly refers, assumes that
alpha-particles are. present in the nuclei as
comparatively stable sub-units. It has been
emphasized that the alpha-activity and, to some
extent, also the greater stability of nuclei of the
4n-type may be explained by the independent-
particle picture as well® but still it seems
impossible to obtain as good absolute values for
the binding energy with the help of the Hartree
model as is obtained in the zeroth approximation
from the alpha-particle picture. Again, it has
been shown in some cases, and will be shown for
others in this paper, that the behavior of the
nuclei in the vicinity of O, which seemed to be
in particularly good agreement with the closing
of the “P-shell” in the Hartree model, can be
also accounted for by the alpha-particle model.

Our purpose in this paper is to discuss the
alpha-particle model for light nuclei. Such dis-
cussions have been given previously® 4 for nuclei
composed of alpha-particles alone. We shall
review the theory of these nuclei and extend it
to cases where, in addition to the alpha-particles,
a neutron or proton is present, and also to those
light nuclei where a single neutron or proton is
missing from a complete alpha-particle structure.
In the latter cases we may speak of a neutron
or proton ‘‘hole.” Our treatment will be  based
on the analogy with molecular structure, just as
the conventional application of the independent-
particle picture is based on an analogy with
atomic structure. The alpha-particles will cor-
respond to the nuclei of the molecule, the
neutron hole or proton hole to the electron
moving in the field of the heavier constituents.

2 G. Gamow, Proc. Roy. Soc. A126, 632—644 (1930).

3 H. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 168—
171 (1936).

4+ W. Wefelmeier, Zeits. f. Physik 107, 332-346 (1937);
J. A. Wheeler, Phys. Rev. 52, 1083-1106 (1937); C. F.
von Weizsicker, Naturwiss. 26, 209-217, 225-230 (1938).
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Obviously this picture too is inherently weak.
Thus it has been pointed out that, particularly
in heavy nuclei, considerations of energy and
space-occupation® make the stability of alpha-
particles as sub-units somewhat doubtful. Fur-
thermore, our calculations, for those nuclei
which are not composed of alpha-particles alone,
contain the assumption that the mass of the
neutron or proton is negligible as compared to
that of the alpha-particle.

However, the essential reason that the
independent-particle picture has been used so
largely in recent theoretical investigations has
been the belief that the alpha-particle picture
would be more complicated for actual numerical
calculations. As will be shown below, many
important results can be obtained from the
alpha-particle picture in a simple way.

It is a significant fact that, while the Hartree
and alpha-particle approximations start from
widely different assumptions, the results ob-
tained agree in many of the main features as
well as in some of the details. For example, the
second approximation of the independent-par-
ticle picture, as applied to heavy nuclei,® brings
about a distribution of neutrons and protons
resembling more closely that obtained from the
alpha-particle picture. A parallelism has also
been found” with regard to the properties of the
first excited states of heavy nuclei as obtained
from the two points of view.

Our treatment consists of two main sections.
In the first, the configuration of the alpha-
particles is considered together with the motion
of the neutron, proton, neutron hole, or proton
hole, in the field of the fixed alpha-particles for
nuclei lighter than fluorine., Rough values for
binding energies are obtained and compared with
results of the Hartree model.

In the second section, rotation of the same
nuclei is discussed. In this section we obtain the
symmetry properties of the fundamental states
as well as the symmetry and approximate
spacing of some of the excited states. The
symmetry properties of the fundamental states

are in agreement with those obtained from the

( 5 W) Elsasser, J. de phys. et le rad. 5, 389-397, 635-639
1934).

$ H. Euler, Zeits. f. Physik 105, 553-575 (1937).
( 7 E) Teller and J. A. Wheeler, Phys. Rev. 53, 778-789
1938).
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FiG. 1. Interaction potential between alpha-particles.

independent-particle model. Furthermore, the

excited states as obtained from the two models .

show a marked parallelism although a greater
number of levels is predicted in the alpha-
particle picture than in the independent-particle
picture

The agreement of the symmetry properties in
the two models seems to us to be the main result
of the present paper.

Though we do not think that the model here
presented is good enough to give a detailed
account of experimental facts, we believe that
itis not worse than the Hartree model. Explicitly,
we believe that neither of these pictures can
give an adequate explanation of the details of
nuclear structure. However, it is of some interest
to present calculations based on the alpha-
particle model which give the same results as
the Hartree model. Such results seem to be
relatively less sensitive to the approximations
which have been made and therefore might be
expected with somewhat greater confidence to
agree with experimental observations. Such
agreement, however, seems to imply only the
validity of those considerations which are
fundamental to both points of view, and must
not be interpreted as supporting the detailed
assumptions of either model.

SeEcTION I
Fundamental states, proper functions, binding
energies

Saturated nuclei of 4n-type.—We shall call
those nuclei which contain 2z neutrons and 2n
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protons, and can therefore be considered as
consisting of 7 alpha-particles, saturated nuclei.
The name saturated nucleus refers to the fact
that the alpha-particles are the saturated sub-
units in nuclear structure. In fact, these nuclei
are analogous to the rare gases and other
saturated shells in molecular physics. They have,
at least for light nuclei, a comparatively high
binding energy, a high frequency of occurrence
in nature, and no angular or magnetic momen-
tum. These nuclei have been described 'in
accordance with the “‘saturation character” of
nuclear forces.®! By ‘saturation character” is
meant that the binding energy (and also the
volume) of a nucleus is roughly proportional to
the number of particles contained in it, and not
to the square of the number of particles as might
be expected if each particle interacted with all
other particles. To obtain this condition, it can
be assumed that the alpha-particles repel each
other at small distances. In order to build up
saturated nuclei containing more than one alpha-
particle, an attraction must be introduced at
larger distances. Thus an interaction potential
between two alpha-particles is obtained of the
form shown in Fig. 1.9 This interaction may be
compared to that between two saturated shells
in atomic physics. The repulsion at small dis-
tances corresponds to the exchange interaction,
the attraction at greater distances to the van der
Waals, or polarization, forces.® The analogy with
the closed atomic shells makes it plausible that
the interaction forces are of an additive nature,
that is, the interaction of two particles is not
changed by the presence of a third alpha-particle.

According to these assumptions, alpha-par-
ticles will be held in equilibrium-positions within
the nucleus, Be® corresponding to a dumb-bell
model, C? to an equilateral triangle, O to a
tetrahedron, and further saturated nuclei to
more complicated structures. If, in analogy to
atomic physics, a short range interaction is
assumed between the closed shells, the binding
energy will be proportional to the number of
“bonds’’ between adjacent particles, that is, to
the number of pairs of alpha-particles which for

8 W. Heisenberg, Zeits. f. Physik 96, 473-484 (1935).

9 The effect of the Coulomb interaction at great distances
will not be considered in what follows, since it is of rela-
tively small importance for light nuclei.
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FiG. 2. Binding energy for saturated nuclei.

geometrical reasons can approach to the distance
of maximum interaction 7.

In Fig. 2 the binding energies of saturated
nuclei, that is, the masses of the constituent
alpha-particles minus the - nuclear mass, are
plotted against the number of ‘bonds.” The
experimental values are plotted with vertical
lines to show their limits of error. The same
procedure will be followed in Figs. 5 and 6.
In agreement with the model, a very good linear
relation is obtained with the exception of Be®
and Ne?, which both fall below the curve.

According to the model, Be® should have a
binding energy corresponding to one bond, that
is, 2.58 in Mev. Its actual binding energy,
however, is close to zero. It has been suggested
by Wefelmeier* that this discrepancy may be
due to the effect of the zero-point energy in
analogy to Wigner's explanation!® of the sur-
prisingly great ratio of the binding energies of
the alpha-particle and the deuteron.

In order to check this explanation; we have
calculated the zero-point energies for Be®, C2,
and O for a simplified model, assuming that
the zero-point amplitudes are small as compared
to the distances between the alpha-particles and
that the effects of the anharmonicity of the

10 E, Wigner, Phys. Rev. 43, 252-257 (1933).

forces, and the interaction with rotation, may
be neglected. If, furthermore, the additivity of
the forces is remembered, the ratio of the zero-
point energies!! for the sequence Be? : C12 : Q¢
isas 1 :[(3/2)¥42(3/4)%] : (V2+2/v243.1), or
1 :2.9 :5.8. This ratio is very nearly equal to
the ratio 1 : 3 : 6 of the number of bonds in
these nuclei so that the ratios of the total
binding energy should remain 1 :3 :6. Thus
for the model proposed the zero-point energy
does not explain the anomaly for the Be3-nucleus.
The reason that, in comparing H? and H3, the
zero-point energy is of great importance while
for Be?® and C2 it is not, seems to us to be as
follows. In H? and H? the equilibrium positions
of the neutrons and protons coincide. Therefore,
H? possesses three ‘‘vibrational’’ degrees of
freedlom and H?® six ‘‘vibrational” degrees of
_ freedom. Very roughly one may therefore expect
the zero-point energy to increase by a factor of
two. At the same time the pairs of interacting
particles and therefore the number of terms in
the potential energy change from one to three,
that is, the potential energy increases more
rapidly than the zero-point energy. On the
other hand, in the models for Be? and C*? the

11 The normal vibrations may be obtained from Table IV
in the paper by Wheeler, reference 4.
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number of vibrational degrees of freedom is
equal to the number of bonds and it may
therefore be expected that the zero-point energy
and potential energy will be proportional. This
qualitative consideration suggests that a rather
great change of the model of saturated nuclei
may be necessary to explain the low binding
energy of Be?.

In Fig. 2 it will be noticed that the number of
additional bonds per particle increases markedly
up to O but remains constant for the following
twoesaturated nuclei. This corresponds to the
relatively smaller binding energy for the nuclei
heavier than O predicted by the “‘shell struc-
ture” in the independent-particle model. The
fact that Ne? lies below the curve shows that
the break in binding energy after O is even
more marked than would be expected from the
alpha-particle model. It should be remembered,
however, that the disagreement for Be® and Ne
is small as compared to the disagreement as
obtained in any of the direct calculations based
on the independent-particle model.

The degree to which alpha-particles may
retain their individuality in nuclei will decrease
as the total interaction between an alpha-
particle and the other constituents of the nucleus
increases. It is therefore not improbable that in
heavy nuclei where an alpha-particle is com-
pletely surrounded by other alpha-particles (and
possibly neutrons) the alpha-particle picture is
less valid than for light nuclei. This may help
to explain the fact that for all heavy nuclei the
binding energy of an added neutron or proton is
approximately constant, whereas for light nuclei
a particularly great binding energy is obtained
whenever a new alpha-particle is completed.?

One of our reasons for restricting this discus-
sion to light nuclei is that for these the alpha-
particle model may be a reasonable approxi-
mation even though it may break down for
heavy nuclei.

Nuclei of (4n+1) type—For nuclei containing
a single neutron or proton in addition to the
alpha-particles, the total binding energy will be
given by the binding energy of the group of
alpha-particles plus an additional energy due to

2 Tt should be remembered, however, that mass defects
for heavy nuclei are relatively less accurately known.
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the binding of the single particle to the alpha-
particle group.

In the simple case of He® the additional energy,
which we will call B, will be given directly by
the difference between the masses of He® and
(He!+n). Thus He’— (He*4-#) =B.

The independent-particle picture predicts that
the fundamental state of He® should be a P state,
consisting of four s particles and one p particle.
We take this result over into the alpha-particle
picture by assuming that the four s particles
correspond to the alpha-particle and that the
added neutron in He’ is in a p state with a
node through the center of the alpha-particle.
Such a model will satisfy the exclusion principle,
and make it possible in the simplest way that
the Y-function of the added neutron should be
orthogonal to the y-function of the neutrons
within the alpha-particle. One consequence of
the presence of this node through the alpha-
particle is that the added particle will be found
with a small probability within the alpha-
particle, corresponding to the notion that the
density of matter within the alpha-particle
closely approaches the maximum density which
can be reached within a nucleus.

The case of Li® in which a proton is added to
the alpha-particle will differ only slightly from
that of He® due to the effect of the Coulomb
forces. This difference, and those for other
nuclei in which a proton is added instead of a
neutron, can be calculated quite as readily for
our present model as for the independent-
particle picture. However, since the results are
practically identical for the two models (as might
be expected, since the effect of the long range
Coulomb forces will not depend very greatly on
the details of the configuration of nuclear
constituents) and, further, since the experimental
uncertainties in the available data are too great
for definite conclusions to be drawn, the effects
of Coulomb interactions will not be considered
in this paper.

In cases of more than one alpha-particle, we
may reason as follows. The force between the
neutron and any one alpha-particle has a short
range. This force will therefore contribute to the
binding energy only when the neutron is close
to some one of the alpha-particles. This fact
makes it plausible that the neutron does not
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simultaneously interact to a great extent with
other alpha-particles which are at the average
distance 7o. Thus the neutron will interact with
each alpha-particle only part of the time.

For Be? we have two alpha-particles each
with an associated y-function for the neutron
which we will designate as ¢, and ¥, respectively.
As in the case of He?%, each neutron y-function
must have a node through the respective alpha-
particle. The total wave function may be any
linear combination of ¥; and y,, but, since we
are seeking the lowest energy state and since
long wave-lengths correspond to smallest energies
of the particle, we choose a combination (¢1-+vs)
with a single plane node extending through both
alpha-particles. The average energy of the
neutron will be given by

S Wry) H1 )

S W1+ys)?

where H=(V1+Vy+T) and V; refers to the
potential energy of the neutron due to alpha-
particle number one, V, refers to the potential
energy of the neutron due to alpha-particle
number two, and T is the kinetic energy of the
neutron. On expansion we find that the terms
can be grouped as binding, interaction, and
exchange, terms which we will designate as B,
R, and Q, respectively. The B terms will have
the form JSy(V1+T)¢: and refer to the po-
tential and kinetic energy of the neutron due to
a1 (that is, the first alpha-particle) when the
neutron is near «;, with corresponding terms
for as. The R terms will have the form JS¥1 Va1
and refer to the additional potential energy of
the neutron when near a7 due to the presence
of s, and conversely. The exchange terms are
those having form JSY1Hys and have the usual
meaning. Letting S= S {1¢s we find

2(B+R+Q)  B+R+Q
SR+ S22 e 1+S

In keeping with the idea that the added
neutron interacts mainly with one alpha-particle
at a time and that therefore ¥; and ¢. do not
overlap strongly, we assume that the overlapping
of the y-function is small and therefore S<1,13

E@Wi+ys) =

E@Wi+y) =

13 One might expect that for similar reasons QKB and
also RKB. This however need not be true since the two
terms SY1V1and SY1TYin B tend to cancel each other.
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so that
E(W1+y2) =[B+R+Q7.

Applying the same type of arguments to C*
we will expect that the added neutron proper
functions will have a plane node through all
three alphas, satisfying the Pauli principle with
the smallest amount of added kinetic energy. A
similar argument as has been given for Be?® leads
to the energy of the neutron of [B+2R+2Q].
The interpretation of this formula is as follows:
Since as far as the term B is concerned the
neutron will interact with one alpha—particfe at
a time, this term will be the same as in He® and
Be®. On the other hand, in the interaction R,
and for the proper functions which we are using
also for the exchange term Q, the neutron at one
alpha can interact simultaneously with the two
neighboring alpha-particles. Therefore, these
terms are multiplied by two for C®.

We now wish to build O'7 by adding a neutron
to the tetrahedron constituting O'. The wave
function of the added neutron should have a
node through each of the alpha-particles. This
can no longer be done with one plane node.
The added neutron will probably have least
kinetic energy while satisfying the Pauli principle
if a spherical node passes through the four
alpha-particles.

It is not possible to calculate from our picture
the energy of the neutron in O without intro-
ducing new constants. It follows, however, that
the energy will be greater than [B+3R+43Q],
the value which would be obtained by extra-

‘polating the energies of He®, Be®, and C®. The

different orientation of the nodes on different
alpha-particles in O'¢ will make the wave-lengths
of the neutron effectively shorter, and therefore
the kinetic energy of the added neutron larger
and its binding energy smaller.

Summarizing our results for nuclei of the
(4n+1) type, we have

He’— (He*+#) =B,

Be?— (Bed+#x) =B+ (R+0Q),
C8—(C2+n)=B+2(R+0Q),
07— (0%+n) >B+3(R+0Q).

A comparison with experimental observations
is given in Fig. 3; the mass-values used are those
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F16. 3. Increments of binding energy for nuclei of (4n-1) type.

of Livingston and Bethe.* This figure shows
clearly the ‘‘break’” in the curve at O which
has been interpreted* as strong evidence for the
‘independent-particle picture but which as we
have seen is to be expected on the basis of the
alpha-particle picture as well.

The experimental binding energies for He3,
Be?, and CB can be represented by the theory if
we set B=1.2 Mev and (R+Q)=—3.2 Mev.
The fact that |R+Q| is actually greater than
B makes our conclusions about the binding
energies rather doubtful. If the presence of
further alpha-particles modifies the binding of a
neutron to one alpha-particle so strongly, it
would seem necessary to include higher order
approximations, that is, polarization terms in
the calculation. However, even these extremely
rough considerations account for the frend of the
binding energies of the light nuclei as well as
does the independent-particle picture. Similar
statements hold for the nuclei of (4n—1) type
which we now proceed to discuss.

Nuclei of (4n—1) type—With our model we
can treat nuclei of the (4n—1) type by con-
sidering the missing particle as a ‘‘hole’’ and then

- 14 M. S. Livingston and H. A. Bethe, Rev. Mod. Phys.
9, 373 (1937); see however F. Joliot and I. Zlotowski, C. R.
Acad. sci. 206, 1256-1259 (1938) in regard to the mass
of Heb.

proceeding just as in the case of the added
particle. However, whereas the added particle
was in a p state, with a node through the alpha-
particle corresponding to the small probability
of the neutron’s being within the alpha-particle,
the “hole” will be in an s state since it may be
expected to be within the alpha-particle. Fur-
thermore, whereas in the previous case we
obtained a minimum energy for our model by
arranging the wave functions of the added
particle so as to have as few nodes as possible,
in the present case we will get the lowest energy
state for the entire nucleus by giving the “missing
particle’ as large an energy as possible.

For He® we have simply the energy B=He?
— (Het—n).

For Be” we have a case analogous to that of
ionized molecular helium; the alpha-particles
correspond to the closed shells of the two He
atoms and the missing neutron correspond to
the missing electron.’® Guided by the require-
ment suggested above that the “missing particle”
should have high energy, we proceed as in the
case of Be® but choose (Y1—y2) as our wave
function, in order to obtain the maximum

15 W, Weitzel and E. Pestel, Zeits. f. Physik 56, 197-214
(1929).



688

L. R. HAFSTAD AND E. TELLER

— =13 . ; 7 ()
| | | 1
i d
I ' |
| /,—a'/ |
{ I i/ / !
= - /5 1 - T
g ! | moerenoent-parTicLE movEL | |
3 l I 1 |
2 ] |
3 l [
3 ! | 4 I
N i b [
2 ! .
3 I | | |
& g
: | I | |
g | ] L i
- =98 ALPHA-PARTICLE MODEL — "
3 | | | [
N | | | !
5 | |
g . | |
g | v | | !
-2 f < .
I — e G |
Nz | Q l | !
_ATTTE ! | »,
* 0 ¥ £
% 3 g S
- ~23 < F g o
S 3 o =
; s ! /‘a MASS-NUMBER 115 '

F1G. 4. Increments of binding energies for nuclei of (4n—1) type.

number of nodes. We evaluate

S @) HY1— )

S (1—s)?

and find (B—Q+R) as the binding -energy for
Be”— (Be®—n) ; the negative sign in front of the
exchange integral Q is due to the change in the
sign of ¥». For the missing particle case, however,
Q will probably be positive, so that (B—Q+R)
rather than (B4 Q-+ R)—corresponding to y1+ys
—will represent the lowest possible energy.

For the cases C! and O, we assume again
that Q is positive. We find then from group
theory .

Yi—W2t+¥s)/2 and  Yr14+ve— Ws+u)

for proper functions corresponding to the lowest
energies. The first of these functions, correspond-
ing to CY, is one of a twofold degenerate set and
leads to the energy (B—(Q-+2R). The second
function corresponding to O is threefold
degenerate and gives (B—Q-+3R). It will be
seen that the exchange term remains constant
regardless of the number of alpha-particles.
This is due to the fact that by choosing, the
wave function with a node between two alpha-

E@Wr—yn)=

(The superscript to the carbon symbol should be 12.)

particles, the third alpha-particle in the case of
C!, and the third and fourth alpha-particles in
the case of O, lie on this node and therefore do
not contribute to the exchange energy. It may
be worth while to point out that, since for the
case of O a spherical node such as was needed
for O' is not required, the break in the linear
relation at O is not to be expected in the
missing particle case.

A comparison with the experimentally ob-
served values of the binding energies of nuclei of
this type is given in Fig. 4. In view of the
incompleteness of the data for “‘missing-neutron’’
elements, the equivalent ‘‘missing-proton’ ele-
ments are used instead. According to theory the
points for Li”?, B! and N8 should lie on a straight
line, whereas the point for H3 not containing an
exchange term should lie above the line by an
amount Q. The agreement with experiment for
the alpha-particle model obviously is not good
but is certainly no worse than that given by the
independent-particle model, for which the data
were taken from Table V of Feenberg and
Wigner.16

16 E. Feenberg and E. Wigner, Phys. Rev. 51, 95-106

(1937).
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While it is not the purpose of this paper to
emphasize detailed agreement with experiment,
since we believe that calculations based on either
model are too inaccurate to give quantitative
results, we include Fig. 5 as a summary of the
results so far obtained by each theory for the fun-
damental states. The data for the independent-
particle model were obtained from Fig. 1 in the
paper by Feenberg and Phillips.!” For each
model the total number of arbitrary constants
used in fitting the experimental curve is large.
For the alpha-particle model we determined from
the experimental data constants B, R, and .Q,
both for the added particle and for the hole,
and the mass defect of the alpha-particle, as
well as the “binding energy per bond” for the
saturated nuclei, making a total of eight
parameters. For the independent-particle model'®
the parameters are as follows: 4, «, G1, Gs, and
two from the linear correction function, making
a total of six.

SecTioN II

Nuclear rotation, symmetry, excited states

In the previous section nuclear proper func-
tions have been described insofar as they bear
upon the relative positions of alpha-particles,
added neutron or proton, or missing neutron or
proton. These proper functions have given us

17 E. Feenberg and M. Phillips, Phys. Rev. 51, 597-608
(1937).

rough values of the binding energies. But if we
inquire into the symmetry properties of the
states in question, it will be necessary to add
the description of the proper functions as
depending on the orientation of the nuclear
constituents in space, that is, it will be necessary
to consider nuclear rotation.

This consideration will yield as a by-product
some information on excited nuclear states.
Further excited states would be obtained if we
would include in our discussion the nuclear
vibrations. However, the lowest excited levels
will, as a rule, be rotational levels.

The considerable quantitative differences be-
tween theory and experiment as found in Section
I indicate that no great emphasis can be laid
upon the calculated spacing of excited states.
Therefore the symmetry properties of both the
fundamental and the excited states are of
primary interest to us.

Saturated nuclei of 4n-type.—For this simple
case, which we include for completeness, the
results of Wheeler* are represented. As indicated
by Wheeler, the rotational levels may be
obtained very simply by comparlson with the
analogous molecules.

For Be® we have the case of a diatomic
molecule, for which the energy is given by

E;=#/2Iz)J(J+1).

However, since the alpha-particles obey Bose
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statistics, and the antisymmetrical y-functions
for J=1, 3, 5 «-- are therefore excluded, only
values of J=0, 2, 4 --- will be allowed. From
the fact that reflection at the center of symmetry
exchanges the two alpha-particles, we conclude
that all states are even.

For C2 we have the case of a symmetrical
top for which

B»I(J+1) mBK?

4Ty,

JR=——————
215,

J is the quantum number for the total angular
momentum, while K is the component of J
about the figure axis, that is, about the axis
perpendicular to the plane of the three alpha-
particles. Ig, is, as above, the moment of inertia
of Be. In our formula it has been implicitly
assumed that the separation of the alpha-
particles in Be® and C2 is the same. Since, as
above, only symmetrical y-functions are allowed
by the requirement of Bose statistics, K must be
a multiple of 3. J, being the absolute value
of the length of a vector, must be zero or
positive. K, however, being a component of J,
can be either positive or negative, but its absolute
value must be smaller than or equal to J. For
the case of K =0, that is, no rotation about the
figure axis, J can have only even values just as
in the case of Be’. When K0, however, J may
have any positive value greater than or equal
to |K|.

The states will be odd or even according to
whether K is odd or even.

In the case of O we have a spherical top for
which all moments of inertia are equal. Also
from the tetrahedral arrangement we may
conclude that Ioxygen=2Ine so that

Ey=12J(J+1) /AT

From group theory one may find that all
values of J are allowed except J=1, 2, and 5.

The states will be even for J=0, 4, and 8,
and odd for J=3, 7, and 11. For the remaining
allowed J values there will be both even and
odd states with equal rotational energies.

Nuclei of (4n+1) type
He’ or Li>.—From our point of view we cannot

consider excited states of He® or Li% for, as in
the monatomic molecule, there will be no

18 This may be seen by rotating through = around the
figure axis and reflecting in the plane of the alpha-particle.
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rotational states. The fundamental state will
have J=1 and will be odd, that is, it will have
the same symmetry properties as in the inde-
pendent-particle picture.

Be® or B°.—The node of the neutron wave
function through the two alpha-particles means
that there is an angular momentum #% of the
neutron around the axis connecting the two
alpha-particles and therefore we have the lowest
state J=1, that is, a P state.

The excited states may be obtained by analogy
with a diatomic molecule with a =, electron,
for which the nuclei obey Bose statistics. The
rotational energies will be roughly given by the
formula which held for Be8. The wave function
will be symmetric in the alpha-particles. Two
cases arise, because the plane of the neutron
wave function may be either (a¢) parallel or (b)
perpendicular to the axis of rotation. For case
(@) odd values of J will be permitted; the
neutron function changes sign on an interchange
of alpha-particles by rotation. For case (b) even
values of J will be permitted, since now the
neutron function does not change sign. All

‘values of J=1 will therefore be allowed. By

reflection at the center of symmetry we find no
changé due to the alpha-particle wave function
but a change of sign due to reflection of the
neutron wave function which has a node through
the center. Therefore all states are odd.

OB or N®¥.—The rotational energies are
roughly given by the formula for C!2. The
former rule that K must be a multiple of three
remains valid, because rotation about the figure
axis has no effect on the neutron wave function.
As in the case of C%2, all values of J are allowed
for K#0.

For K =0, the axis of rotation is perpendicular
to the figure axis. As in the pure alpha-particle
case, an interchange of two alpha-particles must
not cause a change in sign. Such interchange of
two alpha-particles can be performed by rotating
through 180° around an axis passing through
one of the alpha-particles and the midpoint
between the other two alphas. Such a rotation,
however, will also act on the neutron proper
function. Since the neutron has a node in the
plane of the three alphas it will change its sign.
Symmetry with regard to the interchange of two
alpha-particles will be obtained, therefore, when-
ever the rotation through 180° produces a



MODEL OF NUCLEUS

change of sign, that is, for K =0 only odd values
of J are allowed.

Because of the influence of the added neutron
with its node, there will be even states for odd
K values and odd states for even K values.

O or FY.—The added particle will have
spherical symmetry and therefore there will be
nochangein the conditionsgoverning therotations.

Since an even (spherically symmetrical) proton
or neutron is added, the parity of the states will
be the same as for O,

Nuclei of (4n—1) type

Li” or Be”.—As in the case of binding energies,
we again may choose as our.proper function
either (Y1+y¥s) or (Y1—y2). In our consideration
of the fundamental states we were guided in
our choice by the fact that we wished to find
the lowest possible state. This enabled us to
select the (Y1—ys) for the ‘“‘missing particle”
case. For excited states both possibilities should
be considered. Now the difference between the
two cases manifests itself by a change in sign
of the exchange integral Q as we have seen
above, so that the separation in energy levels
calculated for the two cases will be

[B+Q+R]—-[B—Q+R]=20Q,
to which a contribution arising from the rotation
must be added. As may be seen from the sequence
for the binding energies in the missing particle
case, the magnitude of the exchange term Q
may be determined, in principle, from the
observed binding energies, as shown in Fig. 4.
(Q for the added particle case cannot be deter-
mined separately, for it appears only in the
combination with R.) Actually the errors in the
data are too great to permit any conclusion
except within wide limits. It is possible that the
Li” doublet is due to the two states (Y1)
and (Y1—ys). An explanation of this doublet
has been proposed by Inglis? but this suggestion
does not seem to account for a variation in the
relative intensity of the two groups with voltage
which has been observed.?* Such a variation,
however, is not surprising if the explanation sug-

L. H. Rumbaugh and L. R. Hafstad, Phys. Rev. 50,
681-689 (1936).

20 D. R. Inglis, Phys. Rev. 50, 783-784 (1936).

2L, H. Rumbaugh, R. B. Roberts, and L. R. Hafstad,
Phys. Rev. 51, 1013 (1937). J. H. Williams, W. G. Shep-
herd, and R. O. Haxby, Phys. Rev. 52, 390-396 (1937).

L. H. Rumbaugh, R. B. Roberts, and L. R. Hafstad,
Phys. Rev. 54, 649-672 (1938). .
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gested by the alpha-particle model is accepted.

Restricting the discussion of nuclear rotation
to the (Y1—y2) case, we have a proper function
with a node between the two alpha-particles.
Except for different values for the moments of
inertia this problem is therefore the same as
that for C® for K=0 which has already been
considered. The allowed states will be J=1, 3, 5,
7 .-, with the fundamental state a P state.
The rotational energies are roughly given by the
Be? formula. All states will be odd.

The analogous molecular case for He,* has
been investigated by Weizel and Pestel,!s who
found in this case that experimentally only
states with odd values of J actually occur.

Considerations regarding the magnetic moment
of the Li nucleus, as obtained with the aid of the
alpha-particle model, have been given by Bethe.??

CU or B".—For this case the proper function
of the “hole” in the field of fixed alpha-particles
must be considered more closely. The transfor-
mation properties under the effect of rotation
through 27/3 and 47/3 around the figure axis
are the same as those of a proper function for a
particle with unit angular momentum. Thus
unity must be added to, or subtracted from, the
angular momentum of the alpha-particles around
the figure axis. The latter will be, just as for C12,
a multiple of three, so that K for the missing
particle case must differ from a multiple of three
by =1. This means that K can be any integer
not divisible by three.

We have seen that the proper function of the
“hole” transforms as though it had unit angular
momentum. Nevertheless, the actual mean value
of the angular momentum of the “hole” will be
smaller than 7%. If we assume it to be small as
compared to 7%, the formula for rotational
energies of C'? will hold roughly also for C!* and

" B!, The actual values for the rotational energies,

shown in Fig. 6, are obtained from that formula.
If, however, the mean angular momentum of
the “hole” is not small as compared to #,
interaction between the orbit of the “hole’” and
the rotation may influence the rotational energy
considerably.

All values of J= | K | will be allowed with J=1,
K =1 the fundamental state.

The states will be even if K is even and odd
if K is odd. v

2 H. Bethe, Phys. Rev. 53, 842 (1938).
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Fi16. 6. Excited states of nuclei: Comparison of independent-particle model (left) to alpha-particle model (right)
with energy scales adjusted to agree with D level of Be? (,=even, ,=o0dd).

O'5 or N'5,—Because the proper function of
the “hole’” transforms as that of a particle with
an angular momentum unity, the state J=0
cannot occur. All others can. o

If the mean angular momentum of the “hole”
is small compared to %, the formula for the
rotation of O' will roughly be applicable.
Otherwise the coupling between rotation and the
orbit of the “hole’’ must be taken into account.

The state with J=1 will be odd (this is the
fundamental state) and that with J=2 will be
even. States for higher J values will occur with
both even and-odd parity.

For convenient comparison, the permitted
energy states of the various nuclei are shown in
Fig. 6. The fundamental states have been
assumed to have the energy zero. Actually the
rotation will contribute in some cases to the
energies of the fundamental states. These
contributions are, however, in view of the
discrepancies found in Section I, too small to be
worth discussion. The excited level system
predicted by the alpha-particle model (rotations
only) are given to the right of the line for each
element of Fig. 6, the numbers indicated referring
to J when only one number is given and to the
quantum numbers J and K, respectively, when

two numbers appear. The levels predicted by
Feenberg and Phillips,'” taken from their Table
ITI, are given on the left. The parity of the
levels is indicated for both models.

The ordinate scale for the alpha-particle
model is given in units of %2/2Ig.. This scale is
fitted to that of Feenberg and Phillips by
arbitrarily identifying their D level in Be® with
our (J=2) level. From their Table I it may be
seen that their K is exactly equal to two of
our units.

It is significant that the symmetry of the
fundamental states, as well as that of many of
the excited states, are the same for the two

~models. The agreement for the nuclei Be’, Be?,

and Be? is particularly good. For C%, C2, and
C® additional low excited states occur in the
alpha-particle picture. They have the opposite
parity as the levels obtained from the inde-
pendent-particle picture. For O' and O'% no
low excited states are predicted by the inde-
pendent-particle picture, whereas the alpha-
particle model gives some low rotational states.
These differences may tend to diminish if in the
independent-particle picture excitation of neu-
trons or protons into higher orbits is taken into
account.



