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Calculation of Coulomb Wave Functions for High Energies
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University of Wisconsin, Madison, Wisconsin
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For high energies and moderate radii Coulomb functions are conveniently calculated by
evaluating certain integrals numerically.

HE power-series method' of calculating
Coulomb wave functions is cumbersome if

the radius and energy are large on account of
slow convergence of the series. A way of elimi-

nating some of the labor has been given by
Wheeler, ' who developed the phase-amplitude
method using a transformation recommended for
numerical work by Milne. ' The phase-amplitude
method is especially suitable for the treatment of
scattering of alpha-particles by helium. Another
simple method suitable for the treatment of the
scattering of protons by protons is described in
this note. The Coulomb functions are expressed
in terms of definite integrals which can be
conveniently evaluated by numerical integration.
The arrangement of the calculation is such as to
have sin p, cos p as the first order approximations
for I.= 0. Here p is 2mr/A, A is t.he wave-length at
a large distance, Lk is the angular momentum.
The regular and irregular solutions are linear
combinations of sin p and cos p multiplied by
slowly varying factors expressible by means of
definite integrals. For high energies one of the
factors is small while the other is nearly unity.
The difference between the actual function and
the first approximation can be estimated suffi-

ciently accurately by using a relatively rough
numerical evaluation of the integrals.

The differential equation to be solved is

d'I'z t 2tt L(L+1)q
f
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nuclei and v is the relative ve1ocity. The equation
is solved by4

~L = I'L+&GL = ]—sr'+ L

(2I.+1)ICzpz 0

)& (t+2ip)'&+ze 'dt (1).

Here FL, GL are respectively the regular and
irregular functions having asymptotic forms for
large p given in reference 1. In order that (1) be a
solution of the differentia1 equation it is essential
that

e ttz +1—s(rtt+—2t ) L+srt 'h—

X (2m. tt) l(e2w& —1)-l2z/(2L+1).

For I.=O one obtains from Eq. (1)

Fg = (Ip sin p+IIO cos p)/Co,

Go ——(Io cos p IIo sin p)/Co, — (2)

where

be zero for t=0. This is true for all real
Negative energies correspond to imaginary p.
For these YL is not a solution. Negative energies
of relative motion are not needed, however, in the
discussion of collision problems. The number CL
occurring in Eq. (1) is independent of p and is
given by

Cz= LL'+n'3'L(L —1)'+n')' L +~'3'
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~
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~
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' F. L. Yost, J. A. Wheeler and G. Breit, Phys. Rev. 49,
174 (1935);the n'otation of this reference is used in present
note; J. Terr. Mag. At. Elec. 40, 443 (1935).E. R. Kicher,
J. Terr. Mag. At. Elec. 41, 389 (1936).' J. A. Kheeler, Phys. Rev. 52, 1123 (1937).' Ke E. Milne, Phys. Rev. 35, 864 (1930).

4 E. T. Khittaker and G. N. Katson, Modern Analysis
(Third Edition, Cambridge University Press, 1920), p. 340.
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Heres i~ the collision psrsmete ZZ s'/he whe e I,=f's ' cos p rtt; 0,= —f s ' sin ttdt
Z, Z' are the atomic numbers of the colliding
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TxBI.E I. Comparison of calculations by series with calculations by Eqs. (Z) and (4).*

PROTON ENER GY

2.6 Mev
(g =0.09805)

2.6 Mev
(o1 =0.09805)

10.0 Mev
(71 =0.0500)

RADIUS

r =0.5e'/mc2
(p =0.24915)

r =3e'/mc2
(p = 1.4919)

r =e'/mc'
(p =0.9772)

NO. OE INTEGRATION
INTERVALS USED

18 Intervals
t =0.0001 to t =6

18 Intervals
t =0.0001 to t =6

12 Intervals
t =0.,0001 to t =5

By integral
By series
Difference

By integral
By series
Difference

By integral
By series
Difference

Fo

0.2135
0.2152

0.999
1.000
0 1%

0.804
0.805
o 1%

Go

1.070
1.073
o3%
0.2505
0.2502
0.1%

0.628
0.628
o0%

1.096
1.094
o2%
1.062
1.0623
00
1.022
1.021
01%

Fp'

0.865
0.866

0.2196
0.2 195
0.0%

0.590
0.590

*The first column gives the energy of protons impinging on hydrogen atoms at rest. The second column gives the distance r between the protons
for which the Coulomb wave function has been computed. The third column describes the intervals used in the evaluation of the definite integrals.
The series computations are the more accurate in this case. The accuracy obtained by the integral method using relatively little arithmetical labor
is seen to be sufficient for most practical purposes.

CooAdA/d p = Coo(FoFo'+GoGo')
(3.2)Io 1+ e——'(e cos P —1)dt.

= IoIo'+ IIoIIo', (5)

1 = Fo'Go —F oGo' =2'+ (IoIIo —Io'IIo)/Co', (5 1)For large energies g is small and, therefore,
Ip 1, Hp 0. It is convenient to evaluate Hp and
lp —1 numerically. The same sets of quan ti ties
occur in both integrals. Similarly the derivatives
Fo' = d Fo/dp, Go' =dGo/dp are computed by
formulas of the same type

(5.2)+2 —F 2+G 2

These formulas are also useful for checking the
calculations.

The calculation of Gp, Gp by the definite
integral method is no harder than that of Fp, Fp'

in contrast to the series method. The phase-
amplitude method has the same advantage.

In Table I calculations by series are compared
with those by means of Eqs. (2) and (4). The
definite integrals were evaluated relatively
crudely. The range of integration was divided
into intervals. The integral in an interval
t&(t&t2 was evaluated by calculating all the
factors for t=t1 and for t =t&, then multiplying
e '& —e '& by the average value of the other
factors.

Fo =Go+ (1/Co) (Io sin p+IIo cos p),

Go = —Fo+ (1/Co) (Io cos p
—IIo sin p)

with

Io' ——— 2$q(t cos P+2p sin P)e ' dt, (4.1)
p

2$rt(t sin P —2p cos P)e ' dt, (4 2)

(t2+4p2) —1 (4.3)where

The calculation of I is often carried out more For comparison with Wheeler's phase-amplitude
conveniently by means of method one has


