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The Paths of Ions in the Cyclotron

I. Orbits in the Magnetic Field
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Bethe and Rose maintain in a recent letter and paper that a maximum energy for the beam
from a cyclotron is fixed by the incompatibility of the conditions for resonance and focusing
when the relativity increase of mass with velocity is taken into account. It is shown below that,
while this result holds for a radially symmetrical magnetic field, it is not necessarily true in

general; and that for a field varying with polar angle there is an additional focusing effect. If the
relative variation of the field with polar angle is of the order of the ratio of the velocity of the ion
to the velocity of light, this focusing effect will compensate the defocusing effect of Bethe and
Rose. It is shown further that if this variation has period m./2, a family of stable periodic orbits
exists which are nearly concentric circles. The second order effects due to the simultaneous ac-
tion of the variations with polar angle of the magnetic field and the accelerating electric field

will be considered in a second paper,

INTRODUCTION

"N a cyclotron a magnetic field II curves the
- ' paths of particles of charge e and mass m so
that they describe circuits in time 27r/co =27rm/eH.

An electric field oscillating in this period con-
tinually accelerates those particles that are in

phase so that they describe, with increasing
velocity v, circuits of radius v/co. Particles are
introduced near the central line and withdrawn
near the curved surface of a short cylindrical
region of radius A with generators parallel to the
magnetic field, when they have attained ve-
locity A a).

Since the curvature of the path of a particle
in a magnetic field is accurately proportional
inversely to its momentum

mdiv/

I 1 —v'/c' I
'*

=b'av(1+ —2v'/c'), where mo is its rest mass, and c
the velocity of light, the time of description of a
circuit will increase with increasing velocity, and
the particles will get out of phase and never
attain great energy unless the magnetic field

increases in the same ratio as the momentum. If
the magnetic held, which must have zero curl,
increases with distance from the axis, the mag-
netic lines must curve outwards above and below
a median plane to which they are all perpendicu-
lar, (Fig. 1). An orbit above that plane will there-
fore be curved away from it as well as around the
axis, and the beam will be defocused: this effect,

discovered by Bethe and Rose, ' ' is proportional
to the relative change in magnetic field, and so
to v'/c'

If the magnetic field varies with polar angle
about the central line, the path of a particle must
have greatest curvature where the field is greatest,
and if the path is a closed orbit it must have
greatest radial distance where the field is greatest
(X, Fig. 2). Along a portion of the orbit in a
region (A) in which the field decreases as the
polar angle increases, the magnetic lines must
curve backwards from the median plane to which
they are all perpendicular, and lie in cylindrical
surfaces about the axis. In this region the orbits
have decreasing radial distances and an orbit
above that plane will therefore be curved towards
it as well as around the axis; and the beam will be
focused (Fig. 3). The same is true in a region (8)
in which the field and radial distance both in-
crease with polar angle. This effect is propor-
tional to the product of the relative changes in
radial distance and in magnetic field and so to
the square of the relative change in magnetic
fieM, with polar angle.

The above argument holds for a variation of
the magnetic field with polar angle that does not
depend on the distance from the axis: It is shown
below in detail that if the variation depends on

'H. A. Bethe and M. E. Rose, Phys. Rev. 52, 1254
(1937).' M. E. Rose, Phys. Rev. 53, 392 (1938).
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Rose; gives stable orbits that are in resonance
and not defocused.

1. NOTATION

The equations of motion of a particle of charge
e, rest mass mo, and velocity v, in cylindrical polar
coordinates r, 0, s, with the time as independent
variable, in magnetic field (H;, He, H, ), are

d
t

dry t'd8p ' e tr d8 ds
i

=-i —H, ——H, i,
dt 4 dt) ( dt) c ( dt dt

d t' d8) dr d8 ett'ds dr
r /m——(/2m ——=—

)
H„H—, (,——

dt's dt) dtdt comdt dt )

Fir. 2. A periodic orbit in a magnetic field varying with
polar angle. (For a positive ion the magnetic field is directed
away from the reader. )

both directions for which x =y, causes the center
to move away from x =0 by an amount per
circuit proportional to the product of the vari-
ation of the magnetic field around the orbit and
the distance of the center from x = 0, as the
magnetic field is then greater on the left side by
an amount proportional to the product of the
ratio of that distance to the radius of the orbit
and the variation of the magnetic field around
the orbit; and to move towards y = 0 in a similar
way. ' In this case there is a family of closed
orbits but they are unstable.

Thus such terms in the magnetic field will
cause particles to approach the outside of the
cyclotron along paths of various radii and with
various energies; and may, if large enough, so
disturb the phase adjustment that the particles
will never gain great energy.

It is shown in detail below that a variation of
magnetic field proportional to cos 48, or, more
generally, any variation periodic with period
v./2 in 8, admits a stable family of closed orbits
that are approximately circles about the center
of the cyclotron.

Thus a variation of the magnetic field with
angle, periodic with period v/2 in 8, approxi-
mately proportional to cos 40, where 0 may be
measured from any initial direction, and of order
of magnitude v/c; together with nearly the radial
increase of relative amount -', v'/c' of Bethe and

d ( ds) e(dr d8

dt E dt) c(dt dt )
where mv =mov/(1 —v'/c') l is the momentum, (1.2)

(d & ( 8'I t'ds't"=
I

—
I +"I —/+I —

I

E dt) & dt) ( dt)
(1.3)

1 BH, BHg BHg 1 1 BH„
=0 +—Hg —— ——0

80 Bs Br r r 80

BH„BH,
=0)

(1.4)
BH„1 1 BHg 8Hz

+ H„+ +=—0. —
Br r r 80 Bs

We shall suppose that in the median plane
a=0, He=0, H, =O, so that also 8H, /8s=0, and
that the field is symmetrical about this plane, so
that for small s

H, = —H+ 0(e')

H, = —e(8H/8r) +0(s'),

Hg= —(e/r) (8H/88) +0(e''),

where H can be adjusted to be any function of r
and 0 periodic with period 2m in 0. The negative
sign is taken so that if H is a positive constant the
orbits in the median plane are circles described
in the direction of 8 increasing.

and c is the velocity of light: e is in electrostatic
units and the magnetic field in electromagnetic
units: and a right-handed screw rotating in the
direction of 0 increasing travels along the
positive s-direction.

The magnetic field must satisfy
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2. THE ORBIT

Elirninatin the t''
g irne, the equation of motion

in the plane @=0 is *

where f is a function of a and 8

or i s epen ing on the parameter a, which are
Y

r'+2(dr/d8)' r(d'r/d8') 1 e—H'
(2.1)

the time in the orbit being then given by X

vdt/d 8 = (r'+ (dr/d8)') '. (2.2)

We sha~~shall use primes to indicate differentiation
with respect to 8. Suppose

r =a(1+sf)
FIG. 4. Instability of a nearl circul
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approximately circles about the origin, so that

v 1

e (1—v'/c') l a

tPSOC

1+«(2f f")—+«'(f'+ 2f" ff"—)
X (2 4)

( +2«f+ «'(f'+f")) '

(dt/«) = (a/s)(1+2«f+ "(f'+f"))' (2 5)

We shall suppose that our family of orbits is
periodic with period 2' in 0 so that f is periodic
with period 2m- in 0, and that a is so chosen that

2n

&f)AI = fdtt }=o.
2m- ()

(2.6)

These orbits are exact in the field given by
eliminating v and a between (2.3), (2.4), and an
arbitrary relation between v and a, which we
shall take to be

v = ace {1+«'g }, (2.7)

on r=u.
Suppose the magnetic field has the form

H = (mpc/e) coL1+ «h+ «'k j, (2.10)

where h is a function of r and t)} periodic in 0 with
period m and such that

&h)A,
——0 (2.11)

and k is a function of r only.
That the radial variation of (H)A, is of the

second order in (2.10) is not essential; it corre-
sponds to radial variation of v/a being of the
second order in (2.7).

The first order equation to be solved is

where g is a function of u only and cv is a constant.
For small «we have approximately, if v/c is

small and of the same order, so that

(1—v'/c') ' = 1+-',a'(v'/c',

H= (m«c/e)coL1 —«(f+f")+ ', (a'co'/c')-

+"{g+2ff"+f'+if"}] (2 ll)

on r=a(i+«f), or

H = (mpc/e) co} 1 —«(f+f")+ ,'(a'oP/c')-

+"{g+2ff"+f'+if"+fa(d/«)(f+f") }3 (2 9)

The solution of this is, when the constants of
integration are suitably adj usted, like h, a
function f~ periodic in 0 with period z and such
that

&fi)A, =0, (2.13)

&2f"—)~ (fa(—d/da)(f+f"))A~ (2 14)

and its variation with 0 gives an equation of the
same form as (2.12) and with its right-hand side
satisfying the same conditions, to determine f to
the second order; and the process can be
continued.

Thus we can solve (2.9) or the exact relation to
which it approximates for a function f of a and 0,
which will be periodic in 0 with period ~, and a
function g of a only, in power series in e.

If, on the other hand, H is only periodic with
period 2m. in 0, there appears, at some stage in the
process, an equation like (2.12), the right-hand
side of which contains a term in sin 0 or cos 0, so
that it has no periodic solution. In this case a
periodic solution of (2.9) expansible in powers of
6 does not exist, though one expansible in powers
of e: may exist.

3. RESONANCE

These orbits will be exactly in resonance if

ddt t ( 1 «' dt ~ ) 1

&d8) A, (2m. «dg ) (3 1)

where co is the constant angular velocity for the
cyclotron, that is

2x

v = a(u— {1+2«f+«'(f'+f ")} ~d8 (3.2)
2'& 0

or, approximately, for small «, since (f)A„——0,

v=aco(1+-,'«'&f") ) (3.3)

Thus the condition for resonance is (from (2.7))

and the condition that it has period m. determines
the constants of integration.

This solution is substituted into the higher
order terms in (2.9); the equation averaged over
8 determines, dropping the suffix,

g =& 2(a'~-'/«'c') 2(ff-") -(f')

f+f"= —h. (2.12) g =2&f")A, (3.4)
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4. FQCUsING

Consider paths in the field given by (2.10) near
our family of periodic orbits in the plane s =0; on
account of the symmetry of the field, the vari-
ational equations for motion in the plane and for
motion out of it separate; the latter gives the

focusing.
We have

d p dsg e (dr d0—
)
=-) —H, —.—H, ),

dt E. dt) c Edt dt )
(4.1)

where H, and Hp are given by (1.5) and r, t, are
to have their values in terms of 0 for the unvaried
orbit.

Since the right-hand side is small compared
with m~'s, we may integrate over a revolution
with s constant and obtain for the change in ds/dt

e '" BH 1dr 8H
r

mc o Br rd0 d0

d8
5—=s

dt
d0 (4.2)

and the condition for focusing is

8H 1 dr BIT
r &0.

Br rd0 80 A„

(4 3)

+" f'(f'+f"')+a (g+2ff" +—f'+ lf")
dG

Finding 0H/0r and 0H/00 on r=a from 2.9 and
changing back to r =a(1+pf ), approximately for
small e, gives

~H 1dr ~H ~Dc I d
r ——=——~ pa (f+f—")+-

Br rd0 80 e dc C

Fourier series, or by the transformations of the
calculus of variations, that if f is periodic with
period vr, and if (f)A„——0, the third term is always
negative, and vanishes only if f vanishes.

Thus a variation of H with 0, periodic with
period vr in 0, can always be made so large, of
order ace/c, as to compensate the first term in
(4.5), and leave a net focusing effect, while
resonance is maintained.

In particular, in the magnetic field,

rit pC tv' 30) ' pi 15 r'~' '

H= &u 1+) —
)

r cos4—(0—P)+—,(4.6)
e &19) c 38 c'

where p is any constant, the orbits, which are
approximately given by

( 2 )'ap&
r=a 1+I (

—cos 4(0—P)
4285) c

(4 7)

are in resonance and are neither focused nor
defocused.

'

r =a(1+ f)+pi. p (5.1)

Substituting this in (2.1), and using the forms
(2.7) for v and (2.9) for H, the terms linear in vt

give, after some calculation, to terms in e'.

5. STABILITY

The variational equations for motion in the
plane s =0 separate into equations giving constant
displacements of the parameter u and the origin
of time, and the equation obtained by varying
(2.1) with fixed v and H.

Suppose, then,

+a a (f+—f")— (4 4)
dG dG

Thus, averaging, after some integrations by
parts, and since (f)A„0, the condit—i—on for
focusing is

p
"—s'L pf'+ "(3f'f" ff')j—

(
+p 1 —

)
2f"+a (f+f") )—

da )

+" 3f"+2ff"
) f a la— (f+—f"—)—

dc) da(d

+p'a I g 2(f ")Av )
—+ p') —( f'+ 2f" f '"—)Av-

c dS
+((f+a(d/«)f)') A.

((f'+a(d/«)f—')')A. ) &0 (4 5)

s =k)1+ 'pf+ p'((3/4)f" -'f'))—-The substitution
In resonance, by (3.4), the second term of (4.5)

vanishes; and we see by expansion of f in a (5.3)
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reduces (5.2) to its normal form

0"+0[1+~p+ ~'4I] = o

where

P= lf—" a —(f—+f")
dQ

q=gf" + ', (ff"-+f"'+f'f"')

When (P)A„(P cos 28)A„, and (P sin 28)A„vanish, .

we can obtain a periodic function t such that

plll+4~I 2p

and (5.11) becomes
(5.5)

d'$4/d8P+fg(1+a'n) =0, (5.13)

where n = g
—2Pt'+3("+ 2 $"'$'+ 4$'" (5 14)

( —g—6—

d p a'(o'
11+a—

~
l +g+2ff"+f'+lf" l.

da E ~'c' )

and the exponents are given by (cf. (5.7) and
(5 8))

D'= (e4/4) [(n cos 28)A„A
(5 6)

+(n sin 28)AP —(n)A„A]. (S.15)

The condition that the equation

$"+/[1+op]=0 (5.7)

should give stable oscillations may be found by
variation of parameters. Writing

n cos 8+P sin 8,
f'= —0. sin 8+P cos 8,

we find

n'=Ap sin 8 cos 8 n+ep sin' 8 p,
p'= —ep cos' 8 n ~p sin 8 cos 8 p.

. Averaging over 0, we see that the secular
charges in n and P contain terms in e n', where
the exponents D are given by

The form of (5.8) shows that if the Fourier
expansion of f contains terms in cos 28 or sin 28
not varying as c s, the orbits will be unstable:
and this will follow if H contains such terms not
varying as r '.

If H is periodic with period ~~, the exponent
given by (5.8) vanishes: terms in cos 28 or sin 28
cannot arise in any order, so that we conclude
from the form of (5.15) that the exponents are
either zero to all orders in e, or imaginary in
the first order in which they do not vanish; and
that the orbit is "stable. "

In particular in the magnetic field given by
(4.6), (5.15) gives

D'=~'[(P sin 8cos 8)A,
' —(P sin'8)A(P cos 8)A]

= ~442[(P cos 28)A,2+(P sin 28)A,2 —(P)A,']. (5.8)

$X2] g&~2

D=+t,
8X&9 c'

(5.16)

For P given by (5.5), (P)A„=O, (since (f)A„0), ——
so that D') 0 and there is certainly instability,
unless (P cos 28)A„and (P sin 28)A„vanish, i.e. ,

unless both (f cos 28)A, and (f sin 28)A„vary as
a ' (or vanish); in which case the calculation
must be carried to the next order in t..

If in Eq. (5.4) we make the change of inde-
pendent variable

mpC
G)(1+ E k) (S.17)

so that f= 0, (5.15) gives

It should be remarked that the above argu-
ment applies only when e is sufficiently small.
If we apply it to a field depending only on r,

(5.9)

where P is a function of 8 to be chosen, and write

D= ~L
2

(5.18)

PA
——f(1+e$') ', (5 10) for the variation of n and p,

so that the transformed equation will be in its
normal form, we obtain 2 dr J

(5.19)

dV~/d8 A'+ 4 ~[1+~(p 2$"' 25')— —
+~'2 —2pt'+3e'+ 2e"8+ 4e"]]= o (5 11)

for the variation of f, agreeing, to terms of
order e', with the exact result for circular orbits
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in a field depending only on r,

dHJ
D =-( l+—

H dr)
(5.20)

which gives instability if ~rH~ decreases as r
increases.

in x, y, X and Y, viz.

In this case the system is of "soluble type. "
We see from

6. THE NATURE OF THE ORBITS

The above results about the orbits in the
median plane illustrate the general theory of
orbits. '

An ion moving in a plane under a magnetic
field perpendicular to that plane forms a con-
servative dynamical system with two degrees of
freedom. Using rectangular Cartesian coordi-
nates x, y, and the corresponding momentum
components X, Y; and the proper time,

s= J'(1 v'/c')—&df,

as independent variable, the Hamiltonian func-
tion takes the form

e $ ( e~=—
~
~—F )+] I —G f, «.l)

2mp ( c J E c )

where F and G are functions of x and y, the com-
ponents in the x and y directions of the magnetic
vector potential. In fact, the motion depends
only on the magnetic field.

H, = H= (BG/Bx)—(8F/By)—

In the special case of constant magnetic field
—Hp, when we take Ii=-,'IIpy, G= ——,'Hpx, there
are three independent integrals uniform in x, y, X
and Y, viz.

K =n, X+(e/c) F=p, F+ (e/c) G = y.

In this case all the orbits are periodic, forming
the three-parameter family of all circles.

In the special case of magnetic field depending
only on the distance r from a fixed point at a
finite distance, . which we take to be the origin
of coordinates, when we take Ii=yX, G= —xE,
where X is a function of r only, so that

H =2K+r(dK/dr),

there are just two independent integrals uniform

Whittaker, 2nalyti ca/ Dynamics (Fourth Edition,
Cambridge, 1937), Ch. xv.

pdrq ' pe pq'
m, ]

—
)

=-(X~+Vy) =2~m, —
~
.K+-

Edsl r' Ec ri

that in the "stable" case in which ~rH~ con-
tinually increases as r increases, there is a family
of orbits which librate between any two values
of r. Together these form a three-parameter
family of conditionally periodic orbits, from
which a denumerable infinity of two-parameter
families of "ordinary" periodic orbits with all

four of their exponents zero, can be picked out.
The circles with center at the origin form a one-
parameter family of "singular" periodic orbits
with two exponents zero and the other two real
or imaginary as

~

rH
~

decreases or increases
with r.

In the limiting case of the above in which the
fixed point is at infinity, in the x-direction say,
H is a function of x only, and we take J =0,
G a function of x only. There are two inde-

pendent uniform integrals,

K=n, Y=p.

From

and

)dx)' p e
mo'/ —

I
=2~m -( P

(ds) ( c )
dy e

mp —=p —G, -
ds c

There are no two-parameter families of ordinary
periodic orbits. There may be, and will be if the
field is nearly homogeneous and symmetrical
about two perpendicular directions, one-param-
eter families of singular periodic orbits which

we see that in the case which might be stable,
x being a periodic function of s, y will generally
not remain finite. There will then be no con-
ditionally periodic orbits, and no ordinary peri-
odic orbits; the singular periodic orbits, if they
exist, must be unstable.

In general the problem is not of soluble type,
and there is only one integral uniform in x, y, X
and Y, viz.
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will in general have two zero and two nonzero
exponents. The stability corresponding to imagi-
nary exponents is really only stability to the
first order in the variation of the orbit and it
remains open whether second and higher order
terms would not lead to instability. However,
such second order variations do not increase
exponentially with the time, but become large
only after a time inversely proportional to the
initial displacement; and their effects are not
expected to be important in the number of
revolutions that take place in the cyclotron:
Indeed they may be damped by the effects of the
accelerating electric field.

7. CONCLUSION

lt is concluded that in a cyclotron the mag-
netic field of which varies in such a manner as

that given by (4.6), the beam of ions may re-
main in resonance without being defocused or
becoming unstable, in spite of the relativity
increase of mass with velocity, at least up to
velocities at which terms in v'/c' become im-
portant.

Modifications of the above results when the
simultaneous action of the variations of the
magnetic field with polar angle and of the
accelerating electric field with polar angle are
taken into account will be considered in a second
paper. It appears that these effects become con-
tinually less and less important as the relative
increase of momentum per revolution decreases
with increasing energy.

The author wishes to thank Professor M. L.
Pool for his encouragement and interest during
the writing of this paper.
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The Paths of Ions in the Cyclotron

lI. Paths in the Combined Electric and Magnetic Fields

L. H. THoMws
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It has been pointed out in a recent paper that a variation of the magnetic field of a cyclotron
with polar angle can produce a focusing effect on the beam, while preserving resonance and
stability. In that paper the effects of the magnetic field alone were considered. It is shown
below that the effects of variation with polar angle of the accelerating electric field and of the
magnetic field can be considered as almost independent; the second order cross terms between
them are without practical effect. Thus the results contained in the above paper (I) may
simply be superposed on those obtained by other workers.

INTRODUCTION

HE argument contained in the former paper'
is strictly true for orbits in the magnetic

field alone; when the effects of the accelerating
electric field are taken into account, the closed
orbits are replaced by a family of "central paths"
which the particles traverse in a phase relation-
ship to the field changing with the radius in a

' L. H. Thomas, Phys. Rev. , this issue. (This will be re-
ferred to as (I).)

definite way. These central paths can always be
found if both magnetic and electric fields are
periodic with period m in 0, but will not usually
exist if they are only periodic with 2x. If the
field is suitably adjusted to resonance, a pencil
of the central paths are "spirals" from the center
to the outside.

The motion of an ion near a central path
separates, on account of the symmetry about the
median plane, into motion out of the plane and
motion in the plane. The motion out of the plane


