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Majorana has recently shown by using a special set of
Dirac matrices that the symmetry properties of the Dirac
equations make possible the elimination of the negative
energy states in the case of a free particle. We present here
a further investigation of this possibility, in a treatment
based on an arbitrary Hermitian representation of the
Dirac matrices instead of Majorana’s special representa-
tion. The new procedure is compared with Schroedinger’s
early attempt to eliminate the negative energy states. The
question of Lorentz invariance is discussed, and also the
possibility of subjecting the particle to forces; it is found
that the only sort of force having a classical analogue which
is consistent with Majorana's way of eliminating the nega-
tive energy states is the nonelectric force of a scalar po-
tential. The theory is worked through for this case, and it
is pointed out that, in spite of the fact that the exclusion of
negative energy states is accomplished without the intro-

duction of antiparticles, the formalism still shows the
stigmata associated with subtraction theories of the posi-
tron: the presence of otiose infinite terms which should be
removed by subtraction, and the creation and destruction
of pairs of particles. The application of Majorana's formal-
ism to the theory of B-radioactivity is discussed at the end
of the paper. Here the physical interpretation is quite
different from that of the ordinary theory, since only
neutrinos appear instead of the neutrinos and antineutrinos
of the usual picture. The results predicted for all observed
processes are nevertheless identical with those of the
ordinary theory. An experimental decision between the
formulation using neutrinos and antineutrinos and that
using only neutrinos will apparently be even more difficult
than the direct demonstration of the existence of the
neutrino.

I. INTRODUCTION

N a recent paper! Majorana has presented a

derivation of a symmetrical theory of the
electron and positron from a new type of varia-
tion principle whose use depends essentially on
the fact that the quantities involved are g¢-
numbers. In spite of this novel approach, the
positron theory he obtains is essentially just a
subtraction theory of the simplest type; but
Majorana also showed how his ideas can be
applied in the theory of the neutral particle to
obtain a formalism essentially different from
that of the ordinary Dirac theory. Qualitatively
the difference appears in the number of states
having the same momentum. In the Dirac
theory as used at present there are four such
states, corresponding to two alternatives for the
spin orientation and to the possible existence of
both the particles in question and their ‘“‘anti-
particles’’—e.g., neutrinos and antineutrinos. In
the Majorana theory there are just two states
for a given momentum, corresponding to the
two possibilities for the spin: there are no
“antiparticles’” and, in the final formulation,
no mention of negative energy states.

LE. Majorana, Nuovo Cimento 14, 171 (1937).
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~ As has been remarked by Racah,? a theory of

Majorana’s type cannot very reasonably be
supposed to hold for neutrons because of their
unsymmetrical relation to the two signs of
charge and their possession of a magnetic
moment. For the neutrino, however, the Major-
ana theory is a priori just as acceptable as the
ordinary Dirac theory. It is interesting to find
that it is possible to accomplish all the purposes
for which the neutrino theory was devised,
including the discussion of both electron emission
and positron emission, without the introduction
of antineutrinos. This point will be discussed
further in the concluding section.

The main formal developments of the present
paper are concerned with the generalization of
the theory to allow the use of an arbitrary
Hermitian representation of the Dirac matrices,
instead of the special sort of representation to
which Majorana’s original treatment is re-
stricted, and with the extension of the theory to
include the action on the particles of the non-
electric field of a scalar potential.? Although
such fields have not had to be postulated in any
of the existing applications of the neutrino

theory, their introduction into the present dis-

2 G. Racah, Nuovo Cimento 14, 322 (1937).
3W. H. Furry, Phys. Rev. 50, 784 (1936).
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cussion is not without interest for two reasons:
First, we are enabled to see that the Majorana
theory still shows a strong resemblance to the
usual Dirac theory, since in spite of the absence
of antineutrinos we find that particles are
produced in pairs; and second, it helps to bring
clearly to light the spin behavior of the particles
by showing the existence of a spin-orbit coupling.

The emphasis will here be placed, not on
Majorana’s interesting new type of wvariation
principle, concerning which we have nothing
new to add, but on the application of a sym-
metry property of the Dirac equations by means
of which Majorana accomplishes the elimination
of the negative energy states. Before proceeding
to the developments of the following sections,
we wish to give a general discussion of this idea,
comparing it especially with Schroedinger’s
early suggestion® for the elimination of the
negative energy states of the electron.

In both cases we may take as the essential
problem that of projecting the function space of
the Dirac wave functions into one of two equal
subspaces. But our use in this connection of
the terms ‘‘projection’ and ‘“‘subspace’” must at
once be accompanied by a warning: In the
Schroedinger case we are actually concerned
with projection into a linear subspace according
to the accepted definition® of these words, but
this is not so in the Majorana case. In Section 11
we shall discuss in detail the unorthodox and
rather artificial sense in which such terms may
be used about Majorana’s procedure. It is
interesting that the procedure which is more
artificial is also much more successful.

In the Schroedinger case the two subspaces
are those of the positive energy and negative
energy wave functions of a free particle, and the
projection is to consist in omitting the negative
energy components of any given wave function.
That is, if

Y=y Oy, I

where ¢ consists of positive energy functions
of a free particle and ¢ of negative energy

4+ Cf. D. R. Inglis, Phys. Rev. 50, 783 (1936).
5 E. Schroedinger, Berl. Ber. p. 63, 1931.
6.Cf. J. von! Neumann, Math Gmndlagen der Quanten-
mechanick, p. 40.

functions, then the projection is given by
Znd AR (I2)

This can be formulated in general by using the
operator? given in the p-representation by

= (~ap=pme)(mc+p),  (13)
which has the property
AP =yE); AP = —y &), (14)
Schroedinger’s projection is then simply
y—3(14+A). (IS)

It is well known that an essential difficulty
with Schroedinger’s suggestion is that it is not
relativistically invariant. A Lorentz transforma-
tion of ¥ is accomplished by an operator L(a”,):

¥ (x') =L(a”)¥(x) = S(a”,) A (a”) (2
L = S(a’ )¢ (a” ).

Here a@’, is the Lorentz transformation of the
coordinates, and S(a”,) is the corresponding
four-rowed matrix operating on the components
of the Dirac wave function.® The noninvariance
of (I 5) then results from the fact that A and L
do not commute:

(Io)

AL—LA##0. x7

The projection (I 5) also has the disadvantage
that after a wave function has been projected
into the positive-energy subspace it will not
remain confined to that subspace if the particle
is subject to forces of any ordinary sort. This is
because A does not commute with the Dirac
Hamiltonian for a bound particle. Schroedinger
accordingly suggested that the terms admitted
to the Hamiltonian be restricted to ‘‘even”
operators, i.e., those which do not connect the
two subspaces, or in other words those which
commute with A. It is well known that this
procedure leads to difficulties not only with
invariance but also with the physical results of
the.theory.

It is interesting to note that although the
operator AL—LA is not equal to zero, it gives

7 Cf. W. Pauli, Handbuch der Physik, Vol. 24, pp. 230—
231.
8 Cf. reference 7, p. 221.
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the result zero when applied to any free particle
wave function. This assertion may at first sight
seem to be inconsistent with the possibility of
analyzing an arbitrary wave function in terms
of free particle wave functions, which is postu-
lated in (I 1). But the analysis (I 1) and the
projection (I 5) make use only of the instan-
taneous values of ¥ throughout space, and it is
only for such three-dimensional purposes that
the free particle wave functions form a complete
set. It is, however, obviously impossible either
‘to make the Lorentz transformation (I 6) or to
tell whether or not ¢ is actually just a free
particle function unless one makes use of the
time dependence of ¢ as well as its instantaneous
values. If ¥, is any wave function whose time
dependence is that given by the Dirac equation
without field, then on using this time dependence
in making the Lorentz transformation, one
indeed finds that

(AL—LA)¥;=0. ar)

It is this fact which makes it possible to use the
wave functions of a free electron as a basis for
constructing a positron theory which is at least
formally Lorentz invariant, although in practice
the invariance is destroyed by divergence diffi-
culties. In using the method of second quantiza-
tion to set up the formalism of positron theory
one of course uses wave functions with the
time factors removed; but Lorentz transfor-
mations may be made correctly by using the
p-representation and regarding p as the space
part of a four-vector whose time component is
+ (m22+p?)?% Thus without explicit reference
to the time factor one can still verify that
AL—LA gives zero when applied to such a
function.® :

The projection used by Majorana may be
defined for an arbitrary representation of the
Dirac matrices by using an operator 4 which
was previously used by the writer to prove a
symmetry theorem in the positron theory.!?

9 It may be remarked that this same circumstance makes
Schroedinger’s procedure work just as well as Majorana’s
for the case of a free particle, which is the only case Majorana
discusses for the neutral particle. The extension to the case
of a nonelectric force (Section III) and the application to
B-radioactivity (Section I'V) are, however, impossible in the
Schroedinger case. . .

10W, H. Furry, Phys. Rev. 51, 125 (1937).
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The existence of this operator and its unique
determination apart from a phase factor have
been proved by Pauli.® The operator 4 is a
constant unitary four-rowed matrix, and has
the property that if ¥ is any pure positive energy
free particle wave function, then Ay is the
complex conjugate of a pure negative energy
function ; and if ¢ is any pure negative function,
Ay is the complex conjugate of a pure positive
function. Majorana’s projection is given by

Y=Y+ (Ay)*}, (I8)

where (4y)* is the complex conjugate of 4.

In the next section we shall show that the
operation indicated in (I 8) has the important
property of being idempotent, which enables us
to regard it in a certain sense!? as a projection
operator; that the projection into the other of
the two equal subspaces is given by

Y3 {v—(4v)*}; (r9)
that the projection (I 8) is relativistically in-
variant; and that the wave function will remain
confined to the subspace if the wave equation is
that of a free particle or a particle subject to a
nonelectric force,® but not if the particle has an
electric charge or a magnetic moment introduced
as suggested by Pauli.’®

It is seen from the stated properties of 4 and
the form of (I 8) that instead of discarding the
negative energy states Majorana's projection
may in a sense be regarded as symmetrizing the
wave function with respect to positive and
negative states. The fact that the phase of 4 is
not fixed by its definition in terms of its prop-
erties shows, however, that one has no right to
attach the terms ‘‘symmetric’” and ‘“‘antisym-
metric’” to the functions given by (I 8) and
(19), respectively.

II. PROPERTIES OF MAJORANA'S PROJECTION

Notation. In the Dirac theory of a single
particle there occur four-row square matrices
such as a; and 4, four-row one-column matrices
such as the wave function ¢, and one-row four-

1 W, Pauli, Ann. Inst. Henri Poincare 6, 130 (1936). The
matrix in question is there denoted by C.

2 But not at all in the usual sense—cf. Section II and
reference 6.

13 Reference 7, p. 233.
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column matrices such as the Hermitian adjoint
of ¢. In dealing with such matrices we shall use
an asterisk (*) to indicate the complex conjugate
matrix, a prime (') to indicate the transposed
matrix, and a dagger (}) to indicate the Her-
mitian adjoint matrix. Similar notations hold
for the two-row and/or two-column matrices
which are introduced in the latter part of
Section III.

It is important to note carefully how the
notation is to be interpreted when we come to
apply the method of second quantization, and
regard the components of the wave function as
g-numbers. Since when the ¢'s are ¢ numbers
v;+¢:* is a real number, when the ¢’s are
g-numbers ¥;+¢;* must be a real ¢ number, or
in other words a self-adjoint operator. Thus
when the ’s are operators, ¥:* must be the Her-
mitian adjoint operator to ;. By ¢ we mean the
one-column matrix with the components y¥1, ¥,
Vs, ¥4, and by ¢/ the one-row matrix with the
same components; by Y* we mean the one-
column matrix with the components ¥1*, 2%
¥s*, ¥4*, and by y¢' the one-row matrix with
these components. Such symbols as ¥ and ¢’
will never be used. The concept of transposition
is indeed not a suitable one to be introduced
with regard to operators in general, since it is
not invariant under canonical transformations
and its meaning depends on the representation
used. Its use in the case of the matrices of the
Dirac theory is, however, free from ambiguity
and offers well-known advantages in the way of
shortening the formulas.

The matrix A and the projections. We shall
develop the theory for an arbitrary Hermitian
representation of the Dirac matrices, and we
shall denote this set of matrices by as;, 8 or by
e, B. Corresponding to this representation of the
Dirac matrices there is a certain matrix A4,
uniquely determined except for phase, which
has the properties described in the introduction.
The conditions on this matrix are'

ATA=1. , (1)
o’ A =Aay,
A=A, 2

1 Reference 10, Eq. (10) and (14).

Pauli has shown!® that 4 also satisfies

A*4A=1. 3)
From (1) and (3) we see that
A'=A4. (4)

We now represent the projections (I 8) and
(I19) by y—Py and y— Iy, respectively, with

Py=5+A%%), ©)

Iy=3(p—A%%). (5"
The operators P and I obviously satisfy
P+I=1 (6)
and we can readily show that they also satisfy
P2=P, IP=J (7)
and
PI=TP=0. (8)

The meaning of such equations is of course that
the application of the left member to an arbitrary
¥ gives the same result as the application of the
right member. To prove (7) and (8), we have
only to substitute from (5) and (5’) and use (3).
For instance,

PYy=P-3(y+A4*%)
=3 {FW+A*) + 4% 3P+ A%
=3(y+A**) =Py. Q.ED.

Equation (7) expresses the fact that the
operators P and I are idempotent, a property
which a projection operator must possess, and
(6) and (8) indicate that the “‘subspaces’ into
which the two operators project are collectively
exhaustive and mutually exclusive.

In order, however, for an operator to be a
projection operator associated with a linear
subspace, it must be not only idempotent but
linear and Hermitian;® and it is obvious from
(5) and (5) that our operators P and I are
not linear. What we have called the “‘subspaces’’
defined by these operators are accordingly not
subspaces in the usual sense, i.e., not linear
subspaces; for from

Py=y,
Po=o¢,

Iy=0,
To=0

15 Reference 11, Eq. (33a).
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we cannot conclude that
P(ay+be) =ay+be,  I(ay+be)=0,

unless @ and b are real numbers. The subspaces
of the Majorana projection are invariant under
Lorentz transformation and under time dis-
placement as determined by the Dirac equations
of a particle subject to a nonelectric force, as
we shall show below, but they are not invariant
under simple multiplication by a complex con-
stant. This makes the theory look rather arti-
ficial, but does not interfere with its success,
because such multiplication plays no part in it.

Lorents invariance. The projection is Lorentz
invariant because it makes no difference whether
one makes a Lorentz transformation before or
after the projection operator is applied :

L(a”)PYy=PL(a’ ). &)

Proof : Since the operations involved in applying
P have nothing to do with the dependence of ¢
on the x#, (9) is equivalent to

S(a’,)Py=PS(a’ ).
By (5), (10) becomes
S(a,) (W +A**) =3{S(@ )+ A4S (@)™}
and this is true for an arbitrary y if
S(a’,)A*=A4*S*(a”,). (11)

Now S(e”,) can be represented as a product of
factors of the following types:

(10)

Rotation in (7, j) plane:
S =e0/2)aiaj

Velocity along j axis:
S = e0/2a;
(12)
Reflection of the 7 axis:
S=1ajoB, jFEIFZkFZ]
Reflection of the time axis:

S=1tai00030.

On making use of (2) and of the Hermitian
character of « and B, one finds that (11) is
satisfied by any product of factors of the forms
(12), so that the truth of (10) is established.
Because of the noninvariance of the projection
P under change of phase, the phase factors in
S(a’,) must be kept the same as specified in (12),

apart from a possible factor —1. The necessity
of fixing these phase factors in a definite way
in order for (11) to hold has been pointed out
by Racah,? who calls attention to the fact that
these factors have a significance for the choice
of the interaction operator in Fermi’s original
theory of B-decay.

Persistance of the projection in time. The
Dirac equations are

ay/dt=Dy, (13)

where D is an operator whose various possible
forms are listed below. According to (13), if ¢
had the value ¢, at £=0, its value at a later
time is

Y=ePl,. (14)

We now want to investigate whether
Ppo=yo,  I$=0,
together with (14), implies that
Py=y, Iy=0.

This will be so if P and I commute with e?¢, or
in other words if

PDy=DPy, IDy=DIy (15)

for arbitrary ¢. Substituting from (5) and (6),
we find that (15) will hold for arbitrary ¢ if and
only if

DA*=A*D*, (16)

Now D is just (¢%)~! times the Dirac Hamil-
tonian for the particle. Thus it must contain
the terms

Do= (i)~ {ific(a V) — Bmc?} an

for a free particle, together with terms repre-
senting any interactions of the particle with
fields of force. The known possibilities for forces
having classical analogs are:

Di= () {e(a- B)+eg]
charge e on particle),

Dy=(ih)"'{ —u(Be-H) —iu(Be-E)}
(magnetic moment u),

Dy=(h)~{ —p2} )
(nonelectric potential energy ®).

(18)

By use of (2), we find that (16) is satisfied for
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but not if Dy or D, is included in D. Thus if the
wave function is to remain confined to one
Majorana subspace the only one of these three
kinds of force that can act on the particle is the
nonelectric force.

" Commutation relations. Hitherto we have been
concerned only with certain linear conditions
satisfied by the wave function before and after
projection. In what follows we shall have to
introduce bilinear expressions, and use the
technique of second quantization, so that it will
be necessary to know the commutation rules
obeyed by the components of the projected
wave function. Assuming the four components
of ¢ to satisfy the usual Jordan-Wigner!® relations

YX(O)Y(0") + ¢, ()¢ (r) = 84;6(r—1'),
(D) yi(x") +¢i( )ya(r) =0,
YH (@Y () ¢ (1) (r) =0.

We find on using (5) that the four components
of the function U defined by

(20)

U=Py 1)
satisfy the relations
UHMr)Ui(r")+Uy(r') Us*(r) = 36:;8(r — '),
Uir) U(r")+ Ui(r') Ui(r) =34.:*5(r — 1), 22)

UX(r)U*(x")+ Ut ) U*(r) =344;6(r —1')
III. TRANSFORMATION OF THE HAMILTONIAN
Funcrion

The inclusion of a nonelectric potential energy
represented, for a single particle, by the scalar
function ®(r) makes no difference whatever in
Majorana’s derivation of his Hamiltonian from
his special variation principle. With this modifi-
cation, his result is

= f U ()50 Use (£)di = f Un' (5)

X {@ﬁc(an) —ﬂM('}’}’I,C2+q>(1')) } UM(r)dT (23)

Here Uy is a purely real four-component
function, or, more strictly, a set of four self-
adjoint operators which are functions of r. 3Cy

6 P, Jordan and E. Wigner, Zeits. {. Physik 47, 631
(1928).

is the Dirac Hamiltonian for a single particle,
expressed in terms of a specially chosen repre-
sentation of the Dirac matrices, denoted by
aur, Bar, which satisfy

av¥=au'=au; Bu*=Bu'=—Bu. (24)
For this representation, a suitable form of the

operator 4 is

Ay=1, (25)

as is seen by comparing (24) with (2). Then
Puyu is simply the real part of yy—more
strictly the *“self-adjoint part’’—and this is
indeed what Majorana took as Uy.

Majorana’s Hamiltonian (23) differs from the
Hamiltonian of the ordinary Dirac theory,

f Yt (1) 3Cuyu(r)dr, (23)
only by the omission of the term
f V' (£)3Car Vae(r)dr, (23")

where V= —ily¥ur, Y= Unu-+1V3. The com-
ponents of Vy all anticommute with all the
components of Uy, so that any function of Vy
commutes with the Hamiltonian (23). If terms
of the types ##D; and ¢#D, defined in Eq. (18)
were included in 3Cy, the expression (23’) would
contain not only the terms (23) and (23”), but
also cross terms in Uy and V. Majorana’s
way of treating the Hamiltonian (23’) by
separating yu into the two terms Uy and 2V
then leads directly to a simple subtraction
theory of the electron and positron.

We shall now show in detail how the Hamil-
tonian (23) forms the basis of a theory in which
there is just one type of particle, with two states
for a given momentum, corresponding to two
different spin orientations. First we shall free
ourselves from the restriction to the special
representation ey, B for the Dirac matrices.

By a well-known general theorem,!” the repre-
sentation a7, B is connected with our represen-

17 Cf. reference 11, p. 109. The representations of the
Dirac matrices used there are not subject to the restriction
that they be Hermitian, so that the transformation matrix
need not be unitary.
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tation e, B8 by a unitary transformation :

ay=TteT, Byu=T1BT, TTT=1. (26)

These relations suggest that we should subject
(23) to the substitution

Uu=TtU, Uy'=UT 27)

and regard the result as the Hamiltonian ex-
pressed in terms of our function U which
satisfies the commutation relations (22).

To justify this procedure we shall show that
(27) establishes a one-to-one correspondence
between the set of all possible quantities satis-
fying

PU=U, IU=0 (21

and all possible real four-component quanties
Uu. This is most readily proved by noting that
according to (24) and (26) all of the conditions
(1)—(4) on A4 are satisfied by

A=T*T", (28)

Then IU=0 means U=A*U* and T'U
=TTA*U*=T'U*=(TTU)*, so that if U satisfies
(21"), TYU is real. Conversely, if Ui is real,
A¥(TU)*=TT'T*Uy=TUy, so that TUy
satisfies (21’). The fact that the phase of 4 is
arbitrary is exactly taken care of by the arbi-
trariness of the phase of 7', which makes no
difference in the final result of substituting (27)
in (23).

Majorana establishes the Lorentz invariance
of his formalism by relating it to the general
results of applying the Jordan-Wigner method
to the Dirac theory. That the invariance is not
damaged by the substitution (27) follows from
the fact that corresponding Lorentz transfor-
mation matrices in the two formalisms are
connected by the similarity transformation (26) :

Su=T1ST, sothat Uy=T1U
implies SuUu=T1iSU. .

On substituting (27) in (23) and using (26),
we have

H= f 10 {ihe(a9) —Bmet+0(6)} U,

We now set

U(r) =2 (k) (r|K)a(k), (30)

where »
(r|k)=(k|r)*=V-texp {i(mc/B)k-r} (31)

and a(k) is a four-component quantity; we
suppose the allowed values of k made denumer-
able by imposition of the usual periodic boundary
condition in a box of volume V, and the integral
in (29) extended over this volume. Then

H=mc2(k)at(k) { — (e k) —Bla(k)
—3(k, K)at(k) (k| 2 [K)Ba(k), (32)

where (k|®|k)= f &|D)o() (r|K)dr.  (33)

Relations satisfied by a,k) and a;*(k). From
(22) and (31) it follows that the commutation
relations for these quantities are:

a*(kK)a;j(k')+a;(k)a*(k) =380k, k),
ai(k)a;(k’) +a;(k)ai(k)
=34:*(— ¥, k),
a*(K)a*&)+a (K )a*(k)=34:;0(—K, k).

(34)

By substituting (5) and (30) into (21’), multi-
plying by (k|r) and integrating, one finds the
linear relations
a(k) =A*ae*(—k),
( (35)
a*(k)=Aa(—k).

It is readily verified that (34) and (35) are
consistent with each other. v

We now make a linear substitution on the a (k)
and a*(k), in order to diagonalize the free-
particle terms in (32). Set

a(k) = S(k)b(k),

ioswom.
Here S(k) is required to satisfy the conditions

St(k)S(k) =1, 37)

St(k) { — (e k) —B}.S(k) = eps = (1 +k*)ps.  (38)

ps is one of the matrices originally defined by

Dirac 8
1 0
P3= ( )1
0 -1

18 P. A. M. Dirac, Proc. Roy. Soc. A117, 614 (1928).

(39)
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the 0’s and 1's being two-rowed matrices. Thus
by (38) the free-particle terms are diagonalized,
the four eigenvalues for a given k being ¢, ¢, —¢,
— €.

The existence of a matrix which satisfies (37)
and (38) is most easily shown by exhibiting one,
as we shall do later. Here we shall show that if
Si(k) and S,(k) both satisfy (37) and (38), then

1 k 0
Sz(k)r-Sl(k)(u(() ) u (k))’ (40)

where u; and u, are two-rowed unitary matrices.
Proof: By (37) and (38),

S1p3S1T = Sap3Sat = €71 { — (a- k) — B}.

Then p3S17.S2=.S11S2ps

and by an elementary result in matrix theory" it
follows from (39) that ’

u, 0
S1T52= ( )
0 u.
The unitary character of u; and us, and (40)

itself, then follow from (37).
The result of substituting (36) in (32) is

H=3(k) emcbt (k) psb (k)
— 3 (k, )b (k) SH(k) (k| @ | K)BS(K)D(K). (41)

Relations satisfied by b;(k) and b*(k). From
(34) and (36) we obtain the commutation
relations

b*(K)b;(K') +b;(K)b* (k) = 30:;8(K', k),

bi(k)b;(k’) +b,;(k")bi(k)

=lTii*(k)6(_k,7 k), (42)

b*(K)b* (k') +b;* (&) b:* (k) =3 T4;(k)o(—K', k),
where T(k)=S'"(k)AS(—k). (43)

‘From (35) and (36) we get the linear relations

b(k) =T*k)b*(—k),
(k) (k)o*(—k) (44)
b*(k) = T'(k)d(—k),

(42) and (44) are of course consistent.
The elimination from (41) of any reference to

19 Cf, E. Wigner, Gruppentheorie, p. 10.

the negative energy states is made possible by the
nature of the relations (44). We shall show that

0 uk)
v(k) O )

T<k>=( (45)

where u(k) and v(k) are two-rowed unitary
matrices. The proof is similar to that of (40). By
(38) we have, since @, 8 are Hermitian,

S(—k)psSt(—k) =¢1{(a- k) — B}
S*(k)psS' (k)= e1{ — (o - k) —B'}.

(46)

and (47)

Now by (2), if we multiply (46) by 4 from the
left and (47) by 4 from the right, the right-hand
members become equal and opposite. Thus we
have

AS(=K)psSt(—k) = —S5*(K)psS" (K) 4.

On multiplying this from the left by S'(k) and
from the right by S(—k), we have

T(k)ps= —psT (k) (48)

and it is readily seen from (39) that a unitary
matrix which anticommutes with p; must be of
the form (45).

Accordingly we have

0wtk |
b(k)-—(v*(k) . )b (—k).  (49)

In order to eliminate b3(k) and b4(k) from I we
want to use for the one-column matrix b(k) the
expression

b1(k)

b(k) = ) (50)
T ot b (= k) +onbe*(—K) |

1)21*b1*( '—k) +7)22*bz*(—k)

The actual use of the expression (50) and of an
analogous expression for the one-row matrix
bf(k) is not at all difficult, but involves a con-
siderable amount of writing. A simple way to get
the same result is to make the substitutions

b(k)—b(k) + T*(k)o*(—k),

(51)
bt (k) —b' (k) +0' (— k) T” (k)
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in (41), and then discard all terms involving
by(k), ba(k), bs*(k) and b4*(k). The result is

H =52 (k) emc*{ BY(K) [ps ]"B(K)
+B1(k)[ps 1™ (k) J'B*(—k)
+B'(—K)[T"(k)ps 1"B(k)
+B'(—K)[T"(k)psT*(k) 'B*(—k)}

—32(k, k') (k| 2| K) { Bt (K)[ST(K)BS(K') °B(k')
+Bi()[St()AS (k) T*(k") I’B*(~ k')
+B'(—K)[T"(k)St(k)BS(k') 1°B(K)
+B'(—k)[T"(k)St(k)8S (&) T™*(k) I°

XB*(—k')}, (52)

where [M]° means the two-rowed matrix ob-
tained from the four-rowed matrix M by taking
the upper left hand quadrant, and

Bi(k) =v2b:(k),
Bi*(k) =v2b,*(k),

Ba(k) =V2b,y(k),
B*(k) = VZby* (k).

It is important to note that the subscript on B
or B* can take only two values instead of four.

The expression (52) can be simplified con-
siderably by means of the relations (48), (45),
(43), (39), (4), (3), and (2). One obtains:

H=33(k)emc*{ Bt (k) B(k) — B (k) B*(k)}
—32(k, X') (k| 2| k') { Bt (k) [S(k)8S (k') "B(K')
+Bt(k)[St(k)BA*S*(— k') ]'B*(—K)
+B'(-K)[S'(-k)48S(Kk") I'B(k)
—B/(~R)[S(~RBSH(~K)PBH(~K)}. (54)

Now from (53), (42), and (45) we find that the
commutation relations on the B’s and B*’s are

B*(k)B;(k')+B;(k")B*(k) = 6:;6(k', k),
Bi(k)B;(k’)+B;(k')Bi(k) =0,
B*(k)B*(k")+B;*(k")B*(k) =0,

(55)

which are just the standard Jordan-Wigner
relations. On using (55) in (54) and remembering
that by (31) and (33) (—k|®| —k')=(k'|®|k),

we get

H=2(k)emc2{z2‘, N, (k)—1}

r=1

3k, &) (k| ®| &) (B1() [SH(W)BS(K) "B (K)
~1o(k, ) é[ST(k)BS(k)]M"}

—32(k, K') { (k|| —K')Bi(k)
X [St(k)BA*S* (&) °B*(k') + (—k | 2| k') B’ (k)
X[S' (k) ApS(k) I'B(K)}, (56)

where N,(k) =B *k)B,(k). (57)

We now wish to give (56) a more explicit form
by introducing special forms of the matrices 3, 4,
and S(k). Before doing so let us establish con-
clusively that the results are essentially inde-
pendent of the choice of these forms. We shall
prove that any change in this choice is equivalent
to at most a two-rowed unitary transformation

B(k)—t(k)B(k),
B*(k)—t*(k) B*(k),

BB w@Im), | o
Bi(k)—Bt (k)¢ (k).

In the first place, it is at once evident from (40)
that a change in S(k) for fixed e, 8 is equivalent
to a transformation of the type (58). Also, for
fixed e, 8 the only change we can make in 4 is a
phase factor, which corresponds to a transfor-
mation of the type (58) with (k) a mere phase
factor. These results permit us to discuss the case
in which the representation of «, 8 is changed by
prescribing particular corresponding changes of
S(k) and 4. From (37), (38), and (1), (2), (3) it
is evident that if the new Dirac matrices are

ai=Rta;R, B=R'BR, R'R=1,

one may use with them the matrices

S(k) =RtS(k), A=R'AR.

On substituting in (56) one finds that all the
matrices [M]° which occur in that equation
have the same value whether «;, 8, S(k), 4 or
a:, B, S(k), 4 are used.
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We now fix the Dirac matrices in the form
originally used by Dirac:8

0 o; 1 O
a1,=( )y ﬁ=p3=( )1 (59) .
g; O 0 -1

‘where 0, 1, and ¢; are two-rowed matrices, the
last being the Pauli matrices. Since ¢, and o, are
symmetric and ¢, antisymmetric, we can satisfy
(1), (2), (3) by setting

A =1ia,8. (60)

It is readily verified that (37) and (38) are
satisfied by

S(k)=C(k) {(e+1)p1—ps(a-K)},  (61)

where

C(k)={2e(e+1)}

() e

On substituting (59)—(62) into (56) one readily
obtains
=E(k)emc2{z:,1 N,(k)—1}—(0]|®]|0)=(k)e?
+2(k, k') Bi(k) (k| V|k')B(k')
+2(k, k) Bt (k) (k, k'| C|)B*(k')

+3(k, K)B'(K) (| D[k, K)B(K),  (63)
(k| V|K)=(k|®|K) {(e+1)(¢+1)
— (oK) (oK)} {4ed' (e 1) (¢ +1)} 1
(&, K| C|) = (k| ®| —=K) {(e+1) (oK)
- (64)

—(¢+1)(o-k)} {16¢€' (e+1)(¢'+1)} 4o,
(ID |k, k)=(—k|®|k')-t0,{(e+1)(o-k')
—(¢+1) (oK)} {16e€'(e+1) (€' +1)} %

The general significance of (63) is clear, since
according to (55) and (57) the meanings of B, (k)
and B,*(k) can be taken to be those usually given
to Jordan-Wigner operators: B,(k) corresponds
to the transition of a particle out of the state
characterized by the momentum kmc and the
spin index 7, and B,*(k) corresponds to a transi-

tion smto that state. Thus the terms in (k| V|k’)
correspond to framsitions between such states,
those in (k, k’|C|) to the creation of pairs of
particles, and those in (| D |k, k') to destruction of
pairs. Further remarks about formulas (63) and
(64) are given in the next section.

IV. DiscussioN

Although the above procedure based on the
ideas of Majorana succeeds formally in elimi-
nating the negative energy states without the
introduction of - corresponding ‘‘holes’ or anti-
particles, the results still show much more
resemblance to the positron theory than to a
theory based on Schroedinger’s early suggestions.
Thisresemblance appears not only in the presence
in (63) of terms corresponding to the creation and
destruction of pairs of particles, but also in the
presence of infinite terms independent of the
B(k) and B*(k). These terms, namely

—Zk)emc2— (0| ®|0)=(k)e?

can play no part in calculations, and hence may
be regarded as typical ‘‘subtraction terms,’”’ such
as appear in the positron theory.

As is the case with much of the formalism of
quantum electrodynamics and of positron theory,
our final expressions are in a form highly unsym-
metrical as regards space and time, so that direct
investigation of their Lorentz invariance would
be a complicated task. It is scarcely to be
doubted that, just as in the positron theory, the
Lorentz invariance of the final formulas has
become illusory through divergence difficulties
associated with the presence of the subtraction
terms. It seems, however, not without interest
to mention here the question of ordinary rotation
invariance, since the unsymmetrical appearance
of the expressions (64) might lead one at first
glance to suppose that even this invariance is
lacking. We can readily show that this is not so, .
and that the expressions (64) have exactly the
sort of form required for the theory to be
rotation invariant.

The theory of the spinning electron provides us
with the following rule for transforming the two
components Bi(k) and Bs(k) on rotation of axes:
Corresponding to rotation through the angle 6
around an axis in the direction n;, one subjects
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the B, to the unitary transformation

B—u(n;; 6)B,
u(ny; 0) =cos (6/2)+1i(e-ny) sin (6/2) (65)
and also
| B'—B'u/(n;; 6), B*—u*(n;; 0)B*,
(65)

Bt—Btut(n,; 0).

Then if the matrix M involves ¢ only in products
(6-A), the product B'MB is invariant under
rotation of A according to ordinary geometry and
transformation of B and B' by (65) and (65).
This is the familiar way of establishing the in-
variance of the “‘even’” terms involving (k| V |k’).
But since (k, k’|C|) and (|D|k, k’) are of the
forms Me, and ¢,M, respectively, we find that
B'CB* and B'DB are invariant under these
same rules of transformation, because ‘
gu*(ng; 0) =u(n;; 0)oy;
Y ( 1 ) ( 1 ) y (66)

u'(nq; 0)oy,=o,ut(ny; 6).

These relations follow directly from the commu-
tation rules of the ¢’s together with the fact that
o, is imaginary antisymmetric and ¢, and o, are
real symmetric. The unsymmetrical looking
appearance of g, in (64) is thus precisely what is
required to secure the actual rotation invariance
of the formalism. It is evident that this factor
should not be regarded as a spin matrix at all, but
simply as the antisymmetric unit matrix which
plays a part in spinor analysis.?

It is evident that the formalism here obtained
cannot be regarded as equivalent to a definite
wave equation for a single particle, both because
of the presence of the ‘““odd” terms, which show
that the number of particles is not constant, and
because of the highly irrational dependence on k,
which would be represented by the operator
(—1k/mc)V. Apparently the only case in which
an approximate treatment by means of a single
particle wave equation can readily be given is
that of a slowly moving particle in a weak field
free of high frequency components. For such a
field pairs will not be produced, and the only

20 B, L. van der Waerden, Gruppentheoretische Methode
in der Quantenmechanik, p. 79; O. Laporte and G. E.
Uhlenbeck, Phys. Rev. 37, 1383 (1931).
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contributions to the energy from the odd terms
will be of the order of |(k|®|k’)|2 which, since
the field is weak, can be neglected compared to
the even terms. Also the irrationalities can be
removed by expansion in powers of k and %/, since
for a slow particle these are small of order v/c;
one may conveniently work to the order k% In
this approximation the even matrix elements
contained in (63) are, apart from the “‘subtraction
terms’’ equivalent by partial integration to those
of

Hi=mc*— (h2/2m)v2+® — (h2/8m?2c?) (v2P)

+(ho/4ch) - [(v®/m) X (p/m)].  (67)

Here the first three terms are, respectively,
proper energy, nonrelativistic kinetic energy, and
potential energy, and the last term gives precisely
the spin orbit coupling corresponding to the
Thomas precession.? Just as in the case of the
nonrelativistic approximation obtained from the
usual Dirac equations for a single particle there
appears still another term, which in the present
instance is Hermitian.

The matrix elements occurring in (64) are just
those which appear in the simple subtraction
theory in which both particles and antiparticles
occur. The physical interpretation is, however,
rather different; the events of creation and
annihilation may here involve any two particles
which occur at all in the theory, instead of having
to involve one particle from each of two distinct
kinds.

As was mentioned in the introduction, the
neutrino theory of B-radioactivity either with
electron emission or with positron emission can
be based on this theory of the neutrino quite as
well as on the usual formalism in which anti-
neutrinos occur. As Racah? has pointed out, the
procedure is, schematically, just to replace the
neutrino wave function ¢ by $(o+A4*¢*) and
replace ¢* by %(o*+A4¢) throughout whatever
formula for the interaction energy it is desired to
use. In our present language this means replacing
¢ by U-and ¢* by U*, after which one may use
the formulas of Section III to express the
interaction in terms of the operators B,*(k) and
B,(k)(r=1, 2), which refer to the emission and

21 Cf. references 4 and 3.
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absorption of neutrinos. Using (30), (36), (50)
and (53), we have

o—U=2-33(K) (r | k) S(k)
By(k)
By(k)
1*B1*(—K) +015*Bo*(— k)
091* B1*(—K) +120*By*(— k)

This differs from the corresponding expression
for ¢ used in the ordinary theory only in the
following ways: (a) A factor 2—% occurs, which can
be absorbed into the disposable constant coeffi-
cient of the interaction energy; (b) A spin
transformation v* appears, but this makes no
difference in the total transition probabilities
summed over both spins for the neutrino. (c) The
role which in the ordinary theory is played by
operators representing the emission of an anti-
neutrino is here played by the B,*, which repre-
sent the emission of a neutrino. The actual four-
component amplitudes used in calculating matrix
elements are the same in both cases, the columns
of S(k). Thus in all cases in which the only part
taken by the light neutral particles consists in
one of them being emitted, there is no difference
in the calculated intensities,?? and the only

22 This assertion may seem to contradict a statement
made by Racah (reference 2), that differences can be
obtained unless the rest mass of the neutrino is zero. Our
present assertion holds, however, for the comparison
between the Majorana theory and any neutrino theory in
which the interaction energy involves the electron wave
function ¢ and the neutrino function ¢ through expressions
of the form yfM¢ and ¢t MTy. For such theories the phases
of the Lorentz transformation matrices (Eq. (12)) are
arbitrary, but the way in which they are chosen has no
effect on the form of the quantities yTM¢ and ot Mty used
in expressing the interaction energy; so that the phases
may be taken to be those given in Eq. (12), and our
arguments about the connection with the Majorana theory
are at once applicable. This way of forming the interaction
energy was used by Uhlenbeck and Konopinski, and is now
the most commonly used. Fermi’s original way of forming
the interaction energy, however, involved expressions of the
form ¢tMe* and o' Mty, and here the phases of the
transformation matrices are not without effect on the way
one must choose the form of the expression for the inter-
action energy in order to obtain Lorentz invariance. As
Racah points out, the phases given in (12) are not con-

difference between the two theories consists in
our mental picture of what happens: In the
ordinary theory one type of 8-decay involves the
emission of neutrinos and the other the emission
of antineutrinos, but in the Majorana theory use
is made of neutrinos only.

It should be possible to settle which theory is
preferable by considering processes in which
neutrinos are absorbed as well as emitted, but
actually this does not seem feasible at present.
Differences would presumably appear in the
results of using the light particle fields to account
for the forces between heavy particles, but this
part of the subject is in such an unsatisfactory
state owing to divergence difficulties that it
seems to offer no hope of a decision, and indeed it
seems quite doubtful that nuclear forces are to be
explained in this way. Another possibility of
deciding between the two theories is offered in
principle by the phenomenon of g-decay with
absorption of a light neutral particle instead of its
emission, the B-ray accordingly having more
energy than the limit of the spectrum instead of
less. Here, as Racah has remarked, there is an
obvious qualitative difference between the two
theories. On the ordinary Dirac theory, a positron
emitter can be ‘‘stimulated’ only by an electron
emitter, and vice versa, but on the Majorana
theory any emission may ‘‘stimulate’” any other
emission, whether of the same or of opposite
type. But since the cross section?? of a radioactive
nucleus for capture of a neutrino is of order of
magnitude between 10~% and 10—%° cm?, it seems
unlikely that this effect, which would not only
serve to decide the question of the existence of
antineutrinos but would provide experimental
evidence of the best sort for the neutrino hy-
pothesis itself, can ever be observed.

sistent with Fermi's actual choice of the interaction energy
expression, so that his original formalism could not be
carried over into the Majorana theory. This lack of exact
correspondence between the two points of view is to be
regarded as due to objectionably artificial characteristics of
the Fermi type of expression, which are avmded in the now
generally accepted Konopinski-Uhlenbeck ty
23 H. Bethe and R. Peierls, Nature 133, 532 (1934)



