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On the Electrical Breakdown of the Alkali Halides
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A theoretical justification is given for the mechanism proposed by von Hippel to account
for the electrical breakdown of the alkali halides. Values of the breakdown field calculated on
the basis of the theory are found to compare favorably with those obtained experimentally.
A critical comparison is made with another explanation of the breakdown proposed by Frohlich.

INTRGDUcTIQN

HE experimental investigations of von
Hippel' concerning the electrical breakdown

of the alkali halides have shown marked regu-
larities. One of these is the fact that the break-
down decreases with the atomic weight of both
the anion and the cation .(from 4.9X 10' volts per
cm for Rbl to 31 X 10' volts per cm for LiF). He
has proposed the following mechanism to account
for the breakdown. The few free electrons, which
are always accidentally present in such a crystal,
on the one hand, are accelerated by the field; and,
on the other hand, are slowed down by collisions
with the ions of the lattice. It is assumed that
every time an electron of appropriate speed,
collides with an ion there will be a considerable
probability of excitation of a vibration of the
lattice. Neither very slow, nor very fast electrons
will be slowed down appreciably; the former
because they lack sufficient energy to excite a
quantum of vibrational energy, the latter because
they lack sufficient time to do so. If the external
field becomes strong enough to produce a net
acceleration even for electrons of medium speed,
which are retarded most strongly by the lattice
vibrations, then each of these will be accelerated
until it has suAicient energy to produce a second
free electron by collision with a halogen ion. Thus
there will be built up an avalanche of electrons; a
breakdown will occur.

Von Hippel finds that this picture gives
satisfactory agreement with his experimental
material if it is assumed that the electrons
which lose most energy excite one optical, or
"reststrahl, "vibration as they cross 0.5 to 0.9 of
a lattice cell. Such a mean free path for free
electrons is in marked contrast with the value of

' A. von Hippel, J. App. Phys. 8, 815 (1937).

several hundred lattice distances which is found
in the theory of metals. Calculations by Frohlich, '
however, show that the mean free path in these
crystals is of the very order of magnitude given
by von Hippel. For some speeds, indeed, it
appears to be even shorter.

The difference in behavior between free elec-
trons in insulators and those in metals is due
primarily to the fact that in metals their number
is comparable with the number of atoms in the
lattice. This fact has several consequences that
all work in the same direction. (1) The inter-
action of an electron in a metal with all the ions

. except the few neighboring ones is negligible
because of the shielding effect of the other free
electrons. (2) The free electrons in a metal,
obeying the Fermi-Dirac statistics, occupy all
different orbits so that the highest orbit has a
kinetic energy far greater than the thermal
energy 3kT/2, and all the lower orbits are
completely occupied. Since the kinetic energy of
an electron changes little upon collision with the
lattice, only the electrons on the surface of the
Fermi-Dirac distribution can make transitions
by such collisions, and then only to a limited
number of free final states. (3) The great kinetic
energy and high speeds of the metallic electrons
result in less likelihood of a transfer of energy to
an ion.

Frohlich proposes that the breakdown occurs
when all the electrons which have sufficient
energy to produce additional free electrons by
collisions (i.e., energy equal to the ionization
potential) can be accelerated by the field. Clearly
this process does not give rise to an electronic
avalanche, inasmuch as the breakdown field is
not great enough to accelerate the new free

' H. Frohlich, Proc. Roy. Soc. A160, 230 (1937),
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electrons, nor even the original electrons that
have lost energy by this ionization. From his
view it is only by thermal excitation that the
electrons will attain sufficiently high energy for
such further acceleration, a process which is too
improbable to account for the breakdown
phenomenon.

In the numerical work of Frohlich there
appears an assumption that the force of inter-
action between a free electron and a lattice ion
is of the form e'/r', where e is the elementary
charge on each of them and r is the distance
between them. This has to be modified, however,
in accordance with the dielectrical and optical
properties of alkali halide crystals. Accord, ingly
the force is smaller than e'/r', and consequently
the mean free path greater than that obtained by
Frohlich. If this modification is made, the break-
down field turns out to be su%.ciently strong to
accelerate all free electrons affected. , i.e. , even
those which have energies only slightly greater
than the quantum of lattice-vibrational energy,
and which, therefore, lose most energy in col-
lisions with the vibrating ions. Hence, what
follows in this paper may be considered as a-
theoretical justification of the breakdown mecha-
nism proposed by von Hippel.

ENERGY Loss IN A LATTIcE FIELD

The slowing down of electrons in a lattice field,

has been treated. by Frohlich with the help of
Born's quantum mechanical perturbation theory.
We prefer to d, iscuss the problem in a way
analogous to Bohr's calculation' of the energy
loss of alpha-particles as they pass through a gas.
This method. has the advantage of showing the
physical process more clearly. Moreover, the
application of Born's approximation in this
problem cannot be considered more rigorous, as
we shall d, iscuss later. Both methods, it is true,
yield. similar results.

Let the force between a free electron and, an
ion be given by

ge2/r2

where ~ is a dimensionless constant which ac-
counts for the fact that an ion displaced, in a
dielectric medium will act, in effect, with a
mod. ified electric charge. Leaving e to be de-

' N. Bohr, Phil. Mag. 24, 10 I'„19&3).

termined. in the following section, we integrate
this force over the time of the electron's passage
near the ion. Thus we obtain for the total
momentum (Pb) transferred to the ion during
this time

Pg= 2ee'/vb,

where v is the speed of the electron (assumed to
be constant) and b is the distance of nearest
approach of the electron to the ion. The kinetic
energy (Wi) which any one ion receives in this
encounter will then be

Wb =Pg'/2M,

where 2UI may be either 3II+, the mass of the
positive ion or M, the mass of the negative ion.
Taking the sum of the above expression for both
ions, we may write the result in terms of the
reduced mass p, where'/p= 1/3II++1/OUI . Thus

Wg=2e'e4/p, b' 'v.

Within the limits of b and 6+Ah the number of
ions receiving energy when the electron has gone
unit distance is

where e is the distance between two neighboring
ions. (This simple expression can be used instead
of a summation over the lattice points because of
the predominant inHuence of the distant ions. )
Hence, the average energy (~Wq/~s) lost by an
electron along unit path in a lattice of the Nacl
type, for ions between b and, b+Ab, is

AWb 7rbAb 2~'e'

As Q y5 v

Integrating this expression over all the ions in the
lattice, we obtain for the space rate of energy loss
of the electron

dt/V p 2ze'e' db

ds ~ pa'v' b

This integral diverges if taken over all the values
of the variable b. The physical limitations,
however, d,o not justify integration over the
range of values as b approaches either zero or
infinity. Up to this point our calculation has been
carried. out on the assumption that the ions
behave as if they were free. This is a good
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approximation only if the time of the electron's
passage is short as compared. with the period, of
vibration of the ions in the lattice, specifically if

2b/v«1/o),

kupper v/2' ~

The lower values of b are limited by our use of
the particle concept of classical theory. This
cannot be applied. without quantum mod. ification
for d,istances smaller than X, i.e. , the wave-length
of the particle d, ivided by 2x. Hence, we choose

blower =~

(This choice corresponds in Born's approximation
to the fact that an electron wave cannot excite a
lattice vibration which has a wave-length short
compared to its own wave-length. ) Introducing
these limits into the integral, we obtain

(d W) 2v e'e4

( ds ) . pa'v'
(2a)

We note that the space rate of loss of energy is
zero when the kinetic energy of the electron is
equal to the quantum of reststro, hl vibration.

where or is given by 2vrv, and. v is the frequency of
the, lattice vibration. The normal modes of
vibration of such a lattice are of two kinds, vis. ,

the acoustic ones in which ions of opposite
charges vibrate with small phase-differences and
the optical ones in which they vibrate with large
phase-differences. The electron, repelling the
negative ions and. attracting the positive ions,
will excite primarily the optical vibrations. Be-
cause of the importance of d.istant ions in the
process described, those vibrations will contribute
most to the slowing down of the electron that
have ions of the same charge vibrating nearly in
phase. These vibrations have frequencies close
to the so-called "reststrahl" frequency so that we
may choose the value of this as the approximate
frequency of the lattice vibration. Now if the
time of passage becomes longer than the period of
this vibration, the lattice can follow the motion
of the electron in an ad, iabatic way so that the
resulting energy-loss is zero. From these con-
siderations we take as the upper limit of our
integral the value of b given by

Formula (2a) agrees with a similar one given
by Frohlich (Cf. No. 17 in reference 2) except for
the logarithmic factor. Frohlich's expression can
also be obtained, by the use of Bohr's method. ,

however, if the lower limit of b is chosen as 2"'m.a
instead of X. Now for high speed. electrons
24f'+u is greater than 'A so that this limit is
justifiable. But for slow electrons, which are
important in our theory, 2 "ma is less than X so
that the expression (2a) is the better approxi-
mation. Mod, ifying Frohlich's calculations so as
to include electrons of low energy, we obtain the
following quantum formula

(d W) xe'e'

1 ds ), pa'v'

(P' —mkp+ (P' —2mkv)l)
~ ln

i

— i, (2b)
(P' —mk v —(p4 —2mk p) l)

where P represents the momentum of the elec-
tron. Expression (2b) agrees with the classical
one (2a) when P2 is large compared with mkp

(except for an additive term, i.e., ln 4) . The appli-
cability of Born s approximation used in ob-
taining (2b); however, is questionable in this
problem.

Born's approximation can be employed. only if
less than one transition occurs, on the average,
during the longer one of the following two times:
the period of the lattice vibration, or the time
during which an electron moves a d,istance equal
to its own wave-length. In our problem the first
of these is the longer time. Yet, according to
Frohlich'. s work, several quanta are emitted
during this time. Thus Born's method, is not
valid, here.

In the case of metals, although the transition
probability is -much smaller, there is also doubt
as to the validity of this same perturbation
theory being applied. Peterson and Nordheim4

have shown that if coupling between the elec-
tronic motions and the lattice vibrations becomes
strong, it is more correct to start with an
electronic wave function that represents the
motion of the electron in the lattice distorted by
the vibration. This treatment leads to results
similar to those obtained by the use of Born's

'E. L. Peterson and L. W. Nordheim, Phys. Rev. 51,
355 (1937).
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approximation. In Bohr's classical method, how-
ever, the lattice vibrations need not be quantized, ;
hence, there is no difference between it and, the
procedure of Peterson and Nordheim.

In our present problem even the time required,
for an electron to move through the distance of
its wave-length will be shorter than the time for
the occurrence of one transition. In the use of
Bohr's correspondence principle the speed of the
electron, then, cannot be considered constant
because of the retarding influence of the lattice.
Fortunately, only those electronic speeds are
important in determining an electrical breakd. own
for which there is a balance between the ac-
celeration d,ue to the external field and, the
retardation due to the ionic lattice. For these
reasons we believe that the results obtained, by
the correspondence method give a fairly accurate
picture of the actual behavior of the electrons.
Ind.eed, the agreement with the results of

The interaction of an electron with an ion results
in an electric displacement equal to e/r'. There-
fore, we may now identify our expression for the
force of interaction with our assumption (1).
Thus we obtain

1 f'1 1q.=- 2...a
~

—--
~

.
e E.' K)

(3)

BREAKDOWN FIELD

Multiplying this by 1/2a', which is the number
of such d, ipoles in unit volume, we have for the
energy density d,ue to ionic d, isplacements

F'/16m'p v'a'.

Equating the two expressions for the energy
density, we find

Frohl&ch help to justify the use of Born s
approximation. Electrical breakdown will occur if the electric

field causes a net acceleration of all free electrons,
even though their speed. is such that the space
rate of their energy loss is a maximum. If this

In a real crystal the energy density d,ue to an condition is fulfilled, an avalanche is produced. .
electric displacement D is given by We choose the following equation, therefore, for

the determination of the breakdown field (Bs):D'/8 7rK

Zs ——(dW ds 4
where K is the dielectric constant. Let us imagine,
however, a. fictitious crystal in which the ions are In order to find (dW/ds), we rewrite Eqs. (2a)
fixed. The energy density in this case would be and (2b), respectively; as

D'/Sm K',

where ~' is the d, ielectric constant under this
condition. (K' can be obtained by extrapolation of
the square of the refractive index n to infinite
wave-length with the omission, however, of the
infra-red terms in the dispersion formula. ) Now
the difference between the energy density of the
real crystal and, that of the fictitious crystal,
namely,

D'/S~K' D'/Sm K—
is just the energy d.ensity due to the displacement
of the ions. It can be obtained, also by considering
directly the energy of vibration of two neighboring
ions in terms of their force of interaction Ii. We
obtain the value

J'/8 m'pv'.

fd Wq s.m~'e' f'1

( ds J, hvpa' Ex )
where x represents mv'/2hv; and

(5a)

y —1+(y"—2y)'*
—~ ln

y —1 —(y' —2y)"

has a maximum value of 0.9t. Substituting these

(d W) ~me'e' 1 y —1+(y' —2y) l

I
(5b)

E ds ), hvpa' y y —1 —(y' —2y)-'*

where y represents mv'/hv. Now (dW/ds), be-
comes a maximum when x is equal to 2.7; hence,
(1/x) ~ In x has a maximum value of 0.37. On the
other hand, (d W/ds), becomes a maximum when

y is equal to 3.4; hence,
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TABLE I. Comparison of calculated values of breakdown field
with experimental values. Ratio of effective to ordinary

mass of the electron which produces agreement
between theory and experiment.

CRYS«
TAL

&iF
NaF
NaC1
NaBr
KC1
KBr
KI
Rbcl
RbBr
RbI

h
(10 ~ VOLT)

7.2
3.3
2.4
1.8
1.9
1.5
1.3
1.7
1.15
1.05

K

10.0 1.39
6.0 1.32
5.9 1.48
6.39 1.63
4.7 1.48
4.87 1.41
5.58 1.55
4.8 1.49
5 0 1.55
5.2 1.69

B&q (Calc)* Egg (Exp)
(10» voLT/cM) (10» voLT/cM)

26
12
6.1
3.5
6.0
3.9
3.2
3,6
2.2
1.5

31
24
15
8.1

10.0
7.0
5.7
8.3
6.3
4 9

SZ/mp

1.2
2.0
2.5
2.3
1.7
1.8
1.8
2.3
2.9
3.3

+ These calculated values have not been corrected for preferential
directions as was done by Frohlich. Such a correction seems to us to
be inadvisable at present, as long as the theory for breakdown in
different directions has not yet been discussed.

values, respectively, in (Sa) and in (5b), we have

and

(d 8")

Kds),
(d S'i
Eds),

0.377'-me'e4

hvpa'

0.91m'e'

kvpc3

(6a)

(6b)

Now substituting these expressions and (3) in
our condition (4), we obtain for the breakdown
field

+Bc
0.74~'mes ( 1 1q

k EK K)
(7a)

by the use of the classical picture, and,

+Bq
1.82~'mev t' 1 1)

a EK' K)
(7b)

by the use of the quantum mechanics.
In order to compare these formulae with the

experimental values of von Hippel we need, to
know v, a, ~', and m. We have used, the values of v

listed, by von Hippel. For ~ we have taken an
average of the values given in Landolt-Bornstein's
Tabellee (1936). For K' we computed the square
of the ind, ex of refraction for wave-lengths just
beyond. the infra-red, region, thus eliminating the
effect of the infra-red. lattice vibrations. The mass
of the electron (m), however, presents a problem.
For one cannot use the real mass; one must
insert the so-called. "effective mass, " which
d,escribes the motion of an electron in a period, ic

6 F. Bloch, Zeits. f. Physik 52, 555 (1928).

field. This mass, in general, will be greater than
the ordinary mass (mo) of the electron because of
the smaller speed with which an electron of a
given energy is propagated through the potential
barrier of a period, ic field. . Because the calculation
of the "effective mass" is complex, we have
preferred, to compute the breakd. own field for mo

and then to determine the ratio m/mo necessary
for absolute agreement between the theoretical
value and. the experimental one in each case. In
Table I we list only the quantum mechanical
values Zz, (7b), which are approximately twice
the classical ones Ze, (7a).

ANALYSIS OF RESULTS

The values obtained for m/mo are in a range
not unreasonable for alkali halide crystals. We
believe, however, that the theoretical values are
not very accurate and that the theory ought to be
revised in several respects. For example, the
breakdown fieM. may be actually lower than the
one calculated and the ratio m/mo, consequently,
higher. For, even though all the electrons cannot
be accelerated. by the field, electrons of suffi-

ciently high speeds may be produced by thermal
Auctuations. In this way any small field. could,

produce a breakdown in a long enough time
unless a mechanism for reabsorption into the
lattice were designed, . Nevertheless, our result
would probably not be modified much. For the
breakdown field. calculated. by us would have to
be corrected only by a quantity varying logarith-
mically with the time necessary for the electron
to be reabsorbed, . In connection with this process,
however, the depend, ence of the breakdown field,

upon temperature might be explained. Another
important effect which is probably related. to the
behavior of electrons at high speeds is the break-
d,own in preferential d, irections that has been
found by von Hippel. In spite of the incom-
pleteness of the theory presented, here we believe
that it does indicate the properties of the crystal
upon which the magnitude of the breakdown
field d.epend. s.
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