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The energy of the normal state of the alpha-particle is
calculated with the use of an elaborate variational method,
in which a fixed set of nuclear constants in the general
symmetric Hamiltonian has been adopted. The result
agrees well with an earlier, independent calculation, and
allows the convergence limit to be determined with con-
siderable precision. Comparison with previous work on H3
indicates that the binding energies of both H% and He* can
be very nearly accounted for with the use of a single set of

constants satisfying the conditions imposed by the triplet
state of H?; but the value of g (ratio of Heisenberg to
Majorana forces) required is lower than usually supposed,
and will give somewhat too low an energy for the singlet
state of H2 The same methods are employed to calculate
the excited singlet and triplet states of the alpha-particle,
and yield the results which have already been stated. No
excited state is stable. A virtual excited state is shown to
exist near the energy of dissociation into four particles.

LL attempts at gaining detailed knowledge
of nuclear forces rely heavily upon the
binding energies of light nuclei. These are known
from experiments with considerable accuracy,
but the theoretical methods which link them to
the postulated laws of nuclear force are very
uncertain indeed. Endeavors of refining these
methods are therefore desirable.

Unfortunately, the nuclear four-body problem
can only be solved by successive approximations.
Of the method used it must be required that the
energy calculated by it should converge to the
true value, and preferably converge rapidly.
Two general techniques are available: Schro-
dinger perturbation theory!' and the variational
method. As to perturbation theory it is well
known that, within a given order, it does not
converge to the correct energy, although the odd
orders do furnish upper bounds. Hence a safe
perturbational procedure must at least include
the third order—the first-order result is in
general poor. But the third-order perturbation is
almost as difficult to calculate as the variational
energy which always respresents an upper limit.
Hence the variational method is employed for
the most part in this paper, although occasional
comparison with perturbational results is made.

The method of linear variation functions con-
verges if the functions form a complete set, it
converges rapidly if that set is chosen judiciously.
But the selection of function sets is strongly
limited by the practical demand of tractability.
This dictates in effect that all functions shall be

1 E. Feenberg and S. S. Share, Phys. Rev. 50, 253 (1936);
D. R. Inglis, Phys. Rev. 51, 531 (1937).

products of exponentially decreasing functions
and polynomials. Despite this severe limitation
there is some latitude inasmuch as the kind of
coordinates to be adopted is not.prescribed. The
choice of polynomials does not affect the con-
vergence;? in this work the Hermite type of
polynomial is used.

Hermite functions of particle coordinates
measured from a fixed fictitious center have an
analytic behavior quite different from the same
functions with relative coordinates as argu-
ments. This permits two independent calculations

‘to be made with wvariation functions which

superficially appear identical. The use of relative
and center of mass coordinates is more adapted
to the nature of the problem, since it conforms
in a simple way to the existence of nuclear
particle groups.? For this reason one would
expect a variation calculation in these coordinates
to converge more rapidly than the other scheme
which is essentially an extended Hartree method.
Another advantage of the method of relative
coordinates is seen in the fact that it necessitates
no. correction of the kinetic energy which is
automatically referred to the center of mass.
The price paid for these advantages is the greater
labor which the method entails.

For H3 both calculations have been made,*
and the result is the expected one. The ‘‘Hartree
method” gave an energy of —6.84 Mev with the

2 The whole calculation could be carried through with
equal facility and identical results if spherical harmonics
with the same radial exponential function were chosen.

3]. A. Wheeler, Phys. Rev. 52, 1083 (1937).

4H. Margenau and D. T. Warren, Phys. Rev. 52, 790
(1937).
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use of 21 functions, the relative coordinate
method yielded —7.21 Mev with only 13 func-
tions; the same nuclear parameters were em-
ployed in both computations. In the same paper,
the ground state of the alpha-particle was
treated, but only in individual particle coordi-
nates. The first part of this communication deals
with the same problem and yields results which
are in a sense complementary to those previously
published. Besides confirming them it shows
again the superiority of the relative coordinate
method which, with the use of 11 functions,
yields an answer better than that of the other
method involving 14 rather more complicated
functions. In view of this double evidence we
may now estimate the true energy of the He?
problem, and also that of H? more accurately
than has been done before, and more definite
conclusions can be drawn regarding the con-
sistency of present assumptions about nuclear
force constants.

It is generally hoped that, aside from relativity
effects,’ the binding energies of all nuclei can be
fitted by a single set of nuclear force parameters.
There even appears to be considerable evidence
that this can be achieved by employing a Hamil-
tonian operator which is symmetrical in all
particles® except for Coulomb forces. This
prevailing optimism has been disturbed some-
what by the results of variational calculations on
H3 and He%, made by Rarita and Present.” The

“present work shows, as did the former paper,?
that a discrepancy exists, but it is not as alarming
as appeared from Rarita and Present’s work.

The later sections of this paper are devoted
to the excited states of the alpha-particle.?
Several estimates of the energies of these states

5 G. Breit, Phys. Rev. 53, 153 (1938).

6 M. A. Tuve, N. P. Heydenburg and L. R. Hafstad,
Phys. Rev. 50, 806 (1936); G. Breit, E. U. Condon, R. D.
Present, Phys. Rev. 50, 825 (1936); E. Wigner, Phys. Rev.
51, 106 (1936). -

" W. Rarita and R. D. Present, Phys. Rev. 51, 788 (1937).

8 When this manuscript was completed there appeared
a paper by S. S. Share, Phys. Rev. 53, 875 (1938), which
contains some of the results here obtained. Since our method
of attack is different, a more general Hamiltonian has been
used, and the excited .S state has been investigated in
greater detail, we are persuaded not to withdraw these
sections from publication. Share’s result on the excited S
state of He? is not significant because his energy does not
represent an upper limit. Our result does represent such
a limit.
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have been made,’ all of a very approximative
character. Whereas .other authors were led to
believe that the P states were probably stable,
our calculations, made with a more recent
Hamiltonian, decide fairly definitely against
their stability. Considerable effort has been made
to locate the excited S state of the alpha-particle;
it is found to be virtual and to lie at about 1.3
Mev above the dissociation limit.

Throughout the present work the assumption
of perfect symmetry of nuclear forces, without
distinction between neutrons and protons, has
been made.

THE GROUND STATE

In central, individual particle coordinates, the
potential interaction for all pairs of particles may
be written in the general form:

Vij=—AJ:j(w+mPi;j+bQ:i+hPiiQy), (1)
where P;; acts on coordinates, Q;; on spins, and
w, m, b, and & are the relative strengths of Wigner,
Majorana, Bartlett, and Heisenberg forces,
respectively. If the coordinate part of the vari-
ation functions is chosen symmetric in like
particles, a summation over spins leads to an
interaction :10

(Vi)1= —AJT;[(w+3b) 4+ (m~+5h) Pij ],
(Vi)e=—AJ ;[ (w—0)+(m—h)Pi;],

where the subscripts 1 and 2 refer to interactions
between pairs of unlike and like particles,
respectively.

As in the previous work,* the Gaussian form
of interaction is used; thus J;;=exp (—7;?/a?).

It has been pointed out by Breit and Feen-
berg™ that the effect of the P;; operators is very
small inasmuch as the ground state of the alpha-
particle is nearly symmetric in all particles. This
will be discussed in more detail later. In the
above expressions, the Majorana coefficient is
predominant. Therefore it will be a good

9 E. Feenberg, Phys. Rev. 49, 328 (1936); Bethe and
Bacher, Rev. Mod. Phys. 8, 82 (1936).

10 This is obvious for like particles; for unlike particles,
cf. Bethe and Bacher, Rev. Mod. Phys. 8, 82 (1936).

1 G, Breit and E. Feenberg, Phys. Rev. 50, 850 (1936).
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approximation to write

(Vi)1= —AJij[w+m+3(b+h) 1Pyy= —BJi;Pyj,
3)
(Vij)2= —"AJ”['ZU‘F?’I’L— (b‘f-h)]Pw: —CJMPM.

If nowb+h=g, then B=(1—30)4,C=(1—-29)A.

The Coulomb energy, small compared with the
total energy, will be omitted from the variational
calculation and taken into account afterwards.
Hence the Hamiltonian in central, individual
particle coordinates is

H=—#/2M)>_V¢—BY 1J;;Pij— C32J:;Pi;, (4)

where 3_; is extended over pairs of unlike, and
> . over pairs of like particles. This is the same
Hamiltonian which was employed for H? (cf.
Eq. (2), reference 4).

In order to facilitate comparison of the present
work with the results for H3, the following
values of the constants have been assumed:

A =35.60 Mev, ¢=2.25X10"3cm, g=0.194
which give

B=32.10 Mev, C=21.77 Mev.

The transformation to relative coordinates is:
01= (§x1+ra—r3—14);

02= (%)%(1'1 —rg); @3= (3)i(rs—rs).

©)

Since this transformation, the interaction J;,
and, as will be seen below, the form of variation
function are all symmetric with respect to the
Cartesian axes, attention may be confined to
the scalar X component equations in much of
what follows. Taking &;, 7s;, {: to be the rectan-
gular components of the relative vectors g;, we

find: .
x13=(3)H(E1+E2—£3)
X23= (%)%(51— 52— 53)

x34=2%$3.

X1a=2%¢,;

x1a=(3)¥ &+ EtE9);

x90=(§)H(&1— L2+ &3);
This leads to Table I, which gives the effect of
the permutation operators P,; upon the £;.

The Hamiltonian may now be written in
relative coordinates. Eq. (4) becomes

H. MARGENAU AND W. A. TYRRELL,

JR.

H=—(n/2M)(2V24V2+V3)
—Blexp [—37(01+ 02— 03)*]P13
+exp [—37(01t+ 02+ 05)2 ] P14
+exp [—3r(e1— 02— 09)* 1P
+exp [—37(e1— 02+ 03)? 1P24}
—Clexp [— 27022 ]P12

+exp [—270:2 P}, (6)

* where r=1/a? Eq. (6) is symmetric with respect

to an interchange of coordinates 2 and 3. This
necessitates the use of variation functions sym-
metric in coordinates 2 and 3, because the ground
state of He! is nondegenerate and hence pos-
sesses the same symmetry as the Hamiltonian.
Furthermore, an interchange of the protons
(particles 1 and 2), or of the neutrons causes a
change of sign in g, or g3, respectively. Therefore,
all variation functions must be even functions
of relative coordinates 2 and 3, in order that
they may be symmetric coordinate functions.
As in the work on H3, single harmonic oscil-
lator functions are employed for variation func-
tions. The notation for these functions is as
follows : Single Hermite functions are written

on(P¥x) = 0,2(x) = N, » exp (— p2/2) H,(px),

where N,, , is a normalizing factor, H, is a
Hermite polynomial, and x may be any of the
rectangular components of g1, g2, 3. Then we
define

O1mn(2) = 0i(£) em(n:) en($3),

and these functions can be symmetrized with
respect to the Cartesian axes by forming

¢lmn= (%)%(1 + 5lm+ 6ln+5mn+25l'maln6mn)h%
X(¢lmn+ ¢lnm+€0nlm+ Samln‘l‘ﬂomnl-l‘ SDnml)~ (7)

TABLE L. The effect of the P;; operators upon the &;.

Pij Pyt Pyjta PyjEs

Py 31 —é& 133

Py —&t+£3 H(—&atE+8) 3(E1t+-E1-83)
Py —&—&s H—&itE—E) H(—&i—Et£)
Py £2t£&s (&t —£) 3(E1—&atEs)
Pyy Er—&s 3(&+E+8) F(—&i+-Eat83)
P34 & & —&
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The variation parameters p determine the
classical potentials for the oscillator functions;
since all variation functions are chosen sym-
metric in coordinates 2 and 3, two, rather than
three such parameters are needed. In the work
that follows, it will be implicit that p is the
parameter for coordinate 1 and ¢ for coordinates
2 and 3. To give an explicit example of the nota-
tion employed,

$200(1) $000(2) d000(3) = (5) L 02" (£1) wo?(m1) @07 ($1)
4 00?(£1) 27 (11) 00?(§1) + 00?(£1) @0 (n1) 027($1) ]
X @09(£2) 00 (12) 20 2($2) X 004 (£3) 00 %(n3) 00 U({ ).

The single function which gives the lowest energy
is  Yo=0000(1)P000(2)Po0e(3), hereinafter desig-
nated as the ground state function. No functions
have been used variationally which do not
combine with the ground state function. This
eliminates all functions of odd degree of excita-
tion, and, in addition, certain functions of even
degree. As can be readily shown from the nature
of the integrals below, in general those functions
which do not combine with ¢, have also vanishing
matrix elements with functions combining with
Y. It is thus clear that functions which do not
combine with the ground state are unimportant
variationally.

A list of all functions of low excitation which
combine with ¥, follows: '

Ground state function:
Yo= do00(1) $o0o(2) $o00(3)
Doubly excited:
$200(1) $000(2) Pooo(2)
(3)*000(1) [H200(2) 000(3) +B000(2) d200(3) 1.
Quadruply excited:
$100(1) ho00(2) Pooo(3) ,
(3)*¢000(1) [p200(2) P000(3) + B000(2) p400(3) .
$000(1) P200(2) P200(3)
(%) ¥200(1) [200(2) P000(3) + P000(2) 200(3) ]
$000(1) p110(2) p110(3)
(3)2110(1) [$110(2) p000(3) + B000(2) P110(3) ]
B220(1) Pooo(2) Pooa(3)
() b000(1) [p220(2) b000(3) + bo00(2) p220(3) .
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Sextuply excited:
@200(1) P200(2) P200(3)
D600(1) h000(2) Pooo(3)
(3)¥000(1) Ld00(2) b000(3) + Pooo(2) hs00(3) ]
(3) ¥a00(1) [D200(2) P000(3) +000(2) p200(3) ]
(3)¥200(1) [200(2) $000(3) + 000 (2) p100(3) ]
(3)¥000(1) L 200(2) b200(3) + P200(2) p100(3) ]
(3)¥220(1) [$200(2) $000(3) + Po00(2) P200(3) ]
(3)¥b200(1) [P220(2) $000(3) + D000(2) P220(3) ]
(3)¥000(1) [d220(2) 200(3) + P200(2) p220(3) ]
200(1) P110(2) p110(3)
(3)¥¢110(1) [#200(2) $110(3) + B110(2) p200(3) ]
(3)¥310(1) [#110(2) Po00(3) + P00 (2) $110(3) ]
(3)¥110(1) [#310(2) $000(3) + 000(2) P310(3) ]
(3)*000(1) [$510(2) 110(3) + b110(2) p310(3) ]
¢225(1) $000(2) Po0o(3)
(3)¥000(1) [222(2) $000(3) + 000(2) P222(3) ]
¢420(1) P000(2) Pa0o(3)
(3)*000(1) [P420(2) h000(3) + P000(2) pa20(3) ]
é110(1) d110(2) 110(3)
(3)¥211(1) [110(2) $000(3) + b000(2) p110(3) ]
(3)¥110(1) [0211(2) $000(3) + Po000(2) p211(3) ]
(3)¥000(1) [211(2) P110(3) + H110(2) 211(3) .
There are 61 octuply excited functions which
could be added to the list. The importance of
these and higher excited functions will be dis-
cussed later.

The evaluation of the matrix element H;;
= f{¥;Hydr divides into three parts: the
evaluation of the kinetic energy, the unlike
particle interaction, and the like particle inter-
action.

To find the kinetic energy, it is to be noted
that the function

Y= ong,(PE1) ony (Pr11) e, (D3$1)
Xong,(q¥E2) - -+ one,(g3Cs)
satisfies the equation
(#2/2M) { — (2V*+ V2 4-V?)
+[20%02*+ (o2 +ps") I} =EY,
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and the eigenvalues are

E(ng- - -ng) = (k2/M)[(£Zrnl+%)2p

+{§(nz+na)+3}9]- (8)

Hence

(Exin)ii= f‘l/i[ —(#/2M)(2V24-V2 V) Widr

=FEd;— (h:’/ZM)f‘l/i[ZP%xz

+@(p2+p?) Widr, (9)

since the functions are orthogonal and normal-
ized. Moreover, the last part of Eq. (9),

ZPfIPiPm?lﬁidT+Qf¢i§lp22¢jd7+gflPiQP32¢7'dTy
breaks up into integrals of the form
[ er@pgor@as=ri=+h,

+3LE+1) E+2) 18, i1
so that the matrix elements of the kinetic energy

can be written as sums of various Ay;.
If we set

RiiEf‘//i exp [ —37(01+ 2+ 03)* 1P 1ayidr,
S:fEfIPi exp [ —37(0i+ 02— 03)2]P1s¥d T,
TiiEf‘//i exp [ —37(01— 02— 03)*|Pasyidr,

UiiEf‘/’i exp [ —57(01— 02+ 035)* [PasidT,

then the unlike particle interaction part of H;; is
—B(Rij+Sij+ T+ Usy).

R;; may be written as the product of three
integrals, one for each rectangular component.
Replacing (¥:), and (¥;)» by ¢ functions, we

H, MARGENAU AND W.
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see that the basic integral is

Viit, zmn=f«pi"(&)wq(&)%"(&)

Xexp [— %T($1+52+fs)2]P14wp(f1)
X on(E2) on9(E5)dE1dErdEs

and that then R,;; is expressible as a sum of
products of three 7%, ma. To facilitate integra-
tion, a transformation

2=3(u+1); E=3w—t) (10)

is made; Table II gives the effect of the P
operators upon §; in terms of %, s, ¢.

The effect of the P;; operators upon ¢;ome,
can be expressed by their effect upon the argu-
ments of these functions; hence

u-+t u—it
Yiik, lmn=f¢ip(8)<ﬂfq( )‘qu( )
2 2

Xexp (—dr(s+u) orr(— )

t—s —t—s
><<pm‘1( 5 )mq( 5 )dsdldu,

=%fH¢(P%S) . -Hz(—p%u)- - - Idsdtdu,

t1=s;

where

I= ¢0p(§)¢oq(ujt) mq(u;t) ooP(— 1)

- ft—s —t—s
qu( 2 )mq( 2 )eXp ~irlet,

and } is the Jacobian of the transformation.
From the form of I, it may be seen that 7%, tnn
vanishes unless 7+j+% is of the same parity as
I+m+n.

A similar procedure is carried through for S;j,
T:i, Us;, which gives basic integrals Sijk, imn,
Liik, tmn, Wijk, imn, TeSpectively, which the reader
can easily construct with the aid of Table II.

In the integrand of sijz, imn, # and ¢{ may be
interchanged. This makes sijz, ims identical with
ik, 1mn, €xcept that the arguments of ¢ and ¢,
are reversed in sign. Hence

(11a)

Sijny tmn=(— 1)1 tmn.
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TABLE 11. The effect of Pij upon &; in terms of u, s, t.

Pij Pijt1 Pijte Pijks

Py N —3(u+t) $(u—1)
Py —t H—s+u) 3(s+u)
P14 —u %(‘—S-’—t) —'%(S'l"t)
Py % 3(s+2) 3(s—1)
Pas t Hs+u) H—s4u)
Py N Hu+t) 3(t—u)

In the integrand of f;, mn, @ change of the
signs of ¢ and u throughout yields

Lije, tan=(— 1)+ i, (11b)
and by similar reasoning we find
Wigk, nn=(— 1) ijpe, tmn. (11c)
It will be noted that
— B(Rij4+ S+ T4 Us) = —4BRy; or 0, (11d)

depending upon the values of j, k&, m, # in the
basic integrals encountered. These rules make it
easy to pick out functions which combine with
each other. Lists of over 100 of the various
7ijk, mn have been prepared, but will not be
reproduced here.

If we put

V@'J‘Ef\[/i exp [—2T922]P12l//7d7'

WifEftﬁi exp [— 2792 ]Paydr,

then the like particle interaction part of H;; is
—C(Vii+Wi)).

V.; is the product of three integrals, one for each
rectangular axis; and it is necessary to consider
only one of them. P, leaves £; and §; unchanged
(cf. Table I); integration over & and £; yields
unity. Now let

'UijEf%q(Sz) exp [— 27827 [P12g;9(£2)d e

- [r@wn-ow

X[ eo%(£2) po?(— £2) exp (—27&5%) Jdéo.
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Then V;; will be expressible as a sum of products
of three v;;. From the form of the bracketed ex-
pression, it may be proved that v;; vanishes
unless 7 is of the same parity as j. Only eight
different v;; appear in V;; for all the doubly and
quadruply excited variation functions listed
above.

Furthermore, W;;= V;; because all functions
¥; are symmetric in relative coordinates 2 and 3.

When Wigner forces are introduced, integrals
of the types above without exchange operators
are needed. These can of course be calculated in
a similar manner, or more directly without the
use of the transformation (10). In the following,
integrals will be understood to refer to Majorana
forces if no further designation is given. When
the necessity for distinction arises, integrals in-
volving Wigner and Majorana forces will be
labeled by superscripts W and M, respectively.
It is to be noted here that the relations (11) hold
for Wigner terms also.

In order to obtain the variational energy, we
must solve for the lowest root E; of the deter-
minantal equation |H;—8;E|=0. It is ob-
viously too laborious to retain p and g as vari-
ation parameters throughout the solution. How-
ever, the minimum of Hy occurs at 2p=gq
=0.5135, and Hy, accounts for most of the
binding energy. Therefore the values of p and ¢
which minimize E; will not differ appreciably

" from these values, and it is safe to evaluate Hj;

at the minimum of Hy, before insertion in the
determinant. This procedure has been followed
here; the numerical method of solving the
secular equation has been outlined elsewhere.*

Since the numerical values of Hy; are available
from the variational calculation, it is very simple
also to make a second order Schrodinger per-
turbation calculation by use of the same func-
tions. In this scheme, the additional energy is

H0i2

E(2)=Z’
% EQ_Ei

and it is clear from Eq. (8) that

h?
Ey—E;= ~ 2 A (m) e+ (n)y+(ni)e g,

if g=2p. Thus the denominator will be the same
for all functions of the same degree of excitation.
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TaBLE I11. Results of variational and perturbational calcula-
tions for the ground state of Het (in Mev).

T Ey—Hu
TIONS E E1—Hoo E® E®
4 —26.29 —0.60 —0.50 1.20
5 —26.41 —0.72 —0.59 1.22
8 —26.52 —0.83 —0.74 1.12
11 —26.76 —1.07 —0.81 1.32
33 —0.93

Table III lists the results of the variational
and perturbational calculations. The most elab-
orate variational calculation has been made with
the ground state function and all the doubly and
quadruply excited functions, a total of 11 vari-
ation functions. The result is in excellent agree-
ment with a former calculation* by an entirely
independent scheme (individual particles coor-
dinates) which gave —26.67 Mev.

It will be seen that the variation method gives
a lowering of the total energy slightly greater
than that of second order perturbation theory
with the same set of functions. The ratio
between the contributions varies somewhat ir-
regularly for different stages of the calculation;
after inclusion of all the quadruply excited
functions, it is 1.32. By adjusting the perturba-
tional energy for all the sextuply excited func-
tions, we feel that a close estimate of the vari-
ational energy due to these functions (in relative
coordinates) may be obtained ; multiplication of
0.12 by 1.32 yields 0.16 Mev for this estimate.

The division of functions into classes of
various degrees of excitation is quite dependent
upon the type of coordinates employed; in
relative coordinates, the set of sextuply excited
functions is equivalent to some of the sextuply
excited, and many of the octuply excited func-

tions in individual particle coordinates. Hence

0.16 Mev also represents a rough estimate of the
effect of octuply excited functions in individual
particle coordinates. We may at least say, then,
that octuply excited states make a very small
contribution to the total energy of the alpha-
particle. This is not true in the deuteron
problem.? )

Perturbational results show that functions
higher than octuply excited have a negligible

12D, T. Warren and H. Margenau, Phys. Rev. 52, 1027
(1937).
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effect upon the ground state. Thus, allowing a
contribution of —0.33 Mev for the effect of
sextuply and octuply excited states, we obtain
—27.09 Mev as a fairly close estimate for the
convergence limit of the variational energy. The
Coulomb energy is +0.82 Mev; therefore the
final figure for the energy of the ground state of
He'is —26.27 Mev.

As already mentioned, the foregoing results
involve the approximation.of treating the Wigner
part of (2) as though it were a Majorana oper-
ator. The effect of this approximation may be
easily traced through the first-order calculation
leading to H . Since it is small in Hg, it will be
completely neglected in the higher contributions.

Let H be the operator (4), used in this work,
and jC the same operator, but without the P;;’s.
Then Hy, and 3Co will in general have separate
minima.!® If B=C, the two minima coincide and
occur at A=1. In that case no correction at all
is necessary. For the values of B and C adopted
in this paper, this coincidence is not quite
present. But it is seen from Fig. 1, where both
Hyo and 3Cgo are plotted as functions of N\ at the
minimum with respect to ¢, that the correction
is small indeed. To give an idea of the correction
required in the worst possible case (C=0) we
have plotted similar curves representing that
situation in the lower part of Fig. 1. It is seen
that even there the two minima differ by less
than 1+ Mev in energy. Hence it is clear that the
effect of ignoring the “‘ordinary’ constituent of -
the nuclear forces is quite inappreciable in deal-
ing with the ground state of He*. The same is
true for H3.

It is now possible to test the adequacy of the
symmetrical Hamiltonian in reference to the two
important problems: H? and He*. The present
results and those obtained previously* are gained
with the same nuclear constants, and by the
same method. We feel that the value of the
binding energy of He* here derived probably
represents a closer estimate than that for H3.
On the other hand, further experience with the
present method has led us to believe that the
margin of uncertainty in its convergence for H?

13 Algebraic expressions for Hy and JCoo may be found
in the papers of Wigner, Phys. Rev. 43, 252 (1933), Feen-
berg, Phys. Rev. 47, 850 (1935) and others. For the defini-
tion of the variation parameters A and ¢ see Eq. (13).
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is far smaller than was judged by Margenau and
Warren. We prefer to assume that the result for
the binding energy of H? is 7.3 Mev (7.21 being
actually obtained variationally). If it is greater,
the discrepancy (Egs. (12)) to which this analysis
leads, will be less pronounced.!*

Slight adjustments in the constants B and C
will not change the contributions of the higher
variation functions appreciably. We shall there-
fore inquire what changes in B and C are neces-
sary so that Hyy, computed with the adjusted
values of these parameters, plus the uncorrected
higher contributions, shall equal the observed
binding energies for both H3 and He*. Table IV

shows the procedure. The last row shows the

energy to be accounted for by the ground state
function ¢,.* Working with the minimizing values
of N and ¢ we then determine B and C from the
equations for H,.

H3: —7.20=22.09—0.669B—0.314C
He: —27.0=47.37—1.70B—0.850C |’
They yield:
H3: B=32.6 Mev, (C=23.8 Mev,
He*: B=324 Mev, (C=22.0 Mev,

which reveal a slight inconsistency. " Remember-
ing that B=(1—%g)A, C=(1—2g)4, we find

H3: ¢=0.167, He*: g=0.181. (12)

It is to be noted first that these values of g are
considerably smaller than that usually derived
from the 1S—3S energy spacing of the deuteron
states.

14 In his review article Breit (Rev. Sci. Inst. 9, 63 (1939))
mentions the existence of a disagreement between the
results of Rarita and Present and those of Margenau and
Warren. We fear that excessive caution on the part of the
latter authors in estimating the convergence limit of their
method is responsible for this impression. The numerical
results certainly show no contradiction, for, with the
adopted set of constants Margenau and Warren obtained
binding energies of 7.21 for H3 and 25.85 for He?. If these
had been taken at face value the same qualitative conclu-
sion as that drawn by Rarita and Present would have
resulted, as was stated. Whether one method converges
faster than the other is at present unknown, and all esti-
mates of convergence limits must be regarded as plausible
subjective judgments. A direct quantitative comparison
of the results of the two papers in question is not teasible
because of the different form of the potentials adopted.

* We are neglecting (a) the effect of states in which the
spins are distributed differently among the particles;
(b) relativity corrections. (a) is of the same magnitude as
the estimated error in the convergence limit; (b) is probably
appreciable but at present impossible to calculate uniquely.
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F1G. 1. Variational binding energy of Het in zeroth ap-
proximation with (Hoo) and without (3Coo) exchange forces:
(a) B=32.1 Mev, C=21.77 Mev; (b) B=32.1 Mev, C=0.

The significance of the discrepancy inherent
in (12) is best seen by computing the binding
energies of H? and He* with an artificial mean

- value of g, equal to 0.174. This yields 8.1 Mev

and 28.3 Mev, which differ from the experimental
results by —0.2 and +40.7 Mev, respectively.
The discrepancy has the same sense as that
found by Rarita and Present, but is less severe.
It is to be noted, however, that this improved
agreement involves the use of a value of g which
differs considerably from that of Rarita and
Present (0.215), and one which leads to a stable
singlet state of the deuteron. We may thus say:
The strong discrepancy in the binding energy-of
light nuclei emphasized by Rarita and Present
may be made much less pronounced by choosing
a smaller value of the ratio of Heisenberg to
Majorana forces. In fact, by taking g as small as
0.174 the discrepancy almost vanishes. While it
is unlikely that such a value is compatible with

TABLE IV. Computation of Hoo.

H3 Het

Experimental energy —8.3 —27.6
Coulomb energy 0 + 0.8
Contributions from functions other

than ¢, —1.1 — 14
Hoo —7.2 —27.0
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scattering data, a compromise value around 0.19
might bring the discrepancy within the range of
errors caused by the neglect of relativity and
other corrections.

ExcITED S STATE

We are concerned here with an excited state
possessing the same symmetry as the ground
state. An upper bound to the position-of the
state may therefore be obtained by solving
|H;;—8;E| =0 for E, the next highest root
above E;. It is not possible, however, to find
any one variation function for which H;; is a
good approximation to E,. Hence we cannot use
the minimization procedure which was followed
in locating E;;instead, it is necessary to minimize
E, directly with respect to one or both of the
variation parameters.

Careful study was made with the following
set of functions in relative coordinates:

Yo=000(1) 000(2) Po0o(3)
¥1=(3)*¢000(1) L$200(2) $000(3) + P000(2) h200(3) ]
Y2=200(1) p000(2) P00 (3)
Ys= (%) *000(1) [H400(2) Po00(3) + Bo00(2) b00(3) ].

The Hamiltonian given by Eq. (6) was used;
the matrix elements may then be evaluated by
the technique developed for the ground state.
Instead of the variation parameters $ and g, it
is more convenient to write

p=(2—No7; q=2\oT. (13)

Of the ten matrix elements involving the fore-
going functions, we shall give here only the three
diagonal ones which seem of principal interest,
and omit the others because of their length.

Let

. . )
¥ =Tq00, ooo=>\%(2">\)%( )
c+1
Ao 3
7)5'1)0():( ) .
Ao+1
Then:

Hoo=23(24+\)(4.05)0 —4Brs —2Co3,

(14)

-H. MARGENAU AND W. A. TYRRELL,
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Hy1=(6+7\)(4.05)¢

5 3 0'+% 3 0-2+0.+5/12
_43[““*>\( )—{-—)\2 : ]rs
4 2 \o+1/ 4 (c41)

NoZ+4+No+5/4
—20[___..._]2,3
(Ao41)2
3 o+1
H22=(14—)\)(4.05)0—43[——3(2-_)\)( )
2 o+1
3 o2+o+5/12
F (2N ———]73 —2C%,
2 (c+1)2

where 4.05 Mev has been put for %2r/2 M.

A preliminary investigation showed that ¢
contributes the most to the excited S state,
since Iy lies lower than any other H;; except
Hyo. In fact, it possesses a minimum, which,
however, is not to be interpreted as an excited
state, for Hy; is quite different from the second
root, E,. The position of the latter results from
a compromise between the tendency of ¢ to
raise Hy;, and that of the higher functions to
depress it.

The lowest curve for Hi; vs. ¢ is obtained by
putting A=3 (which corresponds to p=g).
Accordingly, all matrix elements in the secular
equation are evaluated at A=%; it then becomes
necessary to find E; as a function of ¢. It is
possible, of course, that E,; has a groove for a
somewhat different value of \, but a detailed
study of this matter has not seemed to us worth
while.

Figure 2 shows the dependence of H;; and E,
upon o. It is seen that E,; shows a shallow
minimum at about ¢=0.425, and the value of
E, is 1.3 Mev at this minimum. We believe that
the inclusion of further functions in the vari-
ational calculation would not lower this mini-
mum appreciably ; it is questionable that it would
be pushed into the discrete spectrum at all.

This state is not stable against disintegration
into H3+p, or into He®+#, or into two deuterons.
If virtual, the level is not even stable against
disintegration into four particles. However,
1/0% is a measure of the mean distance of separa-
tion of the particles in units ¢ : Fig. 2 is equivalent
to a plot of total energy vs. distance. Hence, as
we bring the particles together, there is a shallow
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F1G. 2. Energy of excited S state in Mev for A=3%. a: Hu;
b: Second root, E.

minimum in which they may vibrate. The
minimizing value of ¢ for the ground state is 1.3;
thus, for the excited S state, the mean distance
of separation of the particles is about 1.75 times
as great as for the ground state.

The existence of this theoretically predicted
excited state is, of course, of no importance in
nuclear statics; but it should give rise to a
resonance peak in certain scattering and disin-
tegration processes, as, for example, in the
deuteron-deuteron reaction.

SINGLET P STATE

P states are odd in one coordinate and do not
combine with the ground state of the alpha-
particle. Therefore in determining the energy of
the lowest P state, the variational method is just
as easy to apply as in working for the ground
state; it is merely necessary to select functions
of the proper symmetry and to solve for the
lowest root of the determinantal equation. It is
not quite proper to use the Hamiltonian in the
simple form (3). Nevertheless, this will be done
at present; the result will then be subject to
corrections which, as we shall show, are small.

Two classes of 1P states are to be considered :
(1) those in which the center of mass of the two
neutrons moves with a unit of angular momentum
relative to the center of mass of the two protons;
(2) the states in which one pair of particles is
unexcited while the other is in a P state. A
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representative of the first class is the function

Y1=100(1) P000(2) Po0o(3)
while

1" = (3) ¥000(1) [ $100(2) p000(3) +000(2) p100(3) ]

refers to the latter class.’® Since we are still
dealing with singlet states, the spin functions are
the same as in the previous work. ¢; and ¥’ do
not combine, nor do the variation functions
which improve the one, combine with the other.

" ¢ leads to the variational energy

I111=f\01H¢1dT=4:05(10+)\)0'

A
——4B[1 —-—~]ra— 2Co3.
2(c+1)

Y1 gives

Hyy/' =4.05(64+5\)¢

A 1
— ZB[I +——]r3 — C( )'03.
4(c+1) Ao+1

The factor 4.05 here is again simply the value
of #27/2M in Mev, and 7 and v are defined in
(14). Both of these expressions are quite similar
in dependence on \ and ¢; in particular, neither
goes below zero for any permitted value of the
variation parameters. There is, to be sure, a
groove, but no basin in A\—¢ space. Because of
this similarity of behavior, ¥’ was at this point
dismissed from further investigation, and atten-
tion was concentrated on the changes which
would occur in H,; if a greater number of
functions were included in the variational calcu-
lation. Thefollowing were chosen for this purpose :

Vo= (3) p100(1) [h200(2) $000(3) + P000(2) 200(3) T,
¥3=(3)*¢100(1) [#110(2) p000(3) +$000(2) P110(3) .

To minimize the energy obtained with the use
of these functions with respect to both X\ and ¢
independently would entail a great amount of
labor; we have therefore permitted ourselves the
following plausible short cut. The greatest con-
tribution to the variational energy comes from 4,
which has a minimum with respect to X\
(““groove”) at A=1. The position of this mini-

5 The symmetrization of ¢100, as indicated by (7), is
here quite unnecessary, but harmless. It was used in this
work because the formulae involving these symmetrized
functions were already available. Thus ¢, really represents
a superposition of 3 degenerate P states.
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F1c. 3. Energy of 1P state in Mev, for A=1 (groove).

a: Variational energy with one function: Hi;; b: Lowest
root of secular equation; ¢: Hy1 with general Hamiltonian.
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mum is not likely to be changed very much by
the inclusion of ¢, and ¥3; In the numerical
work we shall therefore limit ourselves to this
particular value of A.

The integrations leading to the algebraic form
of the matrix elements proceed as before, except
that a new set of 74, ma has to be calculated.
We find

5 2-—>\|' o+3% AN 1062+4100+3.5
_Z 1-2 - ]73
2 o+l Tek1 6 (e1)
Ao24No+5/4
e,
(No+1)2
2—N\ 4 o®4o+11/16
-B [1+->\2-——~]r3
o+1 3 (c+41)2
N2 ho-+1
—ZC[h—]v3,
(No+1)?
2—N\ 5 o4
Hi,= ——3%[8.10)\0'—3 [1 ——\ ]1’3
c+1 3 o+1
3
e
No+1

MARGENAU AND W. A. TYRRELL,
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a+3

(o+1)?
NC=N[o+} \Sot+Se+7/47
o+1 Lot 3 (o102 ]7'

Figure 3 shows Hy; (upper curve), plotted against
o for the fixed minimizing value of \. The lower
curve represents the root of det | H;;— Eé8;;| =0,
calculated for different values of ¢ with the

73,

Hyz= _4(%)53(2")\)

Hy3=—2B

" elements given above. Clearly, there is no

tendency for the curve to dip below the zero
axis, which means that the P state has an energy
greater than that of the four dissociated par-
ticles composing He*. It is hardly to be expected
that the use of a greater number of functions
would change this fact. Such an extension would,
however, distort the monotone behavior of the
root and presumably produce a minimum some-
where, which would then correspond to the
energy of the unstable P state. But it seemed
unwise to pursue this matter at present.

The question now arises as to the modifica-
tion of these results induced by the more general
form of the symmetric Hamiltonian. So far, the
work was done with the potential energy
operator

=AY [wtm+50+h)]TPi;

—AY (wt+m—b—h)J;;P;; (15)
instead of the correct operator, given by a
summation over (1). Since singlet states are
symmetric in like particles, the P;; in the second
part of (15) are ineffective, so that a correction
arises only from the first part. It is thus necessary
only to calculate the matrix elements of

— A3 (w+350)J;(1—Pyy)

and to add them to those found previously.
There still exists considerable latitude in the
choice of w and b; we will take w=—2/15,
b=7/15. The reason for this selection will be
discussed later. The smallness of (w45/2)4
makes it worth while only to compute the
effect of (16) on Hy;, and to neglect it in the
secondary contributions to the energy. Now

(16)

f‘Pl[Zl]ﬁ(l“Pii)]%dT%4(R11W“R11“’), 17)
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where

11

5 (Ae+3)2=Nr M2—Ne ]é
T AC=No+1 @—Ne+1l’
L 2N P2=Nop
2+l et ]

For A=1, (17) is simply 4[¢/(c+1)]°/% so
that the diagonal element of (16) becomes
14.2[o/(0+1) %2 Its addition changes Hi; of
Fig. 3 into the dotted curve drawn below it.
The former conclusions are evidently unaltered.
Except for the correction due to (16), the
results of this section have already been stated.!®
It was also pointed out in that connection how
and why they differ from those obtained by
Feenberg® and by Bethe and Bacher.?

11

TRIPLET P STATES

The energy of the triplet states depends
rather critically on the detailed form of the
Hamiltonian. Hence it is advantageous to start
with (1) instead of the approximation represented
by (3). A triplet function is one in which the
spin coordinates of either the two neutrons or
the two protons appear symmetrically ; hence the
coordinate part is antisymmetrical in the chosen
pair. In the problem under consideration, the
three components of a triplet term coincide
because the Hamiltonian here used ignores spin-
orbit. coupling. We may therefore restrict our
investigation for convenience to the state in
which S,=1. There will, however, be a doubling
of this energy due to neutron-proton symmetry.
This appears in Eq. (24).

There are four possible spin functions corre-
sponding to a total spin of one unit along the
z-axis. They may be written with an obvious
symbolism as follows: ‘

Si=(+++-), Se=(++-—+),
Sa=(+—++), Si=(—+++).

From these, two linear combinations can be
formed which are symmetric in one pair and anti-
symmetric in the other. They are, after normal-
ization,

()¥S3—S8y) and (HHS1—S).
16 H. Margenau, Phys. Rev. 53, 198 (1938).

(18)

(19)
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(1 and 2, 3 and 4 constitute protons and neutrons
respectively, and the signs in the S functions
are understood to refer to the particles in this
order.) :

Now let # be a function of the coordinates,
symmetric in 1 and 2, antisymmetric in 3 and 4;
and let v be a similar function, but antisymmetric
in 1 and 2, symmetric in 3 and 4. A triplet
function satisfying the Pauli principle may be
written in terms of these as follows:

=(3)au(Ss—S)+bv(S:—S2)],  (20)

~where the parameters ¢ and b, which satisfy

a?+b*=1,are to be adjusted for minimum energy.
From (20) we calculate and then minimize

;ftﬁHg&d‘r.

The first step is again a summation over the
spins, ¢. In carrying this out it is to be observed
that the only parts of H, Eq. (1), which operate
on the spin functions are the Q’s, and that these
interchange the .S functions. Thus, for instance,
Q12 leaves S; and S, unchanged, but permutes
Ssand Ss. After the indicated summation we are
left with a spin free Hamiltonian, and the
problem of ‘minimization affects only the co-
ordinate functions; in fact

nyng&dT=a2qu1udT+b2vagwdr

+%ab[qu3vdT+va3ud~r]. (21)

The three spin free triplet operators have the
form:

Hy=Ein— A [ (w+3b)+(m+3h)Pi; 1T
-—A[w—b-l—(m—h)Plz:]Jiz

—Alw+b+ (m~+h) Py |J 34,
H2=Ekin—A21[(w+%b)+(m+%h)Pii]Jii (22)
—Alw+b+(m+h) P12 J 12

—A[lw—b+4(m—h)P3]J 34,
Hz=—A{(b+hP1s)J13— (b+hP1g)J 14
+(b+hP24)]24— (b+hP23)J23} .
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It is seen at once that these operators satisfy
the relations

112=P13P24H1§ P13P24I{3=113‘ (23)

This inherent symmetry shows that the best
possible choice which can be made for v is

v=P13Pu.
From this and Eq. (23) one may deduce:

f?)Hz?}dT—:f(PlaPMu)'(P13P24H1)

‘ (P13P24u)d'r = qulud‘r H

and similarly

va3udr=qu3vd1-.

If these relations are used, and E is written for
the wvariational energy calculated from (20),
Eq. (21) takes the form

(a2+b2)E = (a2+b2) (Hl)uu+ab(}l3)u1"

Minimization of E with respect to @ and b
separately yields the two equations

a[ (Hy)uu—E]+30(H3)uo=0
%a(Hi‘))uv"}'b[(Hl)uu—E] = 0,

which permit nonvanishing solutions for ¢ and b
only if the determinant

(H)wu—E
%(H3)uv

This leads to the energy of the triplet state

%(Hb‘)uv _
(Hl)uu—E

E=(H1)uui%(H3)uv- (24)

In nuclear problems, where present evidence
indicates that the spin forces are subordinate to
ordinary and Majorana exchange forces, the
second term in (24) may be treated as a perturba-
tion. Thus we shall first concentrate our effort
upon the problem of choosing a function # which
will minimize H; regardless of the term (H3) 4o

In line with the general method of this paper,
u is taken to be a linear combination of functions

H. MARGENAU AND W. A. TYRRELL, JR.

Of the type ¢(l1m1n1, 1)(!)(121%27’12, 2)¢(l3m3n3, 3).
The symmetry with respect to permutations of
particles required in # may easily be seen to
demand that l3+m3+ns be odd, and that the
corresponding sums with subscripts 1 and 2 be
even. Of course none of the triplet functions
combine with the ground state in the present
approximation, so that we are again confronted
with the problem of finding the lowest possible
energy within a given class of variation functions.
We must thus look for the lowest root of the
resulting secular equation. Since no stable state
is likely to result, only two functions have been
used in constructing % :

Y= ¢ooo(1)¢ooo(2)¢1oo(3)
Vo= 200(1) P000(2) P100(3).

In view of the symmetry of these functions
with respect to Pz, and their antisymmetry with
respect to P34, one may write, by using (22)
and the notation R, S, T, U, V, W previously
developed,

H,=Exin+A{(m+30)(R+S+T+U)M
+w+30)(R+S+T+D)7
+m+w—b—h) V¥ +(m+h—w—0) W™},
The matrix elements for R, S, T, and U are equal ;
there results, on calculation of R;;, Vi; and Wiy,

the following expression for the diagonal element
Of H1 Wlth \[/13

(H1)11=405(6+5)\)0'

+2af et i 11|

g

Ao+3
+(w+%b)[1+>\————](rw)3}
A2 —N)o-+1

+A{ (m4+w—b—h)

A
S (mh—w—b)— }1}3. (25)
No+1

To carry through the numerical work it be-
comes necessary to adopt a set of nuclear con-
stants. They may be fixed with a minimum of
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F1G. 4. Energy of 3P state in Mev, for A=0.9 (groove).
a: Variational energy with one function: Hyi; b: Hip
+31(Hs)uv; c: Approximate locus of E with inclusion of ..

uncertainty if we utilize

(a) the fact that b+k=g where g is the param-
eter determining the triplet-singlet separa-
tion of the deuteron levels;

(b) the Breit-Feenberg! inequality

m—+2h=4w-+2b;
(c) the Kemmer' inequality  m-+h=2w+20b;
(d) the condition wt+m+b+h=1.

The value most widely adopted for g is 0.22.
We wish to point out that there is considerable
uncertainty connected with this choice. As shown
previously in this paper, it will not give sufficient
binding energy for H?® and the alpha-particle.’
For the present let us take a compromise be-
tween the customary value and that deduced in
an earlier section, and adopt g=0.20. As to the
inequalities (b) and (c), it was pointed out by
Inglis! and confirmed by more detailed calcula-
tions™ that the best, though still quite poor,
approach to the binding energy of Li® is obtain-
able by taking the equality signs to be valid.
This fixes the values to be

w=—2/15, m=14/15, b=7/15, h=—4/15.
The constant 4 is of course determined from

17 N. Kemmer, Nature 140, 192 (1937).

18 The value recently adopted by Heisenberg, Natur-
wiss. 25, 749 (1937), g=0.25, is even farther from achieving
this end.

19 K. G. Carroll and H. Margenau, Washington Meeting,
April 1938, paper 36.
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the theory of the deuteron when the range of
the forces is decided upon. As before, 4 will be
taken as 35.6 Mev.

When the expression (25) is evaluated as a
function of X\ and ¢ it is found to possess a mild
minimum with respect to \, and this occurs for
A=0.9. In this groove, however, it is a mono-
tone increasing function of ¢. (See Fig. 4, solid
curve.) Its behavior is quite similar to that of
Hy; for the 1P state.

Neglecting for the moment the effect of ¥,, we
investigate the term splitting due to the second
part of (24). We get

(H3)uo=—A{0(S+U—-T—R)¥
+r(S+U—-T—-R)M},,.
In the present case, —S=—U=T=R for both

Wigner and Majorana forces, so that

28 - 16
(H3)uv =——ARqu _—ARW,M.
15 15

Furthermore,
Ao+3
RWW:;—{x—— —1|(rW>3
AN2—=N)o+1 .
A
PRI P
4o+4+1

The effect of this splitting (for A=0.9) is shown
by the dotted curves above and below (H;)1; in
Fig. 4.

Finally, attention should be given to the
effect of the function ¥, upon these calculations.
For this purpose, (H1)12 has been computed for
A=0.9 and several values of ¢. Only a rough
estimate was made of the diagonal element
(H1)2s; but the accuracy is sufficient to justify
the statement that, with the inclusion of .,
the two dotted curves in Fig. 4 would be lowered
to an extent indicated approximately by (c).
The conclusion, then, is the same as that with
regard to the 'P state.

Changes in the form of the Hamiltonian would
alter these results appreciably. It seems, how-
ever, that stability of the P states cannot be
brought about by minor adjustments of w, m, b,
and k. But an increase in the range of the nuclear
forces would make them stable.



