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A Lower Limit for the Theoretical Energy of the Normal State of Helium
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The method of using a modiFication of %einstein's lower limit for the energy, as given
recently by one of the authors, has been applied to the normal state of helium, with the same
sequence of functions as was employed by Hylleraas in his upper limit calculations. The ninth
approximation leads to the lower limit —1.45508 Hylleraas units, which can very probably be
increased to —1.45446, whereas the upper limit found by Hylleraas is —1.45187. The bearing
of the results found on the probable location of the true eigenvalue is discussed, as is also the
applicability of the method in general.

INTRQDUGTIQN 2. THE LowER LIMIT FoR EIGENvALUEs

'T is well known that the variational method,
as ordinarily used in quantum mechanics,

gives an upper limit to the energy. It is evidently
desirable to be able to obtain also a lower limit,
since in no other way can the accuracy of the
result be judged with certainty, although the ap-
parent convergence of the sequence of values
obtained with the Ritz method may be a strong
indication. An expression for a lower limit has
been given by %einstein, ' although doubts have
been expressed concerning its trustworthiness. '
In a recent note by one of us, ' however, it was
shown that a rigorous proof of a modification of
&einstein's result can be given under assump-
tions which, though not rigorously proved, are
nevertheless of the type made implicitly in many
quantum-mechanical calculations, and are almost
certainly true. At the same time, a method of
applying this result was suggested. In this paper,
the method is used to 6nd a lower limit for the
normal state of helium. This problem is, perhaps,
of especial interest, since the well-known calcula-
tions of Hylleraas4 have furnished an upper
limit which is in very close agreement with the
experimental value —a fact which is often cited
as one of the striking successes of quantum
mechanics.

' D. H. Weinstein, Proc. Nat. Acad. Sci. 20, 529 (1934).
~ See, for instance, J. H. Bartlett, Phys. Rev. 51, 661

(1937), or W. Rornberg, Physik. Zeits. Sowjetunion 8, 516
(1935).

3 A. F. Stevenson, Phys. Rev. 53, 199 (1938).
4 E. A. Hylleraas, Zeits. f. Physik 54, 347 (1929); 65,

209 (1930).We shall refer to these two papers as H I and
H II, respectively.

Ke shall erst discuss the applicability of the
method in general. The result already proved' is
that if Eo is the lowest eigenvalue, then ZO~L,
where the lower limit L is given in terms of a
normalized trial function P by

I.= n —(Ig —2nIg+ n'):
where

Iq= t QHPdr, I2= I (IZQ)2dr,

and n is any number —(Zo+Zi)/2, where 8& is
that eigenvalue nearest to Zo (and below the
continuous spectrum) which has the same sym-
metry characteristics (with respect to permuta-
tion, rotation of axes, etc.) as the eigenfunction
corresponding to Zo (and which are supposed to
have been correctly reproduced in the trial
function).

A somewhat more general result, proved in an
analogous manner, is the following: let the
equation be HQ=Zpg where H is self-adjoint in
the complex sense

fgHfgdr= ' f2FI fgdr ~,
(t

and let Bo, E1, . be the eigenvalues, arranged
in ascending order of magnitude, whose eigen-
functions $0, P&, have all the same symmetry
characteristics. Then if P is a trial function,
normalized in the sense

r
~ P ~'pdr =1,
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and which is accurately orthogonal to &0,

P„ i the expression (1) furnishes a lower limit for
the eigenvalue E„,where now

(E„+E„+i)/2.

We assume that 8 +& lies below the continuous
spectrum, if there is any. '

For the remainder of this section, we shall
confine ourselves to the lowest eigenvalue for
simplicity. The expression (1), for given P, in-
creases steadily' with n, so that the best value of o,

is its greatest allowable one, namely (Eo+Ei)/2.
In order to apply (1), we therefore first fix n,
choosing the greatest value for which the in-

equality n~(EO+Ei)/2 is safely satisfied, and
then determine P so that L is a maximum, i.e.,

so that

I2 —2nI& ——minimum. (2)

The condition (2) lends itself to the Ritz
method in the same way as the more usual upper
limit method. %einstein's original expression
corresponds to the value n= I~, which is justified
if Ii~(EO+Ei)/2. ' Romberg' has proposed the
empirical expression —I&2 as a lower limit, which
is obtained from (1) with n = 0. As already
pointed out, ' Romberg's expression depends on
the zero of energy; it can, in fact, always be made
to fail by proper choice of this zero. Ordinarily,
it is true, the zero is chosen to be at some stage of
ionization, but examples can be given where it
fails even when this "natural" choice is made. ~

'The result E„~n+(I2—2nI1+a2)& provided a&E,
may be proved analogously (cf. Weinstein, reference 1).
But this upper limit increases steadily with u, so that the
best value is reached for a= —~, which gives E ~Ir,
which is the usual upper limit expression.

'The geometrical picture is useful: L,, plotted against
n, is a branch of a hyperbola which has the lines L=I1,
L=I&+2(o.—I1) as asymptotes. The smaller the quantity
I2 —I1', the closer the hyperbola approaches its asymptotes.
In the limiting case of I2=IP (exact solution), the hyper-
bola degenerates into its asymptotes, and L =ED for any
a ~ED.

This restriction was mentioned by Weinstein, Phys.
Rev. 41, 839 (1932).

8 W. Rornberg, reference 2.' Thus consider the lowest state of the hydrogen atom,
with the trial function P=r'e I'"

~ Then not only does
Romberg's expression fail for sufficiently small k (this is
always so when a scale factor is used), but it even fails for
the value of k which is "best" from the point of view of
minimizing the upper limit.

Thus although Romberg's expression may well
be correct in particular cases, it is clear that no
reliance can be placed on it in general. We may
here mention that Romberg's' example purport-
ing to show that Weinstein s expression (with
n=Ii) may fail, is not valid, for the restriction
Ii—(Eo+Ei)/2 has not been taken into ac-
count; when this is done, no contradiction is
obtained.

The lower limit (1) will usually only be a good
approximation to the eigenvalue Eo if the "mean
square deviation"

(
I, I,'= '—t(H I )P]'d—

is small. It is clear that this is a more stringent
requirement on P than is necessary to make the
"mean energy" I& a good approximation, so that
we may expect that, with any given trial func-
tion, the upper limit will give a better result than
the lower limit. It is possible that an exception
to this statement might occur if E~ lies far above
Eo, so that a large value of n could be taken.
Moreover, the lower limit is more laborious to
calculate than the upper, so that the present
method cannot compete with the more usual one
if it is merely desired to find an approximation
to the energy, but is only of value when limits
to the error are required. It is possible, also, that
the function obtained by the lower limit method

may be a better approximation to the true eigen-
function for some purposes, since it probably
yields a function whose derivatives represent
more closely the actual derivatives. "

3. APPLICATION TO THE NORMAL STATE

OV HELIUM

We shall use the notation and units of Hyl-
leraas, namely: unit of length =ao/4, unit
of energy =4 rydbergs; and for coordinates:
s = rj+r2, t = rr —r2, u = r r 2. The Hamiltonian is
H = T+ V, where the kinetic and potential energy
operators are given by"

"Cf. the discussion by James and Coolidge, Phys. Rev.
51, 860 (1937).

"These results follow, e.g. , from the variational prin-
ciple given in H I.
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g2P g2P g2P g(u2 (2) g2P—8T4'= + + +2
Bs' Bf,' Bu' u (s' —t') asau

where X=I2—2aIi, A,;=~ Tg, Tp, cir,

t(s —u2) 82$ 4s BP+2- +
u(s' —t') Btdu s' PBs—

4t BP 2 BP—+——
s' —t' Bt n 9u

16s 2
+—p.

S' —t2 I
For the trial function, we choose, with Hyl- The symbol

~
dr in (6) denotes

leraas, "
P=y(ks, kt, ku),

where p(s, t, u) =e '"&& (polynomial in s, t', u)

=pc p„(s, t, u), for example. (4)
n=o

The following nine functions were used:

pi= (1/6)se ",
y3 = (1/24) t'e —'~'

y4 ——(1/2 )4s'e '"p y5 ——(1/24)u'e '",

@6
——(1/24)sue " @ = (1/120)t'uc —'~'

$8= (1/120)u'e '~'

the numerical factors being inserted for con-
venience and to accord with H II.

Substituting (3) and (4) in the variational
principle (2), and minimizing with respect to the
c's, we obtain, in the usual way, the determi-
nantal equation

~

k'X;, +k'a, ,+k2C, ,

~dr =, f ds du dt u(s' —t')
o o o

the factor 8 being introduced for convenience and
to accord with H II.

The integrals 3f, I', N are given at once from
the tables in H IP' (though the integrals M, I'
were calculated independently as a check). The
somewhat laborious integrals A, 8, C were not
previously available, and were calculated and
carefully checked. The results are given in

Table I '4

Equation (5) must be solved for X and the
lowest root minimized with respect to k. The
lower limit is then immediately given by I.=n
—(X+n')'*. The constant n must first be fixed.
As regards the ground state, the results of the
present paper justify u posteriori the assumption
that Bo& —1.455, while for the level E~—in this
case the 1s2s'S level —the experimental value is
about —1.073, while the theoretical calculation
of Hylleraas and Undheim gave —1.07245, which
is known to be too high. "Thus the value 0.= —1.3
is seen to allow an ample margin for safety, while
the value o.= —1.27 is in all probability also
allowable. The detailed calculations were all
made with the value n= —1.3, but in the final

"The Hylleraas function is such that HP has singular-
ities which are not, of course, present for the correct
eigenfunction, and it might be thought that this would
a6ect the lower limit more adversely than the upper. It
could be avoided, for instance, by multiplying the function
by the factor u2(s~ —t2)2. But this would introduce nodes
into the function which should not be there and would
also make the calculations more laborious. It was decided,
therefore, to use the original Hylleraas functions.

"Our M, N are precisely the same as those of H II,
while our P;; =L';;/2 —L;; in the notation of that paper.

'4 The integrals are all either rational numbers or else
linear functions of the quantities log 2 or ~' with rational
coefficients. As some of the expressions are quite com-
plicated, however, they have all been given in decimal
form to 8 places. The last figure is uncertain in some cases.

» See, for instance, H. Bethe, Handbuch der Physik,
second edition, Vol. 24, p. 366.
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TABLE I. Values of z'ntegrals A, B and. C.

v Afg

00 12.00000000
01 8.00000000
02 9.83333333
03 12,66666667
04 3.33333333
05 8.00000000
06 6.20833333
07 11.90000000
08 6.50000000
11 11.55555556
12 11.38888889
13 15.11111111
14 11.55555556
15 13.33333333
16 12.66666667
17 18.63333333
18 14.16666667
22 17.49127392
23 21.38888889
24 10.11111111
25 20.18539082
26 17.49127392
27 25.08120397

Bg

—28.50000000—28.50000000—27.67602874—23.25000000—26.25000000—25.41666667—26.26170260—22.8/404311—22.90842587—41.00000000—38.78713985—38.75000000—51.25000000—46.25000000—49.01560346—46.30118296—51.78070978—39.88888889—40.25011976—47.95224618—49.73626534
-49.86111111—48.62222222

Cg

18.66666667
24.88888889
20.53713985
11.75555556
31.11111111
22.00000000
25.67142482
12.65570978
23.20009254
41.48148148
34.22856642
23.51111111
62.22222222
44.00000000
51.34284963
29.52998949
54.13354925
29.33333333
21.09284963
51.34284963
38.66682089
44.00000000
26.88888889

28 21.33333333
33 46.22222222
34 15.11111111
3S 30.66666667
36 24.34722222
37 59.37222222
38 40.31666667
44 19.55555556
45 17.33333333
46 18.19444444
47 24.49444444
48 24.08333333
55 32.88888889
56 27.17618296
57 43.90641921
58 44.97246898
66 25.38383498
67 35.57442380
68 36.26666667
77 90.85444620
78 68.37333333
88 76.16000000

—57.33333333
64.58333333—56.91666667—60.75000000—59.68380873
89.51131767
84.22564774—82.50000000
71.69444444
77.05922055—80.57276727—96.91966036
78.69444444
77.08933885—87.29687209—110.62808623
78.30555556—85.08888889—106.40000000—143.73111111—140.58000000—184.06000000

Cg)

48.44444444
25.75238095
41.14444444
33.61111111
36.91248685
38.19609000
49.51987627

108 88888889
77,00000000
89.84998685
59.05997890

108.26709849
60.55555556
67.66693655
49.51987627
87.90308623
7'7.00000000
53.77777778
96.88888889
64.24000000
82.80000000

145.09333333

approximation the value o.= —1.27 was also
considered;

As regards the scale factor k, the upper limit
calculation (H I and H II) gives k =0.844 in first
approximation (i.e. , with one function), and
k =0.9 for the higher approximations. In our case,
the erst approximation gave k =0.907, and trials
with different values of k for the third approxi-
mation gave a minimum for X at k =0.935. The
value k =0.93 was therefore adopted for the sixth
and ninth approximations.

The results obtained, from 1, 3, 6, and 9 func-
tions are given in Table II, where the upper
limits found by Hylleraas are also given for
comparison. We also give (except for the final
approximation) the lower limit obta, ined by using
the Hylleraas "upper limit" function; the value
for the sixth approximation is obtained by using
the value of I2 calculated by Bartlett, Gibbons,
and Dunn" for this particular case. The improve-
ment obtained by maximizing L directly is seen
to be signihcant.

Our results, combined with those of Hylleraas,
enable us to say with certainty that the lowest
eigenvalue lies between the limits

—1.45508 &Z, & —1.45187,

FUNCTIONS
USED

@o
po, $2, @3
A —4~
4'o —@s

UPPER LIMIT
(H YLLERAAS)

—1.42188—1.45122—1.45162—1.45187

LOWER LIMIT

—1.77015—1.47407—1.46073—1.45508

LOWER LIMIT,
WITH

UPPER LIMIT
FUNCTION

—1.7896—1.4864—1.46519

the "spread" between these values being 0.174
ev. We can improve our value slightly by using
the value n= —1.27 (cf. above). The new value
of I was estimated approximately from the hrst
order formula

8I.= [I—(n Ii)/(Ig —2nIi+n—') l]8n

and utilization of the Hylleraas value —1.45187
for Ii. (Actually it can be seen that a complete
recalculation of L, with the new value of o. would
yield a slightly better' value for I). We thus
obtain the limits

-1.45446 &E,& -1.45187.

The spread is then 0.140 ev.
It has been shown by Coolidge and James'7

that the use of the Ritz method with the Hyl-

TABLE II. Upper and lower bounds for the energy of the
normal state of helium. Unit of energy =4 Rydbergs.

' J. H. Bartlett, J. J. Gibbons, and C. G. Dunn, Phys.
Rev. 47, 679 (1935).

"A. S. Coolidge and H. M. James, Phys. Rev. 51. 855
(1937).
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leraas functions yieMs an upper limit which con-
verges to the true eigenvalue Eo, and their
proof can easily be extended to show that the
lower limit must also converge to Eo provided
Eo(n —(Eo+E&)/2. The spread between the
limits in either (7) or (8) is, however, much
greater than the -experimental error, so that it
cannot be said that complete finality in the
helium problem has yet been reached. To carry
the approximation farther would be very la-
borious. Nevertheless, it is probable that Eo lies
close to the Hylleraas value —1.45187, for, as
mentioned above, the upper limit is almost cer-
tainly a better approximation than the lower limit

at any stage of the process, and further, the trend
of the values in Table II indicates that the upper
limit sequence has converged much more nearly
to its limiting value than has the lower limit
sequence. However, the fact that the convergence
of the latter has also slowed up considerably in

going from the sixth to the ninth approximation
iridicates that possibly Eo does not lie quite so
close to the Hylleraas value as has been generally
supposed. On the other hand, the Hylleraas value
agrees very closely with the experimental'value
when the small corrections due to relativity and
nuclear motion are included. "

's H. Bethe, reference 15, 359.
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The Effect of a Direct Electric Field on the Lane Diffraction Photograms

A. NEMEJcovA. AND J. BROz
Institute of Spectroscopy of CharLes University, Prague, CsechosLovakia

(Received April 20, 1938}

The effect of a direct electric field (d.e.f.) on the Laue
photograms of silica, mica and gypsum crystals has been
investigated. It was found that under the action of a d.e.f.
(1) the intensity of the Laue reflections is increased, (2) the
central spot (which is caused by the rays passing directly
through the crystal and the rays reflected backward) is
made narrower. If the d.e.f. was applied to the crystals
through Al coatings deposited by evaporation on both
surfaces of the crystals, the narrowing of the central spot
increased only up to a certain intensity of the d.e.f. used.
In this case also a time influence was observed. That is to
say, if the d.e.f. was applied for a longer time or if suffi-
ciently aged Al coatings were used, the difference in the

central spot with and without the d.e.f. disappeared. It was
proved that the observed narrowing of the central spot is
caused by the alternations provoked in the crystal lattice
itself by the d.e.f. and not by the specific properties of
the Al coatings. This was done by using instead of the Al

coatings obtained by evaporation thin foils of Al pressed
on both crystal surfaces for the application of the d.e.f.
In this case also the narrowing of the central spot was ob-
served but no time influence was found. The observed
phenomena are explained partly by the perfection of the
crystal lattice, partly by the shift of the positive and
negative ions of the crystal and the positive metallic ions
of the deposited Al coatings, which take place in a d.e.f.

' ANY authors have studied the influence of
electric oscillations, generated in piezo-

electric crystals by means of an alternating
electric field, on the intensities and the structure
of the Laue reflections. ' It has been found that
under the a'ction of electric oscillations the
intensity of the Laue spots increases in their
intermediate parts, which are due to the reflec-

~ E.g. , Fox and Carr, Phys. Rev. 3'7, 1622 (1931);Colby
and Harris, Phys. Rev. 43, 562 (1933); Fox and Cork,
Phys. Rev. 38, 1420 (1931);Barrett and Howe, Phys. Rev.
39, 889 (1932); Nishikawa, Sakisaka, Sumoto, Phys. Rev.
43, 363 (1933); jauncey and Deming, Phys. Rev. 48, 462
(1935}.

tion of the interior part of the oscillating crystal
plate under investigation. Besides this, I'ox and
Fraser' have ascertained that at the same time a
widening of the central spot mainly due to the
primary x-ray beam takes place. An explanation
of these observed phenomena was given' by
assuming that the perfection of the crystal lattice
is disturbed, by electric oscillations not only on
both surfaces of the crystal plate but also in its
interior part which thus contributes to the
increase of the intensity of the Laue reflections.

' Fox and Fraser, Phys. Rev. 4'7, 1.5 (1935).' Langer, Phys. Rev. 38, 573 (1931);49, 206 (1936).


