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The Process of Diffusion in a Centrifugal Field of Force. II
WILLIAM J. ARCHIBALD

Eouss PhysicaL Laboratory, University of Virginia, Charlottest'ille, Virginia

{Received June 13, 1938)

The general equation for the settling of particles and molecules in a liquid suspension or ideal
solution has been solved for the case of a cell with radial sides and two bounding cylindrical
ends. A set of curves is given which shows the concentration at all points in the cell for different
values of the time.

''N a previous article' the equation for the
~ - settling of particles and molecules in a liquid
suspension or ideal solution in a centrifugal 6eld
of force was solved for the case of a sector shaped
cell extending to the center of the centrifuge.
It is the object of the present paper to find a
solution of this equation for the case of a cell
with radial sides and two bounding cylindrical
ends. It is of great practical importance to ob-
tain the solution for a cell of this type since this
is the kind most commonly used in experimental
determinations of molecular weights by the use
of the ultracentrifuge. A solution based on a
perturbation method has recently been given, '
but the perturbation imposes such severe re-
strictions upon the quantities involved that the
results are of mathematical interest only and are
of little importance for comparison with experi-
mental results.

The equation to be considered is'

1 8 /' Bc $ Bc
D —M rsc-

r Br & Br , J Bt

in which c is the concentration of the solution, s
the sedimentation constant, D the diHusion

'constant, co the angular velocity of the rotor,
and r the distance from the center of rotation to
any point in the cell. (For a more precise defini-
tion of the quantities involved the reader is
referred to the previous article' mentioned
a.bove. ) The solution of (1) will give the concen-
tration c as a function of r and t.

An acceptable solution, c(r, 1), must satisfy the
following boundary conditions; (i) the net flow
of dissolved substance through each cylindrical
bounding surface is zero. This condition may be

' Archibald, Phys. Rev, 53, 746 (1938).
2 S.Oka, Proc. Physico-Mat. Soc., Japan 19, 1094 {1937).' Lamm, Arkiv. Mat. , Astron. , Fysik 21B, No. 2 (1929).
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expressed mathematically by saying that

Bc——brc=o for r=
Bf r2

where rl and r2 are the coordinates of the inner
and outer bounding surfaces, respectively, and
where b=cv's/D. (ii) When t=0 the function
c(r, t) represents an arbitrary initial distribution
of concentration which is assumed to be known.

It can be shown' that a particular solution,
c(r, t), of (1) is

c(r, t) =M(n; 1; s)e& -'&' (r=2aPst), (3)

where a is a constant which is to be determined
from the boundary conditions, and where
M(n,'y; s) is a solution of the differential
equation

d'M )y p dM n ( br'y—-M=o
ds' (s & ds' s I 2)

In the case of the cell extending to the center of
the rotor only that solution of (4) which is
bounded at the origin was required. However, for
the type of cell under discussion here, the rela-
tion (2) must be satisfied for two different values
of r. Consequently it will be necessary to use the
complete solution of (4), and the usefulness of
the final result will depend in great measure
upon how successful we are in our search for a
solution which possesses simple and convenient
properties.

In terms of the new variable s the first bound-
ary condition becomes

—M(n; 1;s) —M(n; 1; s) =0
d8

"re i2/2 =e
for s= (5)

br~'/2 =b.
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From the theory of differential equations

3I(n; y; z) =A F(n; y; s)+BW(n; y; s), (6)

where A and 8 are constants and where F(n;
p; s) and W(n; y; z) are two independent solu-
tions of Eq. (4). The solution, bounded at the
origin, is the conHuent hypergeometric series; vis.

where

r(y) f
sq-

Wi(n; y;s) =
}

1 ——
}

e't &dt,
-

2~i, E t)

and the contour C is a path in the t plane which
comes from —~, encircles the point t=0 once
in a counter-clockwise direction and returns to
—~, S'2 is given by the same integrand, and a
path that comes from —0-, encircles the point
t,=s once in a counter-clockwise direction and'

returns to —~.
It can be shown' that 8'I and 8'2 are two

independent solutions of Eq. (4). Consequently
we are at liberty to choose for our function
W(n, y; s) either Wi or Wz or a linear combina-
tion of them both. However, for. the purpose in
hand, we are restricted to a choice which will

give a real value for W(n; y; s) whenever s is real.
Such a choice is the following:

W(n, p; s) =~ cot ~n Wi(n; p; s)

—krW2(n; y; s). (7)
4 Webb and Airey, Phil. Mag. 36, 129 (1919).' Mott and Massey, Atomic Collisions (1933), p. 36.

Whittaker and Watson, Modern Analysis (1927), p.
343.

n n(n+1)
F(n; y; s) = 1+ s+ s +

1 v 1 2 v(v+1)

A list of recurrence formulae for this function
have been given by Webb and Airey. 4

Several methods are available for determining
a second solution W(n; y; s) but not all of them
lead to forms which are useful. If possible we
should like the function W(n; y; s) to possess the
same recurrence formulae as F(n; y; s). Such a
function may be found in the following manner:

F(n', 7; z) can be expressed as the sum of two
contour integrals aa follows' (y is assumed to be a
positive integer):

F(n, y; s) = Wi(n, y; z) +Wz(n, y; s),

+ 2 F.Q-s",
n=1

where

r(n+n) r(y) 1p—
r(n) r(n+y) n!

(1 1 1
Q.-}-+ +" +

(n n+1 n+n —1j
p1 1

~ ~ ~ ~

&v v+1

0() = r (&)/r(&)

1

~+n Ii—
—(1+z+ +1/&), .

C= Euler's constant = 0.5772

(Extensive tables of the P function are avail-
able. ') It is the presence of the P functions in the
-expression for W(n; y; s) which renders this
solution a particularly suitable one. If they are
omitted the expression is still a solution of
Eq. (4) but the recurrence formulae (8) are no
longer satisfied.

Consequently we choose (6) as the general
solution of Eq. (4) where the functions F and W'

7 Cf. an article by the author to appear in a subsequent
issue of Phil. Mag.

Davis, Tables of the Higher Mathematical Functions
(1933).

It can be shown that W(n' , y; s) as defined in (7)
shares with F(n, y; s) the three properties listed
below, the first two of which will be needed
subsequently. The third has been very useful for
purposes of computation.

(d/ds) F(n', y; s) = (n/y) F(n+1; y+1; s), (8a)

n F(n+1; y+1; z) = (n y) F(—n, y+1; s)

+yF(n; y; s), (8b)

nF(n+1; y; s) = (s+2n y)F(—n; y; s)

+(y —n)F(n —1;y; s). (8c)

The expression for W(n; p; s) is'

W(n' ~' z) =F(n'7' s) I log s+0(1—n) —k(v)+ C}

„,r(~)r(n+n —&+1)r(~—n —1)(—1)-+~+p-
n=o r (n) n!s&-"-'
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are defined above. If the expression for c(r, t) Thus (12) may be written as
given by Eq. (3) be substituted in the boundary
condition (5) the following relations must hold:

c (s, t) =P A „M(u„;1;s) e~
n=oA {F'(n, 1;a) F(n—', 1;a) }

+B{W'(a,. 1;a) —W(n; 1;a) } =0,
(9

A {F'(n; 1; b) —F(n, 1; b) }

+B{W'(n, 1; b) —W(a; 1; b) } = 0.

However, by virtue of (8a) and (8b)

F (n', 1;a) —F(n ,'1; a) = (a —1)F(n, 2; a,),

where M(n, 1; s) = F(n ', 1; s) —Z W(o; ,'1; s).

The coefhcients A „are determined by the ap-
plication of the se'cond boundary condition.
For t =0 we have

c(s, o) = Q A M(n„, 1; s),
n=o

W'(a' , 1;a) —W(a ', 1; a) = (a —1)W(a', 2; a) .

These two equations enable (9) to be expressed
in the simple form,

(a —1) {AF(a; 2; a) +BW(n; 2; a) }= 0,
(10)

(n —1){AF(n, 2; b)+BW(n' , 2; b) }=0.

Thus one permissible value of n is 0.= 1.
The system of Eqs (10) can have roots other

than the trivial ones A =0, 8=0 only if the
determinant

where c(s, 0) is the initial distribution of concen-
tration which will be taken to be constant and
equal to co. It can be shown' that the functions
M(a', 1; s) are orthogonal in the range a&~s&&b
with the weight factor e '. Thus the coeFficient
A„ is given by

b

co e 'M(a„, 1; s)Cs

e *{M(n, 1; s) }'Cs

F(a, 2; a), W(n, 2; a)

F(n', 2; b), W(n, 2; b)'
is equal to zero. Thus the permissible values of ~
(in addition to a= 1) are those values of a which
satisfy the equation

F(n; 2; a) W(n, 2; b)

—F(n, 2; b) W(n, 2; a) =f(a) =0. (11)

The two integrals occurring in the above ex-
pression may be integrated by methods outlined
in the previous article by the author. ' However,
only for the case of the integral occurring in the
numerator does a simplification result from so
doing. The-other integral can be more easily
evaluated by numerical integration. For the first
integral we get

Consequently we may take as the complete solu- e—'M o.„,1; s Ck

tion of Eq. (1) 0

= (1/a„) {be 'M(u„; 1; b) —ae M(a, 1;a) }.
c(s, t) =P {A„F(a„;1; s)

n=o Thus the complete solution of Eq. (1) which
+B~W(~» 1i s) «e' " ""~ ( 2) satisfies the boundary conditions is

where the a„'s are the roots of the equation

(~-1)f(~)=0.

From Eq. (10) we have

F(n„; 2; a)
A„= —E„A„.

W(n„, 2; a)

c ~ be bM(n„', 1; b) —ae 'M(a~', 1;a)

Qp n=o

cx„JI e '{M(n„,1; s) }'Cs

XM(n„, 1; s) exp ((a.—1)r) =Q T .. (14)
n=p
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C

1'(v)
Wg(a; y; s) e's &G(1 —a, 7 —cx', s),

F(a)

where 6 denotes the semi-convergent series

p~ p(p+1) ~(~+1)
G(p, q;s) =1+ +

z1~ z'2 J

~ ~ ~

---- g~. iO

I t I I I I

5.6 6.,0
Fir.. 1. Values of concentration change c/co {co=initial

constant concentration) as a function of position
z{=co'sr'/2D) for various values of r{= 2co2st) when
a=5.0 and b=6.2.

The term for which a = 1 can be greatly
simplified. We have

F(1;2; a)
M(1; 1; s) = F(1; 1; z) — W(1; 1; s) =e'

W(1; 2;a)

since W(1; 2; a) = ~ and F(1;1; s) = e*.Thus we

may write (14) in the form

C 6 —0
e*+P T~„,

Cp 8 —8
(15)

'Mott and Massey, reference 5, p. 38.

where the n„'s are the roots of Eq. (11).
In actual problems the constants a and b are

rather large and z which lies between them is also
large. Hence it would be advantageous to have
asymptotic expansions for the functions F(n;
p; s) and W(a; y; s). These expansions are avail-
able since it carr be shown that'

a M(1 —Vp)~' ri2

2RT r2'

The numerical values are a=5.0 and b=6.2.
The curves show that the concentration has
reached its equilibrium value to a high degree of
approximation when r(=2&a'st) has the value
O. IO. Since s =5 &(10 " for carbon-monoxide
hemoglobin this corresponds to a time of
33 hours. In the actual experiment an ex-
ponential distribution of concentration had
been reached after a period of 39 hours. This
indicates an excellent agreement between theory
and experiment.

The author wishes to express his appreciation
to Dr. Beams who suggested the importance of
this problem and to the School of Physics of the
University of Virginia for the facilities provided.

' Svedberg, article in Colloidal Chemistry, Theoretical
and A pplied, edited by Alexander, Vol. 1, p. 851.

The recurrence formula (8c) and the asymptotic.
expansions for the functions involved enable
computations to' be made from Eq. (15) in a
straightforward and relatively simple manner.
The series (15) converges so rapidly that two or
three terms give good accuracy.

The curves in Fig. 1 were calculated from
Eq. (15). The constants were chosen to corre-
spond to an actual experiment described by
Svedberg, "in which the dissolved substance was
carbon-monoxide hemoglobin which has a molec-
ular weight 2[I=68,000 and a partial specific
volume V= 0.749 cm'/g. For the cell used
r~ =4.16 cm and r2 ——4.61 cm. Also co = 2907r and
T= 293'K. These data are sufficient to determine
the two constants a and b. We have'


