ELASTIC CONSTANTS OF SODIUM

subsidiary loops there is hysteresis and magnetic
viscosity without any Barkhausen effect.

According to the domain theory of ferro-
magnetism a material may change its intensity of
magnetization by three different processes:
(1) reversal of the saturated magnetization of
small domains, (2) reorientation of the mag-
netization of the domains, (3) increase of size of
one domain at the expense of another. The first
process is supposed to produce the sudden
inductive jumps associated with the Barkhausen
effect. The last two processes may take place
slowly and continuously, so would not be
detected by the use of telephone receivers. It
appears, therefore, in view of the experiments
just described, that the phenomenon of magnetic
viscosity is involved in one or both of the two
last named processes, as well as in the first.

It is usually considered that process (2) occurs
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in strong fields, process (3) in weak fields.® For
the loop used in the present experiment there is
always a demagnetizing field present ; however, it
seems reasonable to suppose that process (3) is
largely responsible for the induction changes of
these small loops.

In this case the conclusion to be drawn is that
when the boundaries of domains move under the
influence of applied fields a certain time is
required for equilibrium to be attained after the
magnetic field ceases to change. These moving
boundaries would be the seat of eddy currents
and magnetostrictive strains, so that magnetic
viscosity would make its appearance in process
(3) as a result of the time required for the
disappearance of microscopic temperature gradi-
ents and the readjustment of the local strains.

8 F. Bloch, Zeits. f. Physik 74, 333 (1932); R. Becker,
Physik. Zeits. 33, 905 (1932).
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Methods are described for growing single crystals of sodium in the form of rods 4.7 mm in
diameter and 10 cm long, for handling the crystals in an atmosphere of helium, and for meas-

- uring the principal elastic moduli at iow temperatures. Values of the adiabatic and isothermal
moduli and constants are tabulated at ten degree intervals between 80°K and 210°K. The
value of the Debye characteristic temperature, calculated from the values of the elastic con-

stants at 80°K, is 164°K.

EXPERIMENTAL METHOD FOR MEASURING THE
Erastic CONSTANTS

COMPLETE description of the dynamical

method employed in this research has ap-
peared in previous issues of this journal.l Ac-
cordingly, it will suffice here briefly to review its
essential features, and their adaptation to the
present experimental problem. The specimen is
in the form of a right circular cylinder 4.7 mm in
diameter and a few centimeters long. The re-

* Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Columbia University.

1 Balamuth, Phys. Rev. 45, 715 (1934); Rose, Phys. Rev.
49, 50 (1936); Durand, Phys. Rev. 50, 449 (1936).

‘quired data are deduced from the observed
behavior of a separately excited composite
piezoelectric oscillator constructed by cementing
to one end of the specimen a suitably cut cylinder
of crystalline quartz of identical ‘cross-section.
Silver electrodes are chemically deposited in
proper position on the quartz, and the oscillator
is suspended wvertically by delicate supports
attached at the middle of the quartz cylinder.
One or more harmonic frequencies of free longi-
tudinal or torsional vibration of this system are
measured by observing the wvariation of the
electrical impedance of the composite oscillator
with the frequency of the applied voltage, and
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from these the fundamental frequencies, f, of free
longitudinal and torsional vibration of the speci-
men cylinder alone are calculated. The latter
quantities are related, respectively, to the
Young's modulus, E, and the torsion modulus, G,
of the specimen material for the direction of the
cylinder axis by the formula

2fL=(M/p)}, 1

where L is the length of the specimen cylinder, p
is the density, and M the elastic modulus. It
remains only to relate E and G to the principal
elastic moduli and elastic constants of the
crystal. .

Young’s modulus for an arbitrary direction in
a cubic crystal is related to the principal elastic
moduli by the formula?

1/E=511—28F, (2)
s=s11—312-—%544,

I'= o624 a?y?+ 6%,
and «, B8, v are the direction cosines with respect
to the principal crystal axes.

When torsional surface tractions are applied
across the end faces of a crystalline cylinder, the
resultant twist is, in general, accompanied by a
bend. This additional strain can be, and in static
measurements usually is, prevented by additional
contraints, but the relation between the torsion
modulus and the principal elastic moduli is quite
different according as this is or is not done. If
bending is not prevented

1/G=s4u+4sT, (3)

where

while if bending is prevented?
1/G = sy+4sT —252(T' — 42+ 3x) /(s —2sT), (4)

where x =B

At first it was thought that the torsional
vibration of the specimen cylinder would be
governed by the formula (3), and the experi-
mental results on the first three crystals grown
were not inconsistent with this view. The results
of subsequent experiments, however, showed
conclusively that the high frequency* torsional

2 Voigt, Lehrbuch der Kristalphysik, p. 739.

3 Goens and Schmidt, Naturwiss. 19, 520 (1931).

4 The frequencies employed lie between 28 and 55 kilo-
cycles.
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vibration of the specimen constituent of the
composite oscillator is governed instead by the
formula (4). The earlier error arose from the
fortuitous circumstance that the cylinder axes of
the three crystals lay very nearly in the (100),
(110) and (111) directions, for which directions
the two formulae are identical.

The elastic moduli and elastic constants are
related by the formulae,

C11= (511+S12)/(811—“312) (511+2812),
C12= ’—812/(511—512)(511+2812), (5)
Cyp= 1/844.

Lastly, the compressibility, k, is given by the
formula,
k=3(s1142512),
=3/(611+2012)-

The method yields immediately the adiabatic
moduli and constants. These are related to the
isothermal quantities by the formulae®

(6)

(S11)ad. — (S11)is. = (312)ud. - (S1z)is. =— Ta?/PCp,
(Clx)ad.-‘(cu)is.= (Clz)ad.—(cm)is., (7)
=Ta?/(pcp) (S11+2512)2,

where T is the absolute temperature, « is the
coefficient of linear expansion, ¢, is the specific
heat at constant pressure, and p is the density.
The adiabatic and isothermal s4 and c44 are the
same.

To recapitulate: The essential measurements
of the method are the fundamental frequencies of
the specimen, its length and density, and the
orientation of the cylinder axis in the crystal
lattice. In addition, the specimen cylinder must
be homogeneous and of uniform cross section.

PREPARATION OF THE CRYSTALS

The crystals are grown of Mallinckrodt
analytic reagent grade sodium triply distilled in
vacuum, with the rejection of the first and last
quarters of the distillate in the first distillation.
The still is constructed of Pyrex glass. Spectro-
scopic analysis shows the final product to contain
traces of copper, vanadium, and aluminum,
together with an amount of potassium which
defies quantitative chemical analysis. The second
distillation leaves the sodium in an ampule,
which is sealed off and placed in a Pyrex glass

5 Voigt, reference 2, p. 789.
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F1c. 1. Cross section of apparatus for growing
the sodium crystals.

tube connected with the upper chamber of the
apparatus diagrammed in Fig. 1. This apparatus
is evacuated and kept at about 125°C with an
enveloping furnace which has a glass front.

The ampule is broken in vacuum and the
sodium distilled into the upper chamber. The
bottom of this chamber is drawn out into a long
tube of about 1 mm bore, which projects down-
ward into a crucible and is closed at the top by a
nickel plated steel ball. The crucible is made
from a very thin walled glass tube, of the sort
used for the stems of hydrometer bulbs, carefully
selected for uniformity of bore.® The interior of
the crucible is thinly coated with Socony Super
Hecla mineral oil, previously boiled in vacuum in
the presence of sodium. The crucible hangs in a
nickel frame, suspended by a nickel chain which
passes over pulleys to an iron counterweight. The
position of the counterweight is controlled by a
solenoid, which can be raised or lowered either
manually or by a geared down electric motor.

When the distillation into the upper chamber
is complete, helium at about 2 mm pressure is
admitted above the molten sodium and the steel
ball is raised by an electromagnet. The crucible is
lowered steadily, by hand, as it fills, so that the
bottom of the filling tube remains only a few
millimeters below the surface of the sodium.
After the crucible is filled it is lowered electrically

6 The writers are indebted to the firm of Kessler and

Mumberg, of New York, for permission to make this
selection directly from their stock.
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out of the furnace, past the auxiliary heating coil
shown at the bottom of the figure, at the rate of
5 cm per hour. Helium is then admitted to the
lower chamber, the apparatus is opened at a
ground joint level with the top of the lowered
crucible, and the crucible is quickly capped with
soft wax in the emerging stream of helium. The
yield of good crystals, single over the entire 10 cm
of length, is about one in three. The crystals
appear to have no tendency to grow in any
preferred orientation.”

LocatioN ofF THE CYLINDER AXIS
CRYSTAL LATTICE

IN THE

The orientation of the cylinder axis with
respect to the principal crystal axes is obtained
by the measurement of four Laue x-ray trans-
mission photographs. The diffraction camera has
a G. E. Co. model CA 2 molybdenum x-ray tube
operated at 35 kv and 20 ma. The specimen-to-
film distance is 4.86 cm. Dupont film backed by a
Patterson fluorazure screen is used, and the
exposure time is 10 minutes.

The crystal, in the crucible, is set with its
cylinder axis normal to the x-ray beam, and the
pictures are taken after successive 90-degree
rotations of the cylinder about its own axis. The
spots are identified by comparison with the
admirable set of Laue transmission photographs
of a body-centered cubic lattice published by
Majima.? The three direction cosines of each
beam with respect to the crystal axes are
calculated by the method of least squares from
measurements of the radial distances of 8 to 12
spots from the center spot. The specimen-to-film
distance used in these calculations is obtained by
analysis of a picture taken through a cylinder of
crystalline NaCl, in which the cylinder axis
coincides accurately with a principal axis.

The four x-ray beams lie on the surface of a
cone whose axis is the cylinder axis and the
supplement of whose vertex angle is twice the
error in setting the cylinder axis normal to the
x-ray beam. If the latter were zero, the direction

-cosines of the cylinder axis would be those of the

7This method may be compared with that devised
independently by Andrade and Tsien, ‘‘The Glide of
Single Crystals of Sodium and Potassium,” Proc. Roy.
Soc. 163, 1 (1937).

8 Majima, Scientific Papers of the Institute of Physical
and Chemical Research, Vol. 7, p. 249.



296 S.

la _WORK BENCH

1 INCH

FiG. 2. Cross section of the chamber in which the crystals
are handled.

vector cross product of any two mutually
perpendicular x-ray beams. The values which are
adopted are the arithmetic means of the four
corresponding direction cosines obtained from the
four possible vector cross products among the
four x-ray beams.

The writers were rather surprised to discover
that the orientation of the cylinder axis can be
obtained in this manner with an accuracy of
about five minutes of arc.

HANDLING THE CRYSTALS

After the x-ray analysis the crystal is placed in
the handling chamber diagrammed in Fig. 2. The
chamber, which is cylindrical in form and built of
brass, is evacuated and filled with dry helium at
atmospheric pressure. The crystals are handled
through opposite holes in the chamber (shown by
the dotted lines of Fig. 2), with the hands and
arms encased in long obstetrical rubber gloves
whose openings are securely clamped about the
peripheries of the holes. The auxiliary chamber,
L, is a lock which permits the introduction of
crystals and tools to the chamber with a mini-
mum expenditure of helium.

The crystal is removed from the crucible and
cleaned with anhydrous ether kept standing in
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the presence of sodium. It is then laid in a
V block and cut to the desired length with a thin
strip of nickel under tension. The strip movesin a
transverse slot in the V block. The quartz
cylinder is prepared by coating one end with a
very thin film of Empire stopcock lubricant,?
which has been boiled in vacuum immediately
before use. The quartz and specimen cylinders
are laid end to end in the V block, and the join is
made with the specimen held gently in place, by
imparting a forward rotatory motion to the
quartz.

The quartz cylinder has minute diametrically
opposed transverse nicks at its center, and the
composite oscillator is mounted by engaging
these nicks with the jaws of a clip, shown at C,
Fig. 2. The jaws are constructed by stretching
fine wires horizontally across the forked lower
termini of adjacent light vertical strips of spring
metal. Two such strips are necessary for a
longitudinal and four for a torsional oscillator.

The oscillator is enclosed by joining the glass
tubes A4 (Fig. 2), and the mount lock is closed
by joining the glass tube B; to the brass tube Bs.
Lastly the envelope containing the mounted
oscillator is disengaged from the handling
chamber at the point W, where it rests on a
rubber washer, is removed and inserted in a
dewar of boiling liquid nitrogen or liquid oxygen,
or in the cryostat described in a previous
paper.1®

CALCULATION OF THE ErLAsTIC MODULI AND
CONSTANTS

The quantities which follow immediately from
the measurements made in the cryostat are the

TaBLE 1. Typical data on a single sodium crystal.

QUARTZ VELOCITY
No. n f X 1075 cm/sec.
i 5 11004 1.443
L II 3 13107 1.468
I 3 18187 1.472
11 2 18263 1.478
T 11T 2 20237 2.267
v 1 27837 2.253

9 Empire Laboratory Supply Co., New York.

10 Sjegel and Quimby, Phys. Rev. 54, 76 (1938). The
temperature of this cryostat is measured with a copper-
constantan thermocouple, calibrated by comparison with
a platinum resistance thermometer certificated by the
National Bureau of Standards.
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frequencies of longitudinal and torsional vibra-
tion of the specimen crystal cylinder. The length
of the cylinder at room temperature is measured
on a comparator. The value adopted for the
density of sodium at 20°C is 0.9712.1t The lengths
and densities at other temperatures are calculated
from these numbers and the data on the thermal
expansion of crystalline sodium previously pub-
lished in this journal.’® Corresponding values of
E and G are computed with Eq. (1).

Twelve crystals in all were examined in the
course of the present research. Of these, six were
investigated very thoroughly at the temperature
79°K, and contributed twenty-four values of E
and G at this temperature. Where possible
measurements were made with two different
longitudinal and two different torsional quartz
cylinders, and at two or more different harmonic
frequencies. A typical set of data is given in
Table I. The first column designates the quartz
cylinder by number, the second contains the
harmonic numbers, i.e., the approximate number
of half-waves of vibration in the specimen

TABLE 1I. Observed and computed values of the longi-

tudinal and torsional velocities in cylinders of crystal sodium
at 79°K.

LONGITUDINAL VELOCITY TORSIONAL VELOCITY
X 1075 cm/sec. X107 cm/sec.

T OBSERVED COMPUTED OBSERVED COMPUTED
0.0004 1.399 1.440 2.364 2.423
0.0130 1.465% 1.457 2.260* 2.342
0.1175 1.793 1.833
0.1476 1.795* 1.807 1.656* 1.680
0.1488 1.766 1.812 1.678 1.708
0.2128 2.104* 2.102 1.406* 1.389
0.2286 2.146 2.198 1.259 1.257
0.2491 1.148 1.149
0.2661 2.472 2.492 1.132 1.131
0.2907 2.780% 2.765 1.187* 1.181
0.3044 2.962 2.962 1.073 1.089
0.3145 3.206 3.137

* Indicates the mean of several observations.

cylinder, the third the measured fundamental
vibration frequency, and the last the calculated
velocity of propagation, V(=2fL).

The remaining six crystals contributed ten
values of £ and G at 79°K,? and all of the data

1 Richards and Brink, J. Am. Chem. Soc. 29, 117 (1907).

12 Instead of twelve. The occurrence of a parasitic mode
of vibration, feebly excited, vitiated the torsional measure-
ments on one of these crystals, and another was, after the
removal of a flaw, too short to permit reliable measurement
of E. One of the first six crystals was dropped before E
was measured.
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Fic. 3. The variation of f2 with temperature for the
torsional vibration of one of the crystals.

which show the variation of the elastic moduli
with temperature. The number is adequate, for
it is characteristic of the present experimental
method that the temperature variation of the
several elastic moduli can be measured with
considerably gredter accuracy than their abso-
lute values. Imperfections in the specimen and
other sources of error affect the former measure-
ments less than the latter.

The adiabatic elastic moduli at 79°K were
evaluated by solving thirty-four equations of the
forms (2) and (4) simultaneously, by the method
of least squares, for the three unknown quantities
s11, S12 and ss. The concordance of the data on-
all twelve crystals is exhibited in Table II, in
which the observed propagation velocities may
be compared with those computed from the
values of the elastic moduli obtained in this
manner. The maximum deviation is 3.6 percent
and the average deviation is 1.3 percent. It will
be noted that, since the value of the orientation
factor, I', must lie between 0 and %, the range of
possible values is well covered by the twelve
crystals.

The variation of the elastic constants with
temperature is obtained as follows: The squares
of the observed frequencies, f, of longitudinal and
torsional vibration are plotted as functions of the
temperature. The observations on the six crystals
are thus represented by ten curves, of which that
shown in Fig. 3 is typical. Values of f? at ten
different temperatures between 80°K and 210°K
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Fi16. 4. The variation of the adiabatic elastic moduli of
sodium with temperature.

are read from each curve, and corresponding
values of E and G are calculated with Eq. (1).
These data yield ten sets of ten equations of the
forms (2) and (4), each set corresponding to a
single temperature. Each set of equations is
solved simultaneously, by the method of least
squares, for si1, s12 and su. The result of this
computation is shown by the curves of Fig. 4.
The absolute values of the elastic moduli at
79°K read from the curves of Fig. 4 differ slightly
from those previously computed, since the
former are based on ten observations and the
latter on thirty-four. Thus the values of s11, —s12
and sy at 80°K deduced from all observations
are, in units of 10~ cm?/dyne, 4.83, 2.09 and
1.69, respectively, while those deduced from the
ten observations alone are 4.91, 1.98 and 1.69.
However, these curves are used simply to
determine the ratios of the values of the moduli at
T°K to thevaluesat 79°K. The values hereinafter
recorded for the elastic moduli at 7°K are
obtained by applying the ratios obtained from
the curves of Fig. 4 to the values at 79°K
deduced from the thirty-four observations at
79°K in the manner previously described. The
concordance of the data from which the ratios
are evaluated is exhibited in Table III, in which
the observed ratios of the velocities at 80°K to
those at 210°K for the six crystals may be
compared with the ratios computed with the
values of the elastic moduli at 80°K and 210°K,
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thus obtained. The results confirm the remark
made above, that the present method yields a
more accurate determination of the temperature
variation of the elastic moduli than of their
absolute values. The maximum deviation in
Table II1is 1.5 percent and the average deviation
is°0.4 percent.

The isothermal moduli and constants are
computed from the adiabatic quantities with
Egs. (7), in which, since the difference is small,

TABLE III. The observed and computed ratios of the
longitudinal and torsional velocities at 80°K to those at 210°K
for six crystals.

LONGITUDINAL TORSIONAL
OBSERVED COMPUTED OBSERVED COMPUTED
1.073 1.065 1.060 1.060
1.052 1.053 1.086 1.101

1.072 1.075

1.061 1.061 1.060 1.064
1.061 1.059

1.070 1.071 1.086 1.078

the values p=1.0, ¢,=1.1 X107 and «=6.0 X105
are substituted.

REsuLTS

The elastic moduli and constants

The adiabatic and isothermal elastic moduli
and constants, and the isothermal compressibility,
are given as functions of the temperature in
Tables' IV and V. The estimated uncertainty in
the absolute values of si; and s4 is about 2
percent and of s;; about 3 percent. The precision
with which the tabulated values are given is
significant only for the calculation of the temper-
ature variation.

Fuchs® has given a quantum-theoretical calcu-
lation of the quantities (c11—c¢12) and ¢y for
sodium at 0°K, which yields the values 0.141 and
0.58, respectively, in units of 10" dynes/cm?. The
corresponding experimental values at 80°K are
0.145 and 0.59.

The compressibility

The accuracy of the present measurement of
the compressibility is very poor. A significant
figure is lost in the evaluation of the difference

13 Fuchs, Proc. Roy. Soc. 157, 444 (1937).
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quantity (si11+2s12), and the uncertainty in sz is
doubled. Thus a change of one percent in the
assumed values of s;; and s12 will, if the errors are
additive, change the calculated value of x from
1.98X 10~ to 1.70X10-%, The writers have
little doubt that the values given in Table V are
high.

Bridgman'* has measured the variation of the
compressibility of polycrystalline sodium with
pressure between 2000 and 20,000 kg/cm?. As the
pressure is lowered the compressibility increases
toward the (extrapolated) wvalue 1.7X101
cm?/dyne at zero pressure and room tempera-
ture. If the linear variation of compressibility
with temperature here found to hold between
80°K and 210°K be assumed to hold over the
entire range from 0°K to 293°K, then Bridgman's
value reduces at absolute zero to 1.2 X101, and
the value here found to 1.8 X101, A quantum-
theoretical calculation of the compressibility at
0°K" gives k=1.6X107L,

TABLE IV. The adiabatic elastic moduli and elastic con-
stants of sodium. The number of significant figures does not
indicate the accuracy of the absolute value.

ADIABATIC MODULI ADIABATIC CONSTANTS
X 101! cm2/dyne X 1071t dyne/cm?

T°K s11 —S12 S44 c1y c12 cas
80 | 4.826 | 2.087 | 1.685 | 0.608 | 0.463 | 0.593
90 | 4.861 | 2.102 | 1.705 | 0.603 | 0.459 | 0.586
100 | 4.898 | 2.118 | 1.726 | 0.598 | 0.456 | 0.579
110 | 4.937 | 2.134 | 1.747 | 0.593 | 0.451 | 0.572
120 | 4.975 | 2.151 1.770 | 0.589 | 0.448 | 0.565
130 | 5.014 | 2.168 | 1.793 | 0.585 | 0.445 | 0.558
140 | 5.054 | 2.186 | 1.818 | 0.581 | 0.443 | 0.550
150 | 5.094 | 2.205 | 1.846 | 0.579 | 0.442 | 0.542
160 | 5.135 | 2.224 | 1.874 | 0.576 | 0.440 | 0.534
170 | 5.177 | 2.243 | 1.904 | 0.572 | 0.437 | 0.525
180 | 5.220 | 2.262 | 1.936 | 0.568 | 0.434 | 0.516
190 | 5.263 | 2.281 | 1.968 | 0.564 | 0.431 | 0.508
200 | 5.308 | 2.301 | 2.002 | 0.560 | 0.428 | 0.499
210 | 5.354 | 2.321 | 2.037 | 0.555 | 0.425 | 0.491

14 Bridgman, Proc. Am. Acad. Arts and Sci. 70, 94 (1935).
15 Mott and Jones, The Theory of the Properties of Metals
and Alloys, p. 143.
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The Debye characteristic temperature

A calculation of the Debye characteristic
temperature from the elastic constants requires
the evaluation of the reciprocal cubes of each of
three propagation velocities, averaged over a unit
sphere in the crystal.!® The latter problem can
only be solved by approximate methods, whose
difficulty increases enormously when the ani-
sotropy of the crystal is large.’® In the present
instance the averages are calculated by simply
evaluating the velocities at 386 points on the
sphere and taking the arithmetic means. The
result at 0.80°K is, @3 =164°K. The value ob-
tained from specific heat data is ® =159°K.!"

TABLE V. The isothermal elastic moduli, constants, and
compressibility of sodium.

IS%/]I'HERMAL ICSOTHERMAL ISOTHER-
NSTAN <

X101t 2?n‘2n/‘(liyne X 1()911 dyneT/scm2 M;};E(S‘gﬁl_
i BILITY
T°K s1t —Ss12 cu c12 X101
80 4.829 2.084 0.601 0.456 1.98
90 4.864 2.099 0.597 0.453 2.00
100 4901 2.115 0.592 0.449 2.01
110 4.939 2.131 0.586 0.445 2.03
120 4,977 2.147 0.581 0.441 2.05
130 5.018 2.164 0.575 0.436 2.07
140 5.058 2.181 0.571 0.432 2.09
150 5.099 2.199 0.567 0.430 2.10
160 5.140 2.218 0.564 0.428 2.11
170 5.183 2.237 0.560 0.425 2.13
180 5.226 2.256 0.556 0.422 2.14
190 5.269 2.275 0.552 0.419 2.16
200 5.315 2.294 0.546 0.415 2.18
210 5.361 2.313 0.541 0.410 2.20

In conclusion, the writers gratefully acknowl-
edge their indebtedness to Dr. Don Kirkham and
Dr. Seymour Rosin for their help in the design
and construction of the diffraction camera and
handling chamber, and to the Ernest Kempton
Adams Fellowship Committee of Columbia
University for the financial assistance which
made this research possible.

16 Reference 15, p. 3.
17 Simon and Zeidler, Zeits. f. physik. Chemie 123, 403
(1926).



