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It is shown that the statistical theory of Parts I and II can be extended so as to give formulas
for the magnetization curve and other properties of an ideal reversible specimen, over the
range of field values in which magnetization proceeds by a displacement of the boundaries
between domains. The application to actual specimens is made by assuming that the reversible
properties of an actual specimen are identical with the properties, at the same magnetization,

' of an ideal specimen having the same initial susceptibility. This leads to a formula for the
reversible susceptibility of nickel and iron that was originally suggested by Gans and verified by
him experimentally, but for which it is believed no satisfactory derivation has hitherto been
offered. In the case of one nickel specimen and of cobalt, where the data do not follow the Gans
curve, formulas agreeing better with experiment are obtained by taking account of the aniso-
tropy of the domains. Reasons are given for believing that the replacement of variable by fixed

domain volumes, an arbitrary step taken in order to simplify the problem, is probably not
essential to the result.

HE behavior of ferromagnetic crystals at
fields of order of magnitude 10' oersteds has

been satisfactorily explained' by supposing that
an increase of field causes a "rotation" of the
magnetization vector toward the held direction.
This vector has a constant magnitude, the
saturation value J„and except in special cases,
it has also a uniform direction throughout each
crystal —the direction for which the free energy,
consisting of a term due to the field and a term
due to the crystalline anisotropy forces, is a
minimum. The special cases just referred to are
those in which there are several such directions,
as is the case when the field direction is L1107 or
L1117 in an iron crystal. In these cases the
crystal is saturated not as a whole, but only
throughout "domains, " equal volumes being
magnetized in each of the equivalent directions.
The properties of large grained polycrystalline
sPecimens in this same range of Geld values can
be calculated by averaging those of crystals. '

At fields of order of magnitude 1 oersted, the
process is different and 'a successful quantitative
theory is still lacking. Certain fundamental
ideas, however, have proved useful and are

* Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Columbia University.' An outline of the theory and references to the original
papers are given in E. C. Stoner, Magnetism and Matter
(1934), pp. 392 ff. , and F. Bitter, Introduction to Ferro-
magnetism (1937), pp. 194 ff.

2 R. Gans, Ann. d. Physik 15, 28 (1932).
2

probably essentially correct. It is supposed that
even in the demagnetized state the specimen is
saturated throughout domains; equal volumes
are magnetized in each of the possible directions,
which are now the directions of minimum free
energy determined by the anisotropy forces
alone —the "directions of easy magnetization. "
When a field is applied and gradually increased,
the electron spins responsible for the mag-
netization undergo transitions in the boundary
region between domains; the effect is a motion of
the boundary, so that the more favorably
oriented domains grow at the expense of their
less favorably oriented neighbors. This displace-
ment of the boundaries is in part reversible,
proceeding an infinitesimal distance dx when the
field is changed by an infinitesimal amount dII;
and in part irreversible, for when a small change
of field enables the boundary to pass a local
energy barrier, the motion may continue a
considerable distance, with dissipation of energy
through the setting up of local eddy currents and
in other ways.

The most direct evidence of the correctness of
this picture is obtained from measurements of
the Barkhausen effect' and from the study of
magnetic 'powder and colloid patterns. ' The
regions whose reversal of magnetization is

' For references see Stoner, reference 1, p. 436.
4F. Bitter, reference 1, pp. 59 ff. ; W. C. Elmore, Phys.

Rev. 51, 982 (1937); 53, 757 {1938).
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observed in the Barkhausen effect, although not
necessarily identical with the domains, at least
set a lower limit to their order of magnitude. It is
consistent with the order of magnitude of the
dimensions observed in surface powder patterns,
but the latter method of study shows that the
actual shapes and arrangements of the differently
magnetized regions may be very complicated.

Various types of force are' operative in this
process. The exchange forces are important only
in the boundaries between the domains, where
their partial annihilation has the effect of a
positive surface energy proportional to the total
area of the interdomain surfaces, and therefore
plays a role in determining the size of the
domains. This size in fact seems to be determined
primarily by a balance between these forces and
magnetic forces dependent upon the size and
shape of the specimen, so that the domain size
varies approximately as the square root of the
shortest dimension of the specimen. ' The
anisotropy forces are important chiefly at higher
fields, but according to one theory' they are also
instrumental in determining the thickness of the
interdomain space and hence indirectly the size
of the domains. The theory of the behavior of an
ideal crystal in an applied field has been attacked
by several authors, ' ~ but even in the simplest
cases the problem is difficult because nonlinear
partial differential equations occur at the
outset.

In an actual crystal, though the order of
magnitude of the domain size is probably de-
termined by the factors already mentioned, the
exact behavior in a field is dependent very
largely on forces that vary irregularly from one
point to another. Chief among these are internal
stresses due to impurities or to imperfect an-
nealing. When these have been reduced to a
minimum, there remain unavoidable stresses
resulting from the unequal magnetostriction of
differently oriented domains. Becker' has shown
how the internal stresses limit the initial sus-
ceptibility in a somewhat idealized model, and
Kersten' has shown that the magnitude of the

' J. Frenkel and J. Dorfman, Nature 126, 274 (1930).
L. Landau and E. Lifshitz, Physik. Zeits. Sowjetunion

8, 153 (1935).
~ F. Bitter, reference 1, pp. 185—192.
8 R. Becker, Physik. Zeits. 33, 905 (1.932).' M. Kersten, Zeits. f. Physik 12, 665 (1931).

highest attainable initial susceptibility in iron-
nickel alloys of various compositions is ade-
quately accounted for by setting the internal
stress equal to the lower limit determined by
magnetostriction. In addition to this effect of
mild stresses in controlling the reversible bound-
ary displacement, there is the irreversible eRect
of local high stresses, which set up energy barriers
that lead to Barkhausen reversals and hence to
hysteresis. "

The importance of irregular forces suggests the
possibility of handling the problem .by a sta-
tistical method, in which the exact nature of the
process need not be, considered in detail. This
method of attack was originated by Heisenberg.
The quantities that have so far been calculated
by it are the magnetostriction as a function of
magnetization; the normal component of mag-
netization as a function of the component parallel
to the field; and the elastic constants as functions
of magnetization, given the magnetization curve.
In parts I and II under the present title, "
previous work in this field was summarized, more
general formulas were developed, and some
errors in earlier calculations were pointed out and
corrected. No new principles were introduced,
except the device of using thermodynamic rela-
tions to eliminate certain unknown quantities;
by this means it was possible to avoid an
incorrect approximation made in some of the
earlier work.

It is possible to extend the theory so as
actually to calculate the magnetization curve of
an ideal reversible specimen, and from this all the
reversible properties of. an actual specimen, given
a single reversible property —the initial sus-

ceptibility. This extension is the subject of the
present paper; but in order to make the presen-
tation convincing and to insure against misin-

terpretation of the results, it will be necessary to
review the entire theory briefly, from a somewhat
different point of view.

A few general remarks will make the aim
clearer. The 8ecker-Kersten rotation theory,
applicable only when the internal stresses 0-; are
large and fairly uniform over a domain, gives for

"E. Kondorsky, Physik. Zeits. Sowjetunion 11, 597
(1937).

F. Brown, Phys. Rev. 52, 325 (1937); 53, 482
(1938):hereafter cited as I and II, respectively.
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the initial susceptibility xo
——(2/9) J, /X 0.;; k is

the saturation magnetostriction. Becker's sim-
plified theory of boundary displacement against
small, inhomogeneous stresses of amplitude cr;

gives xo=(1/m) J,2/X„o., Although the mecha-
nisms assumed are entirely unlike, the results are
practically identical. Again, it is possible to
develop a theory similar to that of Becker and
Kersten, except that internal stresses are replaced
by internal fields; the result of either theory may
be written in the form XO=JP/e, where e is an
energy density associated with the "random"
forces; and in each case the area to the left of the
magnetization curve, J'HdJ, is approximately
equal to the e of the xo formula. In other words,
the most important characteristics of the theo-
retical magnetization curve —its initial slope,
and the area between it and the J axis—are
determined by energy magnitudes rather than by
the exact nature of the internal forces or the
exact mechanism through which they make their
eBect felt. It should therefore be possible to
develop at least an approximate theory in which
no specific assumptions are made in regard to the
nature of the forces or the mechanism. The
advantage of such a theory is that it avoids the
danger of misinterpreting an agreement between
theory and experiment as evidence for the
particular forces or mechanism assumed in the
theory.

GENERAL THEORY

The theory will take no account of irreversible
phenomena, and therefore the properties pre-
dicted by it will be those of an ideal reversible

specimen. It is necessary to relate these in some
way to the properties of an actual specimen. Now
there are certain properties of a ferromagnetic
specimen which, to a first approximation, are
determined by the magnetization alone and are
independent of the previous history and hence of
the field strength associated with that mag-
netization in the particular state under observa-
tion. The quantities of which this is true are those
measured in a small, approximately reversible
change from any initial state: for instance, the
elastic constants" and the reversible suscepti-
bilityu (ratio AJ/AH when AH/H is small and

"E.Giebe and E. Blechschmidt, Ann. d. Physik 11, 905
(1931); O. von Auwers, Ann. d. Physik 1V, 83 (1933);
W. T. Cooke, Phys. Rev. 50, 1158 (1936).

negative). This suggests that such quantities
should have the same value for the actual
specimen and for a reversible specimen at the
same magnetization. We assume, therefore, that
so far as a specimen's properties are functions of
the magnetization alone, they are the same
functions of magnetization as are the properties
of an ideal reversible specimen having the same
initial susceptibility.

The correct model for a single crystal is now a
group of many domains with fixed orientations of
their magnetization vectors, but with variable
volumes; the positions of- the boundaries are
determined by equilibrium between internal and
external forces, that is by the minimum of the
total free energy due to external fields and
stresses and to internal "random" forces. On the
supposition that the mechanism by which these
internal forces act is unimportant, we proceed
to substitute for this model a more manageable
one, consisting of a group of N domains of fixed
and equal volumes, but with variable orientations
of their magnetization vectors: the magnetization
of each domain is to be along one of the "easy
magnetization" directions, but may change from
one of these directions to another when the field
or stress is changed. The exact microscopic state
of the model under given external conditions is to
be that for which the total free energy is a
minimum. A macroscopic state of the model, of
course, will be described by merely giving the
fractional number n, =X,/N of domains mag-
netized in each of the possible directions 0-,

without regard to which domains these are.
The actual microscopic state, for given field

components H; and stress components X;;, is
that corresponding to the minimum value of"

V= U'+ U",

where V' is the ordered free energy per cm' due to
the applied field and stresses, and V" is the
energy due to the random internal forces. V' is
given by
V' = —QH~ J; QX,,e; —Q—X;pep'

= Pn. (—QH~ J;,—QX,,e;;,'

QX;pep. ') = Qn. V, (2).
"R. Gans, Physik. Zeits. 12, 1053 (1911); Ann. d.

Physik 61, 379 (1920).
1 I, Eq. (7). The constant term Vo has been dropped.
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In a large number of samples of the same
material, microstates of equal V' will occur
equally often if the internal forces are random, "
but microstates of lower U' will occur oftener.
On the other hand there are many more micro-
states of zero ordered energy than of highly
negative. Somewhere between 0 and —~, there
is a "normal" value of V' that will occur most of
the time; and among samples with about this
value of V', certain values of the partition
numbers X, will be normal. Just what value of
U' is normal for given H, 's and X; s depends on
the average magnitude of the random forces: the
larger these are, the larger will be the external
field or stress required to produce a specified
magnetization or strain.

Assuming that V' has some value, we may
proceed to determine the normal values of the
X.'s, and hence the macroscopic properties of the
specimen, by methods similar to those used in

statistical mechanics. The result is

ys, = exp ( I o V,)/P ex—p ( I o V,), —(3)

where Lo is determined by

P V, exp (—L,o V,)/P exp (—I.OV.) = V'. (4)

This is in essence the method that was introduced

by Heisenberg and used by Bozorth and by Gans
and v. Harlem. These writers, however, did not
actually assume a given value of U', but rather a
given value of the component of magnetization
in the field direction, J„.In the problems treated
by them the two quantities differ only by a factor
H, and moreover it is really J~ and not U' that is
known and must be used to eliminate the
Lagrangian multiplier L,o, the two procedures
therefore lead to the same result. In the work of
Akulov and Kondorsky stresses as well as fields

are supposed to be present, and a given value of
V' must be assumed. There is now a difficulty,
however; for U' is not really known, and so Lo
remains an undetermined quantity, whose de-
pendence on the field and stress are unknown.
Akulov and Kondorsky endeavored to overcome
this difficulty by supposing the magnetization
curve at zero stress to be given, and seeking only

"More accurately, this is our definition of "random"
as applied to these forces.

a formula for the N 's good to the first order in
the stresses. But in doing this they failed to take
account of the effect of stresses upon the mag-
netization curve, and thus obtained an incorrect
result. It was shown in I that this error could be
corrected, and the result'they sought obtained,
by using the thermodynamic relations BJ;/BX,&.

= Be;&/BII, . The equations thus obtained are
rather complicated, it is still necessary to know
the magnetization curve, and the physical
significance of the troublesome Lagrangian
multiplier never becomes apparent. The theory
at this stage is clearly incomplete.

A similar problem is encountered in statistical
mechanics, in calculating the normal partition
numbers for a given energy of an isolated system.
The energy is really unknown, and so its
Lagrangian multiplier L remains indeterminate
until it has been given some thermodynamic
interpretation. This may be done in a number of
ways, for instance by considering two systems
capable of exchanging energy. The same equa-
tions as before are obtained for each system, but
with the same L for both; L therefore represents
a quantity which is the same for two systems
when they are in thermodynamic equilibrium—
namely, the temperature. (A more thorough
investigation of course shows that L is pro-
portional to the reciprocal of temperature on the
usual absolute scale. )

This and other methods, suitably modified,
may be applied here. The phrase "suitably
modified" is important, for it must be emphasized
that this is not a problem in statistical mechanics.
Our model is not a group of domains continually
jumping from one state to another as a result of
exchanges of energy. It is a group of domains in a
definite, permanent state of lowest total free
energy, under the 'joint action of ordered and
random forces—all constant. The direct effect of
temperature agitation on the domains as a whole
is completely negligible because of their size; its
indirect effect in bringing about the equilibrium
of the boundaries is fully taken into account in
the temperature-dependent "constants" (such as
J, and X ) appearing in the free energy function.
Another way of saying this is that the domain
order-disorder term in the free energy is negligible
compared with the other terms. This term is
—k rlog S', where W is the number of ways of



REVERSI 8 LE
SUSCEPTIVE

I LITY 283

arranging the domains in the given macroscopic
state. For unit volume it is of order of magnitude
kTN, where ¹isthe number of domains per cm'.
For a wire 1 mm in diameter, %~10' according to
Barkhausen eAect measurements, so that this
term in the free energy density is of order of
magnitude 10 ' erg/cm'. The energy associated
with the internal forces opposing magnetization
is measured by the area J'Hd 7 to the left of the
steep part of the magnetization curve, or roughly
by JP/zo' , even in well-annealed specimens, its
order of magnitude is between 10' and 104

ergs/cm'. Thus thermal agitation of the domains
as a whole is negligible by a factor of about 10 '.

Consider, then, two adjacent volumes v&, v2 of
the same material, subject to different values of
the fields or stresses. If we now seek the normal
N, 's for a given total ordered free energy
&' =» VI.'+v& V2' =Bj'+E2', we obtain equations
of the form (3) for each part, but the same
Lagrangian multiplier Lo occurs in both sets of
equations. Lo is determined by the total E', but
also it is equally well determined by the E' for
either part. If action at a distance by the random
forces is negligible, a variation of the fields or
stresses in one part does not acct the state of
affairs in the other, and so does not affect Lo,
which must therefore be a constant of the
material (at the given temperature). Its value
depends on the random forces. For cubic crystals
or isotropic material, it follows from Eq. (41) of I
and the corresponding equation for [100)
domains, and from Eqs. (15), (23), and (36) of II,
that

xo= 3J-O~.' (5)

hence 1/I o is an energy density of the same order
of magnitude as J'Hd J (if the number of direc-
tions of easy magnetization is finite), and

measures the energy associated with the internal
forces. If we. assume that these are internal
stresses of mean value &r;, and set 1/Lo ——X„o;,we

get yo
——-,'J,2/X 0;, a formula differing from

Kersten's only in having a numerical factor 3

instead of 2/9.
Although the discussion has been limited to

single crystals for simplicity, the extension to
polycrystalline material is easily made by the
method of I. Thus we get for the magnetization
curve of the ideal reversible specimen of iron or

nickel Eq. (12), (20), or (34) of II, according to
the type of domain (isotropic, [100), or [1117);
in the definition of q preceding each of these
equations, Lo is now to be interpreted as a
constant, related to the initial susceptibility by
Eq. (5) above. For materials with other types of
domain, Eq. (3) or (4) of II must be used.

THE REVERSIBLE SUSCEPTIBILITY

The magnetization curve thus obtained in
terms of yo or J o, for an ideal reversible specimen,
is different from any J—H curve of the actual
specimen. But the differential susceptibility
dJ/dH calculated from it corresponds to a
measurable susceptibility for actual specimens,

namely the "reversible susceptibility" mentioned
before. The value of the reversible susceptibility
p„at any magnetization should therefore be
equal to the differential susceptibility of the
ideal specimen at the same magnetization, if J o is
chosen so as to give the observed initial suscepti-
bility. (The corresponding value of H, however,
bears no simple relation to the H of the actual
specimen. )

Thus for material with isotropic domains, y„ is
determined as a function of J by the parametric
equations

where

These equations were first proposed by Gans in
1911, and were supported by experimental data
agreeing very well with the calculated curve. "
Gans gave no derivation of his formula; he was
probably led to it by an attempt to apply the
Langevin formula for the susceptibility of a
paramagnetic gas. A derivation along that line
was very apologetically offered by Debye" in
1925. According to this interpretation, y should
be equal to pH//kT, where p is the magnetic
moment of an elementary magnet, in Debye's
picture a crystal. Today we must interpret the
elementary magnet as a domain. Its magnetic
moment is J,vo, where vo =10 '. The initial
susceptibility thus calculated is 10' times too
large, as was to be expected from our earlier
discussion.

"P. Debye, Hcndbuch der Radiologic, Vol. 6 (1925),
p. 72i.
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FrG. 1. Reversible susceptibility of polycrystalline nickel.
Experimental points (D. Kirkham): open circles, 21.6'C;
circles black at left, 99.0'C; black at right, 171.5'C.
Theoretical curves: 1, J, in any direction; 2, J, along any
t 111jdirection; 3, J, along ~II; 4, J, along I 111j direc-
tions nearest +H.

If the domains are crystalline, in iron or nickel,
the functions are more complicated in form, but
the curves differ very little from this one; in
fact the series expansions for J are identical to
the sixth order in H (see Eqs. (15), (23), and (36)
of II). This explains Gans's success in fitting his
curve to data on various specimens of iron, steel,
and nickel.

Figure f shows several attempts to fit
Kirkham's'~ results on annealed nickel. These
measurements were not taken on the same
ellipsoid as the magnetostriction data analyzed in
II, but on a thinner ellipsoid, 7—'," long and —,'" in
diameter. For this specimen the domains are
probably crystalline at room temperature; but
according to the value of xp the anisotropy forces
are not enormously larger than the random
forces, so that the neglected rotation effect may
not be entirely negligible, and the specimen may
be expected to be intermediate in its properties
between one with crystalline domains of high
anisotropy and one with isotropic domains.

Curve 1 is calculated for isotropic domains,
curve 2 for crystalline domains with [111j as the
direction of easy magnetization. There is a
difference only at high J, and here 2 is unreliable

'7 D. Kirkham, Phys. Rev. 52, 1162 (1937).

where Z(g) = (1/q'))( u tanh udn.
p

Series expansions for the function B(g) may be
obtained from the expansions in II, Eqs. (22)—
(27). The function (8) is plotted as curve 2 in
Fig. 2.

The deviation at high J is expected. The
deviation at low J may be partly due to a poor
value of xp. The experimental results deviate
considerably among themselves; the agreement

"The formulas are: curve 3, J/ J,= tanh q, y„/xo ——sech q= 1 —(J/ J,);curve 4, J/ J,= (12/71-)Jp ~'dp J'~ 'n tanh ngdn,
a(1+4/w)gr/Xo= (12/7f) Jo 8d4 Ja a sech2 aikido. , n'=cos 0',
cot O'= V2 cos p; the result of the integration with respect
to a can be expressed in terms of the functions E and E'
defined by Eq. (9).

M. Samuel, Ann. d. Physik 86, 798 (1928):specimen II.

because of rotation. The data do not fit at all
well.

In the discussion of the magnetostriction of an
iron ellipsoid (II, p. 488), it was suggested that
when an elongated ellipsoid is demagnetized by a
longitudinal field, more domains are left oriented
along directions nearly parallel to the ellipsoid
axis than along directions nearly perpendicular
to it. This applies to the present case. Curve 3 is
calculated for the extreme case in which all the
domain magnetizations are either parallel or anti-
parallel to the field (as might be the case if the
specimen were long and thin and the domains
magnetically isotropic). Curve 4 is calculated for
domain moments oriented along only the [111j
directions nearest the field. "Most of the data fall
between these curves. As the temperature rises,
the anisotropy constant decreases, the eAect of
rotation (or the tendency toward isotropy)
increases, and in the range where rotation is
important the points should fall nearer to the
isotropic curve —as in fact they do.

In Fig. 2, the points are experimental data of
Samuel" on soft cobalt. Curve 1 is the Gans
formula, which does not fit at all. Cobalt crystals
have two opposite directions of easy magneti-
zation; the anisotropy constant is large, so that
rotation should be negligible except at high
fields, and the calculation for crystalline domains
should be a good approximation. This calculation
gives

(8)
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with theory is probably as good as can be
expected. Gans' found a considerably worse
deviation between the experimental results at
higher fields and the theoretical curve calculated
by the rotation theory.

Cobalt is interesting because, with only two
directions of easy magnetization, it is easy to
work out a more specialized theory, with more
definite assumptions about the internal forces.
Internal stresses, being impartial with respect to
opposite directions, should have no effect on the
reversible magnetization, and only internal fields
need be considered. Curve 3 is calculated on the
assumption that the magnetic moment of each
crystalline domain is along that one of the two
possible directions favored by the resultant H,
external plus internal; it is assumed that the
values of the relevant component of internal
field are constant and are distributed according
to a Gaussian error curve. This gives

J/J;= (2a' —1)f e *'dx+ue "' /2( )lu' (I)
0

x„/xo ——3 Jf e *'dx —ue "'—/2u—'.
0

determined by the curve of the equivalent
reversible specimen, which may be obtained
from the x„vs. J curve by the formula

(&/x.)&~
0

Here II, is the field strength corresponding to the-
magnetization J for an ideal reversible specimen
whose reversible properties coincide with those of
the actual specimen.

CRITICISM OF THE THEORY

The fact that the theory gives only reversible
properties is a serious limitation, but less serious
than might have been feared, provided the
concept of the "equivalent reversible specimen"
is used as a guide in interpreting the theoretical
results. The assumption of complete randomness
of the internal forces is an oversimplification;
whether it is too drastic an oversimplification can
only be decided by comparison of the predictions
of the theory with experiment, and it would not
be at all surprising if the theory proved useless
for pure, well-annealed crystals. The replacement

The difference between curves 2 and 3 is unim-
portant at the present stage of development of
the theory, and the wider applicability of the
general method is strongly in its favor.

MODIFICATION OF EARLIER FORMULAS

1.0

0.8

The theorem that I.o(= I. of I) is a c—onstant
enables ns to replace Eq. (16) of I by the simpler
relation, which now follows immediately from
(~4),

8 Y,/By, =I.P„.
Hence only the first terms remain in the right
members of Eqs. (34) when the differentiation is
at constant II. From the second of Eqs. (44),
xii=0. This explains why good agreement with
experiment was obtained by neglecting XI in Eq.
(54)." It is now clear, also, that the coeKcients
x& and y2 in Eq. (40) have no relation to the
actual magnetization curve of a crystal, but are
"It is possible to compute the variation of the elastic

constants with magnetization without introducing the
approximations of I, but this work is too far from com-
pletion to discuss at present.
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FtG. 2. Reversible susceptibility of polycrystalline cobalt.
Experimental points (M. Samuel): open circles, virgin
curve; solid circles, ideal curve; circles black at bottom,
descending magnetization curve; black at top, ascending.
Theoretical curves: 1, general theory, isotropic domains;
2, general theory, crystalline domains; 3, special theory of
internal fields.
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of variable volumes with fixed magnetization
directions by 6xed volumes with variable
magnetization directions is the step that is most
difficult to justify. If-this step is defensible, then
the final results should be capable of derivation
without it. Some efforts in that direction are
presented in the appendix.

Despite these limitations, the theory seems

successful enough to justify its further study; it
may help to give a partial understanding of the
complex processes that occur at low fields, until a
more detailed theory becomes possible.

The writer wishes 'to express his appreciation to
Professor Francis Bitter, of the Massachusetts
Institute of Technology, 'for helpful comments
and criticisms.

APPENDJX

(a) Alternative derivations of the distribution
formulas.

These parallel familiar arguments of statisticaI
mechanics.

Method 1.—Assume, as before, that in a large
number of copies of our simplified model, all
subject to the same 6elds and stresses, microstates
of equal ordered energy occur equally often; and
that this remains true even if the fields and
stresses have different values in two adjacent
parts vl, v2 into which the model may be divided.
Then the relative frequency of occurrence of any
microstate, for either part separately or for the
model as a whole, is a function only of the corre-
sponding ordered energy E&'=vi V&', Ep'=v2V2',
or E'=v&U&'+vqU2', let this function be f(E~'),
g(E2'), or k(E'). The probability that a copy
selected at random is in a specified microstate,
with ordered energies E~' and E2', is

For two microstates with the same total energy
E~'+E2', the values of f(E~')g(E~') are therefore
equal; or, f(x)g(y) =f(s)g(x+y s), for a—rbitrary
x, y, and s. Differentiation with respect to x and y
gives f'(x)g(y) =f(s)g'(x+y —s) -f(x)g'(y), or
f'(x)/f(x) = g'(y)/g(y) = constant = A. Hence
f(E&') =Be "e",g(E2') = Ce ~e" By vary. ing the
fields or stresses in v2 without varying them in v~,

and assuming action at a distance negligible, we
infer as before that A is a constant of the
material. Thus for unit volume, the probability
of a microstate of order'ed energy V'= Pn, V is

Be "~' B is determined by +Be "v'=1, where

denotes a summation over all microstates. The

mean n 's for the whole collection of copies are
now given by (n,)A„Bgn,e ~r' ——When the su. m-

mation is carried out, '" Eq. (3) is obtained, with
L.=A/N.

Method Z.—For given fields and stresses,
the actual microstate of any copy of a volume
v, containing N domains, is that for which
E'+E"=v(U'+ V") is a minimum. If we knew
E" for each microstate of each copy, we could
solve the problem by first finding the normal
minimum E", say Ep", attainable by varying 'the

microstate, for given N, 's; and then minimizing
E +8p

' by variation of the N, 's. The Ep"

obtained in the 6rst step is a function of the
N, 's, but if the internal forces are random it
depends on the N, 's only because the normal
minimum V" to be found in S' microstates is
lower, the greater the number 8" of microstates
there are to choose from. Thus Ep" is a function
of W= N!/N&!N2!, and hence of log W, or of
—Ngn, log n, With . negligible action at a

distance, Ep" must be proportional to N for large
N and for given n, 's, hence Eo"=AN+n, log rI,„

a

or Vo"——ePn, log n, Upon .minimizing V'+ Uo"

with respect to the n, 's we obtain the same
formulas as before, with Lo replaced by 1/e. In
the demagnetized state each n, =1/k, where k is
the number of directions of easy magnetization,
and Vp"= —e log k; when the 6eld is large one
n =1 and the others vanish, and Vp =0. Hence
the work done against internal forces in mag-
netizing unit volume of the specimen, or J'Hd J,
is ~ log k.

(b) Boundary displacement against random
forces.

In the following discussion we abandon the
somewhat arbitrary replacement of variable

2' Cf. J. Frenkel, Wave 1lfechanics: E/ementarp Theory
I'1932), p. 199.
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volumes by fixed volumes. Ke assume that a
fraction v, of the total volume has J, in direction
0-, and that each of the quantities v&, e2, is a
function of the quantities V&, U&,

Consider the ratio v~/v;. When V;= U;, this is
1, whatever the values of the other V 's. When U;
is much larger algebraically than V, , v;/v; is
practically zero; and when U, is much smaller
algebraically than V;, v, /v; is very large, what-
ever the values of the other V, 's. Thus when
U; —V;= —~, 0, or + ~, v„/v; has a definite
value, independent of the other U, 's and also of
the absolute value of V, or U; (with respect to
any zero). Let us assume that in general v~/v; is a
function only of V; —V;, say v;/v;=f(V, V;).—
Then for any three directions i, j, k we have

1 = (v, /v;) (v;/vt ) (vg/v, )
=f( U* U)f(—U V~)f(—Vs —U'),

or if &=log f,
4(&—y)+4(y —s)+4(s —z) =0.

Differentiating with respect to s and then setting
s=0 gives @'(y) = —p'( —x) =constant= —A, or
f(y) =Be "& When y. =0, f=1, therefore B=1.
Thus p2 =pig

—A(vg —v1) p3 p&g
—A(v3 —v1) . . . or

pigav1 p2gav2 &3gav3 . . . C, Or finally V I
= Ce ~v& etc. , where C is determined by
vi+v~+ ' ' ' = 1.

This derivation fails when there are only two
directions of easy magnetization, but this case
may be regarded as a limiting case attained by
letting the value of U for the other directions
become very large.

It is not obvious that the assumption made in
this argument is equivalent to the assumption

that the internal forces are random. The deri-
vation is therefore incomplete; but it does
suggest that the introduction of fixed instead of
variable volumes, and the resulting superficial
analogy to statistical mechanics, are probably
not essential to the theory.

Note added in Proof: The following additional
results of the theory are interesting because of
their relation to some recently published work
of Kondorsky. " In an iron crystal, when the
field is along a specimen axis for which the
demagnetizing factor is negligible, it may be
assumed that only the [100] directions nearest
this axis are occupied. Let the cosine of the acute
angle between such a direction and the specimen
axis be l, and let j =J„/J'„v =LOJ,H„: then the
magnetization curve of the equivalent reversible
specimen is given by j= l tanh pl, so that
X,=LE.'dj/dv =LOJ, '1' sech' v/=Lo J,'P(1 j'/P). —
It follows that for three crystals of the same
material with their specimen axes alohg [100],
[110],and [111](P=1, -'„and —',, respectively),
and with the field in each case along the specimen
axis, the initial susceptibilities should be in the
ratios 6:3:2, and x,/xo should be given by
1 —j, 1 —.2j, and 1 —3j, respectively. The
ratios 6:3:2 were observed in Williams' "
measurements and are predicted by Kondorsky's
theory when ~&)&~2, and also by earlier theories
of Akulov and of Bozorth. "The expressions for

x,/xo are identical with those of Kondorsky's

theory.

"E.Kondorsky, Phys. Rev. 53, 319 and 1022 (1938),
» H. J. williams, Phys. Rev. 52, 1004 (1937).


