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The note deals with the absorption of a band in which
the lines have the dispersion form; the effect of the
overlapping of neighboring lines upon the absorption is
taken into account. The analytical problem can be solved
for a periodic pattern of lines with equal intensity S, width
2a and distance d from each other. Simple expressions are
derived for the limiting cases of small u/d (formula (8))
and large a/d. In the latter case the transmission by a
layer of thickness x is given by

I=Ioe ( xtZ& tanh (2+nfg)

It appears that this formula gives a fairly good mean
approximation even for small values of n/d, while the true
transmission in this case is not exponential. It is shown that
in problems of radiative transfer and radiative equilibria
this approximate formula for the transmission can be used;
i.e. the factor of x in the above exponent may be substituted
in the equations of transfer as equivalent of a mean ab-
sorption coe%cient.

HE theory of the absorption of spectral lines
has been the object of extensive investiga-

tions. ' The theory of infra-red band lines espe-
cially was developed by Dennison' and a com-
parison of the experimental and theoretical
absorption of such bands has been carried out
by Matheson. ' It has alsa been directly proved
in various cases'4 that these lines have the dis-
persion form required by tke theory of collision
broadening. In these investigations it was
assumed that the effect of the overlapping of
neighboring lines is negligible, or the absorbing
layers were chosen so thin that this condition
was practically fulfilled. We want here to develop
an elementary theory of the effects produced
by the overlapping of lines in the absorption by
layers of considerable thickness. This includes as
a limiting case the transition from line absorption
into continuous absorption when the line distance
becomes smaller than the line width. Although
the model considered here is somewhat too sim-
plified to be directly applicable to the absorption
of real band spectra, we are able to,draw some
interesting conclusions from it. The main dif-
ficulty of band spectra absorption lies in the fact
that the nzean absorption is not, in general, of
the exponential type, I=Ioe "'. (As frequently
expressed in the older literature, the absorption
does not follow Beer's law. ) This introduces
many mathematical complications, especially in

j Ladenburg and Reiche, Ann. d. Physik 42, 181 (1913);
a comprehensive treatment in Max Born's treatise Optik.' D. M. Dennison, Phys. Rev. 31, 503 (1928).' L. A. Matheson, Phys. Rev. 40, 813 (1932).

4 H. Becker, Zeits. f. Physik 59, 601 (1929).

problems of radiative energy transfer and
radiative equilibria. Band spectra play a great
role in terrestrial and stellar radiation transfer;
for instance the radiative heat transfer in the
earth's atmosphere takes place within two water
bands and a CO2 band. In this connection it
seemed of particular interest to investigate the
possibility of replacing the rapid1y oscillating
absorption coefficient of a band by a mean coef-
ficient which only depends upon the much
slower variation of the total line intensity from
line to line. For numerous radiative transfer
problems this yields a good approximation, as
we shall see.

We shall confine our calculations to the case
of lines which have the familiar dispersion form,
as for instance that produced by collision
broadening. The absorption coefficient for the
individual line as function of the frequency has
then the form

Sn/vr
k(v) =

P —Pp A

where 2n is the width and S the total line in-
tensity J'kdv. The amount of radiation, say Q,
absorbed in a layer of optical thickness x is
given by

Q df [& —e "&' )d, =

where Ip is the incident intensity. Now if x is
very small, Q will of course be proportional to
the total line intensity S. As soon as x becomes
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somewhat larger, the absorption will be complete
in the core of the line while the amount of radi-
ation absorbed in the wings still increases with
increasing x. It can be shown that in this case
a good approximation is obtained by neglecting
n' in the denc minator of (1).The integration can
then readily be carried out and yieMs the result

sinh 2pSk=-
2d sin (r+iP) sin (r —iP)

sinh 2PS
d cosh 2P —cos 2r

We may write instead of this

(5)

Q = 2 (Snx)'Io, {2) If we introduce the mean fractional transmission
T=I/Io, we have

the absorption being proportional to the square
root of the line intensity and the optical thick-
ness. The formula must obviously be valid in a
band spectrum provided the line width is small
compared to the distance of successive lines and
provided the fraction of radiation absorbed is
small compared to unity so that the overlapping
of the lines is negligible. Formula (2) has been
verified experimentally in numerous instances.

We proceed now to the general case for which
the width is not small compared to the line
distance. In order to have a problem that is
accessible to analytical treatment we shall con-
sider an infinite sequence of lines, all having the
same intensity S and a constant distance d from
each other. Then the absorption coefficient is

e—'&'&'d7. (6)

Before evaluating (6) for the general case we
shall consider the limits of small and of large p.

1. Small Il

Here we have from (5)

kx = Spx/d sin' r = C/sin' r.

Substituting into (6) and introducing 1/sin' r =y
as integration variable we get

~=+ Sn/m
k(v) = P

(v —nd)'+n'
(3)

By virtue of this theorem (3) may be written

k = (iS/2d) Lcot (r+ip) —cot (r ip)5—

To evaluate the sum we note that (3) is an
analytic function of v which has single poles at
the points v =

rid

~i. It is well known that under
certain restrictions an analytic function f(s)
which has only single poles can be expanded in
a sum of rational fractions corresponding to
these poles' (Mittag-Lefner's theorem). If a~,
a2 . are the poles and b», b2 the correspond-
ing residues we have

It follows that

dT 1 dy e e
I" e e*

e
—~&—

dC m ~ (y —1)l m ~o Zl (mC)i

Integrating with respect to C we find

1 p dC 2
e 'du.

The upper limit of the last integral has to be
chosen so that T= i. for C=o, which shows that
the limit is + ~. If therefore p designates as
usual the probability integral, we have by (4)
and (/)

T= 1 y{{mSnx) ~/d)—

For small values of x this becomes equivalent
to formula (2).

where
r' = av/d, P =mn/d.

2. Large I1

In this case we have from the second ex-
pression (5)

(4'j

' Whittaker-Watson, ch.7.4. k=(S/d) tanh 2P (1+cos 2r/cosh 2P).
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Substituting in (6) we obtain

T— e—(sx/d) t anh 2P

27r

2x

&
—(8sld) tsnh 2P ccs.2clccsh 2Pd(2&)

= e ~ *~+ """Pjc(j(Sx/d) tanh 2P/cosh 2P)

Jp is the Bessel function of order zero and its
argument is purely imaginary. Now J&(0) =1
and the function increases at first extremely
slowly with increasing imaginary argument, e.g.
Jc(1)= 1.27. The argument of the Bessel function
is smaller than the argument of the exponential
by a factor 1/cosh 2P. Furthermore the ex-
ponential decreases more rapidly with increasing
argument than the Bessel function increases.
The degree of approximation remains therefore
almost unaffected by putting the Bessel function
equal to unity throughout and writing

T—e
—(Sx/d) tanh (2~a/d)

According to the derivation (9) is valid for large
values of t2/tE. It appears however that it yields
a fair degree of approximation for all other values
of n/d. If for instance we make n/d small we have

e—2+Sax/d ~ (10)

In order to compare this with formula (8) which
is the correct expression for small u/d the func-
tions e "and 1—P(Qx) have been plotted to-
gether in Fig. 1.For thin layers where the square
root formula (2) for the absorption is valid, (10)
would of course be a poor approximation. It is
seen however that for values of T which are not
too close to unity or to zero the two curves do
not differ largely from each other. Since this is
true for small values of n/d, it will hold a fortiori
for intermediate values of this quantity.

3. The intermediate case

In order to reduce (6) to a more convenient
form in the general case, we introduce a new
integration variable u by k=Su/d. From (5) we
have then

1 e s»/d. dT-
22r u(2u csoth 2p —u' —1)'*

FIG. 1.

where the path of integration may conveniently
be taken as a closed loop encircling the two
singularities which arise from the zeros of the
root (u = tanh P and u= coth P, respectively). We
introduce the abbreviation A =S2t/d. Differen-
tiating with respect to A and introducing a
variable v by u=(v+cosh 2P)/sinh 2P we have

dT
p
—A cath 2

dA

+I e—Av/sinh 2P

dv
(1 —212) l

iA
=e A '""2PJ2]

4sinh 2P)

by a well-known integral representation of the
Bessel functions. Integrating the last equation
with respect to A we obtain finally

Application

If the above. formulae are to be applied to the
absorption of band spectra, it must be remem-
bered that the intensity of successive band lines
decreases in most cases rather rapidly toward the
edge of a band. This decrease is exponential and

iA
p
—A cath 2pg

(
~dA (11)

Esinh 2P)

where the upper limit is again chosen so that
T= 1 for x= ~. There seems to be no means of
reducing (11) further in terms of elementary
functions. The Bessel function can be replaced
by its power series for small values of its argu-
ment and by its asymptotic expansion for large
values of the argument; in both cases with two
or three terms a good approximation is ob-
tained.
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is therefore much faster than the decrease of
intensity in the wings of an individual line. The
strong lines in the center of a band will therefore
give rise to a continuous background at the edges
of the band and with sufficient thickness of the
absorbing layer the background may become
comparable in intensity and may even become
much stronger than the outer band lines therh-
selves. '

We can now appIy the above calculations to
the problem of radiative transfer. The funda-
mental equation of transfer is

dI/dx = —kI+E,

where x is the optical thickness and Z is the
emissive power of the substance. The equation
expresses the obvious fact that the change in
intensity I of a beam when passing through an
infinitesimal slab is equal to the emission minus
the absorption of the slab, I, Z, k will in general
be functions of the thickness x, of the frequency
v and of the direction of the beam. It is obviously
not permissible to carry out an average with
respect to v for each individual quantity in (12).
If nevertheless we want to simplify the problem
by calculating from the outset with an average
value of k which is only slowly variable with
frequency, we must determine the degree of
approximation of such a procedure. A natural
definition of an average absorption coefficient
may be obtained in the following way. To each
value of the absorption coefficient there corre-
sponds a mean free path of the light which is
obviously proportional to 4 '. We may define
an equivalent mean absorption coefficient, say k',

6 An example given by W. M. Elsasser, Phys. Rev. 53,
768 (1938).

by the condition that the mean free path aver-
aged over a spectral interval be equal to the
mean free path resulting from the equivalent
absorption coefficient k'. Thus

(k') '=[k 'jA,

and substituting the expression (5) for k

k'= (5/d) tanh (27m/d).

This is precisely the absorption coefficient as
derived above in the approximation formula (9).

The introduction of a mean free path has a
good sense under physical conditions where the
radiation will undergo a large number of absorp-
tion and emission processes before leaving the
medium in which (12) is valid. The medium is
then very opaque. If the opacity is high, the
left hand side of (12) is small compared to each
of the two terms on the right hand side. The
solution of (12) can be found by a perturbation
method;~ the first terms are:

E 1d pEyI=———
I
—I+ "

k kdxI k)

Now, by Kirchhoff's law, E/k is nothing but the
black-body radiation and it varies therefore only
slowly with frequency. If (14) is averaged over a
small frequency interval which however may
contain several spectral lines, the equivalent
mean absorption coefficient is just given by (13)
provided E/k is kept constant in the averaging.
The introduction of the equivalent absorption
coefficient as defined above is therefore justified
if the transmitting medium is sufficiently opaque.

~ E. A. Milne, IIandbuch der Astropkysik, vol. 3, ch.2c.


