Rotational Structure of the ${}^{3}\Sigma \rightarrow {}^{3}\Pi$ Bands of BF

F. W. PAUL AND H. P. KNAUSS Mendenhall Laboratory of Physics, Ohio State University, Columbus, Ohio (Received September 19, 1938)

The rotational analysis has been made of the (0,0), (0,1), (0,2) and (1,0) bands of the A system of BF. The bands are interpreted in terms of a ${}^{3}\Sigma \rightarrow {}^{3}\Pi$ transition with coupling intermediate between case a and case b. The triplet separation of the upper (${}^{3}\Sigma$) state is too small to be observed; that of the lower (${}^{3}\Pi$) state is -12.7B''. The A-type splitting of the ${}^{3}\Pi$ states is less than 0.2 cm⁻¹. Other constants evaluated are: $B'_{0} = 1.6235$, $B'_{1} = 1.6030$, $D'_{0} = -4.2 \times 10^{-6}$, $D'_{1} = -9.7 \times 10^{-6}$, $B''_{0} = 1.4030$, $B''_{1} = 1.3851$, $B''_{2} = 1.3672$, all in cm⁻¹ units; $I'_{e} = 16.93 \times 10^{-40}$ g cm², $I''_{e} = 19.56 \times 10^{-40}$ g cm², and $r''_{e} = 1.312 \times 10^{-8}$ cm.

THE band spectrum of BF is of interest because of its predicted similarity to the well-known spectra of CO and N₂. An earlier paper¹ from this laboratory reported on the spectrum of BF excited by means of an electrodeless discharge maintained in BF₃ gas. Sixteen of the bands obtained were assigned to two systems with a common lower electronic level. The present paper presents the rotational analysis of four bands of the A system, based on plates made in the same manner as the earlier ones, but with improved experimental conditions.

EXPERIMENTAL

The BF₃ gas used was obtained in a Pyrex flask from Booth and Willson of the Western Reserve University at the time of the earlier experiments. We transferred it to a carefully evacuated and baked out discharge tube by distillation at liquid-air temperatures. The discharge tube was provided with a quartz window, attached by means of a quartz to Pyrex graded seal. It was sealed off from the vacuum system while the BF₃ gas was solidified in a side arm by means of liquid air. The refrigeration of the side arm was then controlled to bring the pressure to a value suitable for producing an electrodeless discharge.

The oscillator used for exciting the discharge consisted of two 75-watt tubes, type 852, working in push-pull at a frequency of 20 megacycles. Plate current was obtained from a 2000-volt d.c. motor-driven generator. The power input was maintained at about 250 watts. The improved results obtained in the present experiments must be ascribed mainly to the superiority of this oscillator to the one used before, as the other conditions were substantially unchanged. The visible spectrum was examined frequently during the run, and it was found that the highest pressure at which the discharge could be maintained was most satisfactory for getting the BF bands. At low pressures, when the side arm became too cold, the Balmer lines of hydrogen showed up as an impurity.

An exposure of 30 hours was made with the 30,000-line, 21-foot grating of this laboratory. During the first 20 hours, the plates were half covered by metal shields supported independently of the plate-holder to provide both a 10-hour and a 30-hour exposure on each plate. An iron arc spectrum for wave-length comparisons was superimposed on part of the long exposure.

The dispersion in the first order is about 1.2A/mm at 3000A. A Geneva Society measuring engine was used in measuring the plates. The experimental error may be estimated as about 0.05 cm⁻¹. Measurements were made in both first and second order. The (0,0) band was measured in the third order also, but the resolution was no better than that obtained in the second order.

RESULTS

The appearance of the bands of this system is illustrated by Fig. 1, a reproduction of the (0,0)band, in which the assignments of the lines to branches are indicated. An anticipated similarity with bands of the CO molecule which was supported by the appearance of the bands suggested

¹H. M. Strong and H. P. Knauss, Phys. Rev. **49**, 740 (1936).

STRUCTURE OF BF BANDS

FIG. 1. Fortrat diagram and an enlargement of a part of the (0,0) band of the $\Sigma \rightarrow \Pi$ system of BF. The points are the identified members of the branches and are placed directly above the line so identified.

that the A system bands were, like the third positive system of CO, produced by a ${}^{3}\Sigma \rightarrow {}^{3}\Pi$ transition. Our analysis shows that this interpretation is correct.

A diagram showing the 27 branches of a ${}^{3}\Pi \rightarrow {}^{3}\Sigma$ transition allowed by the selection rules is given by Jevons.² In the third positive ${}^{3}\Sigma \rightarrow {}^{3}\Pi$ bands of CO, Dieke and Mauchly³ found that the triplet separation of the ${}^{3}\Sigma$ state is so small that it can be neglected, thereby reducing the number of expected branches to 15, all of which they observed. The bands considered here have the same kind of structure, but show none of the strong perturbations which are present in CO.

With the intensities present on our plates, we observed 11 branches of the possible 15. A schematic term diagram, Fig. 2, shows the observed transitions and indicates how the various branches are designated. The upper levels are drawn as triplets, although the triplet separation actually is too small to appear in our data. The subscripts 1, 2 and 3, are assigned in the order of increasing frequency. Lines are designated by means of K'' rather than J''.

In Table I are listed the band lines observed with visual estimates of the intensities, and assignments. Unassigned lines, present because of isotopic or other overlapping bands, have been omitted to save space. The assignments of Jvalues were made graphically. In the tails of the bands, lines could be grouped into branches by inspection, and tentative assignments of J

² W. Jevons, *Report on Band Spectra of Diatomic Mole-*cules (London, 1932), Fig. 45, p. 186. ⁸ G. H. Dieke and J. W. Mauchly, Phys. Rev. 43, 12

^{(1933).}

values were made. These were adjusted to be consistent in the four bands studied. Rotational spacings in the upper $(^{3}\Sigma)$ levels obtained from the various bands were found by listing $R_i(K)$ $-Q_i(K)$ and $Q_i(K+1) - P_i(K+1)$, and similarly wave number differences characteristic of the lower (³II) levels were obtained as $R_i(K)$ $-Q_i(K+1)$. The agreement of these values obtained from the different bands is typically within 0.1 cm⁻¹, which supports the validity of the assignments. No allowance has been made for the Λ -type doubling of the ³ Π levels, as we have been unable to evaluate it from our data, except to estimate an upper limit of 0.2 cm⁻¹ for the Λ separation. If the Λ -type splitting were absent, $R_i(K) - Q_i(K)$ should equal $Q_i(K+1)$ $-P_i(K+1)$. These two quantities show no consistent difference in our data.

The differences $R_i(K) - Q_i(K)$ for the different bands show rather large variations from each other in the region of low values of K. These variations are attributed to inaccuracy in the evaluation of the wave numbers of the lines, due to lack of resolution.

FIG. 2. Schematic diagram of the observed transitions between $^{3}\Sigma$ upper states and $^{3}\Pi$ lower states in BF. The designations of the various branches are shown at the top of the diagram. The multiplet splitting of the upper state and the A-type splitting of the lower state are indicated although they are too small in magnitude to be evaluated.

In order to evaluate the molecular constants B and D it is necessary to apply the theory of Gilbert⁴ for the case of coupling intermediate between case a and case b. This has been done approximately, by ignoring Λ -type doubling, and neglecting possible terms in $J^3(J+1)^3$. The Q and R branches have been used to determine the constants of the ³II state, since the P branches are not well developed in this system of bands. If we write

$$\Delta_2 W_i(J) = R_i(J) - Q_i(J+1) + R_i(J-1) - Q_i(J),$$

the sum of these quantities can be used as an approximation to $\Sigma \Delta_2 W_i(J)$ in Gilbert's equation. The molecular constants obtained by this method are given in Table II.

The value of $\lambda = A/B$ for the bands has been obtained graphically from the experimental data by the method described by Challacombe and Almy.⁵ The best value for this constant was found to be $\lambda = -12.7$. With this value and the values of B'' previously obtained, the constant A was found to be -17.81 for (0,0); -17.59 for (0,1), and -17.36 for (0,2). This gives the multiplet splitting in cm⁻¹ for the ³II states. The minus sign indicates that the multiplet structure is inverted. This result is corroborated by the rotational analysis, as it is found that the rotational levels designated as F_3 go over into the ³II₀ levels at low K values, and the F_1 levels go over into the ³II₂ levels.

The data for the (0,0), (0,1) and (1,0) bands permitted an unambiguous extrapolation to determine B_{v}'' . The slopes of the straight lines used for these bands were all negative and of the order of 10^{-6} cm⁻¹. They do not seem to us to be significant because an approximation was used in determining $\Delta_2 W_i(J)$. In the case of the (0,2) band, a plot of $\Sigma \Delta_2 W_i(J)/6(2J+1)$ against J(J+1) gives a curved instead of a straight line, which indicates either that the Λ -type doubling has a larger effect in this band than in the others, or that a term in $J^3(J+1)^3$ is present in the rotational energy. Extrapolation of the curve which best fits the experimental points gives $B_2''=1.3472$. Extrapolation of a straight

⁴ Cecil Gilbert, Phys. Rev. 49, 619 (1936).

⁵ C. N. Challacombe and G. M. Almy, Phys. Rev. **51**, 930 (1937).

Int. (est.)	ν OBS. CM ⁻¹	Assignment	INT. (EST.)	ν OBS. CM ⁻¹	Assignment	INT. (EST.)	ν OBS. CM ⁻¹	Assignment	INT. (EST.)	ν OBS. CM ⁻¹	Assignment
5 1 2	(0,0) 31994.96 95.87 96.98	Band O ₁ 13, 14 O ₁ 11, 15 O ₁ 10, 16	20 3 2 4	32121.35 23.51 24.02 24.68	$Q_{3}18; R_{1}13; Q_{1}19$ $R_{3}12$ $P_{3}27$ $Q_{2}19$	2 2 3	32334.22 35.82 38.70	$R_{3}29; Q_{1}36 Q_{2}36 Q_{3}36$	$\begin{vmatrix} 3\\2\\4\\2db \end{vmatrix}$	30839.55 40.48 41.77 43.92	$R_{3}14; R_{1}15$ $P_{3}28$ $Q_{1}21$ $R_{2}15$
223	97.46 98.40 99.06	$O_1 17$ $O_1 9; O_2 14, 15$ $O_1 18; O_2 13, 16$	2 4 5	26.27 29.47 30.49	$R_{2}13$ $Q_{3}19; P_{2}28$ $Q_{1}20$	4 3	(0,1) 30716.28 17.24) Band $P_{15, 6}$ P_{17}	4 2 2	44.61 45.60 46.95	$Q_{2}21$ $P_{1}29$ $P_{2}29$
3db 3db 4	32000.05 01.25 02.46	$O_212, 17$ $O_18, 19; O_28$ O_17	1 3 8	31.15 32.13 33.55	$R_1 14 R_3 13 P_3 28; Q_2 20$	5 8 2	18.63 20.23 22.81	P_{18} P_{19} P_{110}	6 3 1	49.02 50.83 51.68	R ₃ 15; Q ₃ 21 R ₁ 16 P ₃ 29
2 3 2	04.16 04.81 06.72	0120 016 0121	2 5 1	35.82 38.17 39.21	$R_{2}14 Q_{3}20 P_{2}29$	5db 5D 20D	24.89 26.39 27.96	$P_{1}11; P_{2}6, 7$ $P_{2}8, 9$ $P_{1}12; P_{2}10$	4 6 1	52.37 55.01 56.73	$Q_122 \\ R_216; Q_222 \\ P_130$
3 4 3	07.65 10.54 13.63	$O_15; O_28 \\ O_122; O_27 \\ O_26$	4 5 5	40.09 41.38 42.90	Q_{121} R_{115} $P_{329}; Q_{221}$	3 3 1	30.15 30.98 31.88	$P_{2}11 P_{1}13 Q_{1}5$	10 4 4	59.42 62.10 63.43	$R_{3}16; Q_{3}22 \\ P_{3}30; R_{1}17 \\ Q_{1}23$
0 2 10	14.84 16.27 20.49	$\begin{array}{c} O_1 23 \\ O_2 23 \\ O_2 24; P_1 5 \end{array}$	3 5 1	45.77 47.36 48.51	$R_{2}15 \\ Q_{3}21 \\ P_{2}30$	5 15db? 10	32.76 34.38 35.83	$\begin{array}{c} P_{2}12 \\ P_{3}6, 7 \\ P_{3}5, 8; Q_{1}6; P_{1}14; \end{array}$	6 0 5	66.13 68.33 70.05	$\begin{array}{c} R_2 17; \ Q_2 23 \\ P_1 31 \\ Q_3 23 \end{array}$
3 4 5	21.15 21.90 23.07	$P_{16} \\ O_{24}; P_{17} \\ P_{18}$	4 2 1	49.98 50.94 51.96	Q122 R315 R116	0 10	37.95 39.13	$P_{2}13$ $P_{3}11$ $P_{3}4; P_{1}15; P_{2}14$	5 1 2	70.79 73.35 74.25	$R_{3}17$ $P_{3}31$ $R_{1}18$
6 10 3	24.44 26.23 28.32	P_{19} $P_{110}; Q_{11}$ $Q_{12}; P_{111}$	5 2 5	52.69 56.21 56.95	$Q_2 22$ $R_2 16$ $Q_3 22$	4 10 6	40.28 43.56 44.77	$P_{33}, 12; Q_{17}; Q_{25}$ $P_{116}; Q_{26}$ $R_{14}; Q_{18}$	4 4 2	74.98 77.44 78.09	
20 <i>db</i> 10 3	29.34 30.76 32.05	$O_126; P_26, 7$ $O_13; P_112; P_29$ $R_11; P_210$	3 4 4	58.23 60.25 61.01	P_{231} $Q_{1}23$ $R_{3}16$ $P_{2}171$, $Q_{2}23$	3 8	45.41 47.08 48.71	P_{314} $Q_{27}; P_{216}$ $Q_{32}; P_{315}; P_{117}$	$\begin{bmatrix} 1 \\ 4 \\ 2 \\ 2 \end{bmatrix}$	81.32 82.36 85.33	F_{132} $O_{3}24$ $R_{3}18$ $P_{3}22$
20 <i>ao</i> 4 5 20 <i>d</i> b	35.92 37.01	$Q_{14}; F_{113}; F_{211}$ $Q_{15}; P_{212}$ $R_{12}; P_{114}; Q_{21}$ $Q_{22}; P_{213}$	5 2 4	66.99 68.46 71.06	$ \begin{array}{c} $	222	51.08 51.73 53.30	$Q_{33}; Q_{19}; Q_{28}; Q_{34}; R_{15}; Q_{28}; Q_{35}; P_{217}; P_{216}$	852	86.88 89.32 90.40	$R_{1}^{1352}; Q_{1}25$ $Q_{2}25$ $R_{2}19$
5	40.67	$D_{22}^{22}; 1213^{213}; P_{310}; Q_{16}; P_{115}; Q_{23}^{223}; P_{211}; P_{214}$	4 3 3	71.60 73.58 74.44	R_{317} Q_{224} R_{118}	3 8db	54.28 55.28 56.88	$Q_{36}; P_{118}$ $Q_{110}; Q_{29}$ $Q_{27}; P_{218}$		93.04 94.39 97.77	$Q_{3}25; P_{1}33$ $R_{3}19$ $P_{3}33$
2 1 20	42.29 43.11 44.89	R_{21} $P_{312}; R_{13}; Q_{24}$ $P_{313}; O_{17}; P_{116};$	421	77.50 78.30 79.09	$ \begin{array}{c} $	10D, a 15db	lb 58.05 60.50	$\vec{R}_{32}; \vec{P}_{317}; \vec{R}_{16}$ $Q_{38}; Q_{111}; P_{119};$ O_{210}	5 3 3	99.53 30901.72 03.22	$R_120; Q_126$ Q_226 R_220
3 1?	47.12 48.38	$Q_25; P_215$ $O_129; R_22$ $P_314; Q_26$	10 5 3	$82.41 \\ 84.66 \\ 86.33$	R₃18; Q₁25 Q₂25 R₁19	$\begin{vmatrix} 2\\ 8db\\ 3 \end{vmatrix}$	62.27 64.08 65.70	R_{33} Q_{39} $R_{26}; Q_{2}11$	4 3 2	05.32 06.97 10.68	Q₃26 R₃20 P₃34
15 4	49.20 51.71	$\begin{array}{c} R_14; Q_18; P_117; \\ P_216 \\ Q_27 \\ Q_27 \end{array}$	5 3 10	88.46 90.12 93.96	$Q_{3}25$ $R_{2}19; P_{2}34$ $R_{3}19; Q_{1}26$	5	66.76 68.51	$\begin{array}{c} R_34; R_17; Q_112; \\ P_120 \\ Q_310; \ P_319 \end{array}$	4 4 4	12.35 13.01 14.57	$Q_1 27$ $R_1 21$ $Q_2 27$
10 8 5	53.78 54.29 55.38	$Q_{3}3; Q_{1}9; R_{2}3$ $P_{3}16; P_{1}18$ $Q_{3}4; R_{1}5; Q_{2}8$	3 4	96.21 98.52 99.85	$Q_{2}_{2}_{2}_{0}$ $R_{1}_{2}_{0}$ $Q_{3}_{2}_{0}_{0}$ $R_{2}_{0}_{0}$		69.59 71.48 72.10	$P_{2}20$ $R_{3}5; Q_{2}12$ $R_{2}7$ $Q_{1}11; Q_{1}12$	3 5 5	10.45 18.06 19.99 24.00	R_{221} Q_{327} R_{321} P_{-35}
10 8 5	58.66 59.65 62.44	$Q_{3}^{35}; F_{2}^{18}$ $P_{3}^{17}; Q_{1}^{10}; R_{2}^{4}$ $Q_{3}^{6}; P_{1}^{19}; Q_{2}^{9}$ $Q_{2}^{7}; P_{2}^{19}$	8 5D	06.01 08.18	$R_{320}; Q_{127}$ Q_{227} $Q_{27}; R_{121}$	10 5 1	73.85 74.39 75.82	P_{121} P_{320} ; R_{18} P_{221}		25.77 26.84 27.85	Q ₁ 28 R ₁ 22 Q ₂ 28
2 <i>db</i> ? 5	63.38 64.15 65.40	$P_{3}18; R_{16}$ $Q_{1}11; R_{2}5; Q_{2}10$ $Q_{3}8; P_{1}20$	3 8 4	14.74 18.40 20.51	$R_{2}21$ $R_{3}21; Q_{1}28$ $Q_{2}28$	8 5 5	77.09 77.75 78.55	R_{36} Q_{213} Q_{312}	344	30.12 31.27 33.55	
2 2 5	66.29 68.55 69.20	R_{23} $Q_{3}9; P_{3}19; P_{2}20$ $Q_{2}11$	8D 2 5	24.17 27.75 31.33	$O_{3}28$; $R_{1}22$ $R_{2}22$ $R_{3}22$; $Q_{1}29$	$\begin{vmatrix} 20db?\\ 2\\ 4 \end{vmatrix}$	80.72 82.08 83.04	$P_{321}; Q_{114}; P_{122}$ $R_{37}; R_{19}$ P_{222}	3 4 3	38.08 39.66 41.10	P ₃ 36 Q ₁ 29 Ř ₁ 23
2 1 3db	69.86 70.50 77.49	$ar{O}_1 12 \ R_1 7; R_2 6 \ R_3 4; P_1 21$	4 4 2	33.51 36.75 37.90	Q229 Q329 R123	15 8 1	84.42 87.75 88.66	$Q_{3}13; Q_{2}14$ $Q_{1}15; R_{2}9$ $P_{3}22; P_{1}23$	3 2 3	41.62 44.31 44.92	Q229 R223 Q329
5 5 5	72.46 74.59 76.04	$\begin{array}{c} Q_3 10 \\ Q_2 12; P_2 21 \\ Q_1 13 \\ Q_1 13 \end{array}$	3 10 3	41.12 44.64 46.69	$R_{2}23 \\ R_{3}23; Q_{1}30 \\ Q_{2}30 \\ Q_{2}0$	3 5 5db	89.35 90.69 91.80	R_{38} $Q_{3}14; R_{1}10; P_{2}23$ $Q_{2}15$ $Q_{2}15$	4 4 5	47.62 53.99 55.92	$R_{3}23$ $Q_{1}30$ $R_{1}24; Q_{2}30$ $R_{2}20; R_{2}24$
20 <i>tr</i>	76.90 78.54 80.42	$R_{3}5; Q_{3}11; R_{2}7$ $R_{1}8; P_{1}22$ $Q_{2}13; P_{2}22$	3	49.99 51.90 55.07		555	95.67 96.35 97.47	$P_{3}23; Q_{1}16$ $R_{3}9; R_{2}10$ $Q_{3}15; P_{1}24$ $P_{3}11; Q_{3}15; P_{2}4$	5 2 1	59.05 62.10 67.05	$Q_{3}30; R_{2}24$ $R_{3}24$ $P_{3}38$ $Q_{3}21$
8 1 1	81.74 82.45 83.71	Q_{312} $R_{36}; Q_{114}$ R_{28} R_{20}		60.44 63.59	$R_{324}; Q_{131}$ Q_{231} Q_{331} R_{25}	5 5 2	30803.90 04.89	$R_{111}; Q_{210}; P_{224}; R_{310}; \tilde{P}_{324}; Q_{117}; Q_{316}; R_{211}; Q_{25}$	10D 10 2	70.85 73.90 77 10	$R_{125}; Q_{231}$ $Q_{331}; R_{225}$ R_{25}
8D 2 5	86.94 87.77 89.55	$Q_{3}13; P_{1}23; Q_{2}14$ $R_{3}7; P_{2}23$ $Q_{1}15$	3 8db. 2	69.33 72.62 74.65	$R_{12.5}$ R_{225} R_{325} ; Q_{132} Q_{232}	4 3 4	07.43 08.92 11.82	$Q_{2}17; P_{2}25$ $R_{1}12$ $R_{3}11$	1 4 3	82.33 84.03 85.90	P_{339} Q_{132} Q_{232}
$2 \\ 20 db \\ 1$	92.30 93.22 93.93	\overline{R}_{2}^{9} $Q_{3}^{14}; P_{1}^{24}; Q_{2}^{15}$ \overline{R}_{3}^{8}	4 2 3	77.68 81.04 84.07	Õ₃32 Ř₁26 R₂26	8 3 4	12.75 14.08 16.00	$Q_3 17; Q_1 18 \\ P_1 26; R_2 12 \\ Q_2 18$	3 3 3	86.70 88.86 89.64	R126 Q332 R226
2 5 5	94.52 96.89 99.36	$R_{1}10$ $Q_{1}16$ $Q_{3}15$ $R_{1}0$ $Q_{3}15$	333	87.39 89.21 92.27	$R_{3}26; Q_{1}33$ $Q_{2}33$ $Q_{3}33$ $Q_{5}7$	1 2 3	16.52 18.80 20.32	$P_{2}26$ $R_{1}13$ $R_{3}12$	4 2 2	92.59 99.74 31001.55	$R_{3}26$ $Q_{1}33$ $Q_{2}33$ $Q_{2}33$
15 <i>ab</i> 1 2 4	01.51 03.15 04.67	$R_{39}; R_{210}; Q_{210}$ P_{125} $R_{111}; P_{225}$ Q_{117}	$\begin{vmatrix} 1\\2\\2\\3db \end{vmatrix}$	90.37 99.22 32302.54 04 32	R_{127} R_{227} R_{327} ; Q_{134} Q_{234}	5 4 4	20.96 21.96 23.62 25.05	$Q_{3}18; F_{3}20$ $Q_{1}19$ $R_{2}13$ $P_{1}27; Q_{2}19$	$\begin{vmatrix} 2\\3\\2\\2\end{vmatrix}$	02.80 04.53 05.74 08.48	R_{127} Q_{333} R_{227} R_{27}
3 1 5 <i>tr</i>	06.20 07.62 08.24	$\tilde{O}_{3}16$ $R_{3}10; P_{3}25$ $R_{2}11; O_{2}17$	1 2 2	07.25 12.11 15.00	Õ ₃ 34 Ř128 R228	2? 4 1	29.18 29.79 30.53	$R_{1}14 R_{3}13; Q_{3}19 P_{3}27$		· 15.99 17.67 19.42	$Q_134 \\ Q_234 \\ R_128$
4 5 5	12.82 13.46 15.30	$Q_1 18 Q_3 17 R_3 11$	2 4 2	18.17 19.93 22.72	$R_{3}28; Q_{1}35 Q_{2}35 Q_{3}35$	8 2 8	31.68 33.61 34.74	O_120 R_214 $P_128; Q_220$	3 2 3	20.53 22.22 24.91	Q₃34 R₂28 R₃28
5 5	16.21 17.22	$P_{3}26; Q_{2}18$ $R_{2}12$	5 2	28.24 31.04	R ₁ 29 R ₂ 29	1 5	37.10 39.07	$P_{2}28 Q_{3}20$	33	32.76 34.30	Q135 Q235

TABLE I. Rotational structure of (0,0), (0,1), (0,2) and (1,0) bands of BF. D = diffuse and db = double.

1

______T

TABLE I. (Continued).

Int. (est.)	ν OBS. CM ⁻¹	Assignment	Int. (est.)	ν OBS. CM ⁻¹	Assignment	INT. (EST.)	ν OBS. CM ⁻¹	Assignment	INT. (EST.)	ν OBS. CM ⁻¹	Assignment
$2 \\ 3db? \\ 3 \\ 4$	(0,1) 31036.55 37.10 39.29 41.84	Band R ₁ 29 Q ₃ 35 R ₂ 29 R ₃ 29	$ \begin{array}{c} 1 \\ 5db? \\ 2 \\ 2 \\ 8 \\ 1 \end{array} $	29515.46 17.42 19.11 20.38 22.71	$R_{1}11 Q_{2}16 R_{3}10 R_{2}11; P_{1}24 Q_{3}16; Q_{1}17 D_{1}24 Q_{1}24 Q_{1}2$	2 4 2 3	29695.12 98.15 29700.05 01.03 03.11	$R_{1}25$ $R_{2}25; Q_{1}31$ $Q_{2}31$ $R_{3}25$ $Q_{3}31$	$1 \\ 5db \\ 1 \\ 2 \\ 3 \\ 3$	33672.58 73.59 75.15 76.14 79.31	$\begin{array}{c} P_{3}24\\ Q_{2}15; Q_{3}14\\ R_{2}9\\ R_{1}10; Q_{1}16; R_{3}8\\ Q_{3}15\\ Q_{3}15\\ R_{3}6\\ $
3D 3D 1 3	(0,2) 29409.18 10.57 11.63 13.12	Band $O_110, 11, 12, 13$ $O_114, 9$ $O_18, 15$ $O_17, 16; O_211, 12,$	$\begin{bmatrix} 1\\ 3\\ 4\\ 5db\\ 3\\ 3\\ 3\\ 3\end{bmatrix}$	25.28 25.99 27.53 30.10 31.18 31.92	$\begin{array}{c} R_1 12 \\ Q_2 17 \\ R_3 11 \\ R_2 12; P_1 25 \\ Q_3 17 \\ Q_1 18 \\ P_1 P_1 P_1 P_1 P_1 P_1 P_1 P_1 P_1 P_1$	3 4 3db 2 4 3	11.57 14.47 16.34 17.31 19.20 28.59	$\begin{array}{c} R_{1}20 \\ R_{2}26; \ Q_{1}32 \\ Q_{2}32 \\ R_{3}26 \\ Q_{3}32 \\ R_{1}27 \end{array}$	2 1 5 3 10D	79.72 82.56 83.22 85.37 86.57 90.46	$\begin{array}{c} Q_{216}; P_{325} \\ R_{210}; R_{39} \\ Q_{117} \\ R_{111}; Q_{316} \\ Q_{217}; P_{326} \\ Q_{118}; R_{211}; R_{310} \end{array}$
2 1? 2 3	13.75 14.49 16.01 17.32	$ \begin{array}{c} 13\\ O_214\\ O_210, 15\\ O_16; O_216\\ O_29\\ O_217\\ \end{array} $	8 <i>db</i> 2 5 3 2	35.20 36.41 40.07 41.73 44.78 45.90	$Q_218; R_{113}$ $R_{312}; P_{325}$ $Q_{318}; R_{213}; P_{126}$ Q_{119} Q_{219} $P_{13}; P_{226}; R_{114}$	5 3 4 5 4	31.30 32.97 34.08 35.92 48.73	$R_{2}27; Q_{1}33 Q_{2}33 R_{3}27 Q_{3}33 R_{2}28; Q_{1}34 Q_{2}34 Q_{3}4 Q_{3}4 Q_{3}4 Q_{3}4 Q_{3}4 Q_{3}4 Q_{3}4 Q_{3}5 R_{3}27 Q_{3}3 R_{3}28 R_$	2 3 2 2 4	91.94 93.83 94.31 97.13 98.26	$\begin{array}{c} Q_{3}17 \\ R_{1}12; \ Q_{2}18 \\ P_{3}27 \\ R_{3}11 \\ Q_{1}19; \ R_{2}12 \end{array}$
5db? 2 2 3 4db	20.24 23.82 25.26 29.70 31.56	$\begin{array}{c} 0_{12}\\ O_{15}\\ O_{219}\\ O_{120}\\ O_{121}\\ O_{221}; P_{16} \end{array}$		49.50 50.55 52.04 54.97 56.00	$\begin{array}{c} R_{310}, 1 _{320}, R_{111}\\ Q_{3}19\\ R_{2}14\\ Q_{1}20\\ Q_{2}20\\ R_{3}14; P_{3}27 \end{array}$	4 5db 2	51.48 53.28 (1,0 33576.72	R_{328} Q_{334}) Band O_{113}	5db 2 5 4 2	93.88 33701.63 04.72 06.46 09.60 11.01	Q_{310}^{310} $R_{113}^{}; Q_{219}^{}$ $R_{312}^{}$ $Q_{120}^{}; R_{213}^{}; Q_{319}^{}$ $Q_{220}^{}$ $R_{114}^{}$
3 4db? 5db? 2 4db?	32.55 33.98 36.14 38.40 39.58	$\begin{array}{c} P_{17} \\ P_{18} \\ O_{222}; P_{19} \\ P_{110} \\ P_{25}, 6 \\ P_{7}. \end{array}$	$ \begin{array}{c} 1 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \end{array} $	57.23 59.48 61.62 62.84 65.64 66.54	$R_{1}15 Q_{3}20 R_{2}15 Q_{1}21 Q_{2}21 Q_{2}15 Q_{1}5 Q_{1$	$\begin{vmatrix} 1\\ 2\\ 2D\\ 2db\\ 1\\ 2\end{vmatrix}$	79.10 80.65 82.64 84.53 86.04 87.02	$\begin{array}{c} O_118, 19; O_215, 16\\ O_111; O_214, 17, 18\\ O_19; O_212\\ O_18, 21\\ O_122; O_210, 21\\ O_77\end{array}$	2 3 2 3	12.74 14.08 15.08 16.18 17.81	$ \begin{array}{c} R_{8}13\\ Q_{3}20\\ Q_{1}21\\ R_{2}14\\ Q_{2}21\\ Q_{2}21\\ R_{2}14 \end{array} $
2 2 2 5db	$\begin{array}{r} 40.31\\ 41.16\\ 42.01\\ 42.73\\ 44.18\\ 45.28\end{array}$	$\begin{array}{c} P_{2}P_{2}P_{3}P_{1}11\\ P_{2}9\\ P_{2}10; Q_{1}31\\ P_{1}12\\ Q_{1}4\end{array}$	1 2 4 4	66.98 68.87 69.94 73.06 74.18	$ \begin{array}{r} R_{313} \\ P_{328} \\ R_{116} \\ Q_{321} \\ R_{216} \\ Q_{122} \end{array} $	1 2 1 2 1	87.02 88.41 89.63 91.00 92.57 94.20	$\begin{array}{c} O_1 \\ O_2 \\ O_1 \\ 2 \\ 2 \\ O_1 \\ 2 \\ 3 \\ O_2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 2 \\ 0 \\ 2 \\ 2 \\ 2 \\ $	2 3 3D 2 2 2	21.13 22.39 23.92 25.25 26.67 30.21	$ \begin{array}{c} R_{1}15; \ R_{3}14 \\ O_{3}21 \\ O_{1}22 \\ R_{2}15 \\ O_{2}22 \\ R_{3}15 \end{array} $
4 4 5 3 2	46.49 48.14 49.29 50.81 51.15 52.20	$\begin{array}{c} P_{2}11 \\ P_{1}13; Q_{1}5 \\ Q_{2}2; P_{2}12 \\ P_{3}7, 8; Q_{2}3 \\ P_{3}9; Q_{1}6 \\ P_{2}10: P_{2}13: P_{1}14 \end{array}$	$ \begin{array}{c} 2\\ 2\\ 1\\ 4\\ 3D\\ 4 \end{array} $	76.85 77.65 78.53 80.98 84.96 85.95	$\begin{array}{c} Q_2 22 \\ R_3 16 \\ P_3 29 \\ Q_3 22; R_1 17 \\ R_2 17 \\ Q_2 3 \end{array}$	$\begin{vmatrix} 2 \\ 1 \\ 2 \\ 2 \\ 10 \\ 2 \end{vmatrix}$	95.70 97.38 98.99 33601.19 05.50 06.14	$\begin{array}{c} O_27 \\ O_125; \ O_225 \\ O_26 \\ O_126; \ O_25 \\ O_127; \ P_{16} \\ O_{24}, \ 27; \ P_{17} \end{array}$	2 1 3 4db	30.79 33.25 34.48 35.79 39.62	$R_{1}16; Q_{3}22 Q_{1}23 R_{2}16 Q_{2}23 R_{3}16; Q_{3}23 R_{3}16; Q_{3}25 R_{3}16; Q_{3}16; Q_{3}25 R_{3}16; Q_{3}16; Q_{3}16; Q_{3}16; Q_{3}16; Q_{$
	52.29 52.97 53.52 55.19 56.78 58.25	$\begin{array}{c} P_{3}P_{1}P_{1}P_{1}P_{2}P_{3}P_{3}P_{1}P_{1}P_{3}P_{2}P_{3}P_{1}P_{3}P_{2}P_{3}P_{1}P_{1}P_{1}P_{1}P_{1}P_{1}P_{1}P_{1$	4 3 1 4 2	83.53 88.54 89.27 90.37 92.50 93.52	$\begin{array}{c} Q_{123} \\ Q_{223} \\ R_{3}17 \\ P_{330} \\ Q_{323} \\ R_{1}18 \end{array}$	2 3 3 3 5db	07.01 08.10 09.50 11.16 . 13.60	$P_{18} P_{19} P_{110} P_{111} P_{112}; P_{26}$	2 3 3 1 3	40.08 42.92 45.42 49.20 51.12 52.96	$ \begin{array}{c} R_{1} \\ Q_{1} \\ Q_{1} \\ R_{2} \\ T_{7}; Q_{2} \\ Q_{3} \\ 24 \\ R_{1} \\ R_{1} \\ R_{1} \\ R_{1} \\ S \\ Q_{1} \\ 25 \end{array} $
3 2 5 1? 2	59.97 61.10 61.92 62.96 65.18 66.10	$\begin{array}{c} P_{2}15; Q_{1}8 \\ R_{1}4 \\ Q_{2}7; P_{1}16 \\ P_{3}14; R_{2}3 \\ Q_{3}3; P_{2}16; Q_{1}9 \\ O_{2}4: O_{2}8 \end{array}$	$\begin{vmatrix} 3\\4\\4\\2\\1db\\4\end{vmatrix}$	97.32 98.26 29600.69 01.45 02.89 04 55	$R_{2}18$ $Q_{1}24$ $Q_{2}24$ $R_{3}18$ $P_{3}31$ $Q_{2}24$	2 4 3 5 2 3	14.20 15.39 16.51 18.26 20.40 21.41	$\begin{array}{c} P_{2}5, 7, 8\\ Q_{1}3; P_{1}13; P_{2}4, 10\\ P_{2}3, 11\\ Q_{1}4; P_{2}12\\ Q_{1}5; P_{2}13\\ P_{2}15\end{array}$	5 3 1 2 4	55.34 59.22 62.05 63.42 65.87	$R_{2}18; Q_{2}25$ $R_{3}18; Q_{3}25$ $R_{1}19$ $Q_{1}26$ $R_{2}19; Q_{2}26$ $R_{2}10; Q_{2}26$
3 1 2 5 1?	67.50 68.44 69.59 70.72 71.37	$Q_{35}^{0,35}; P_{1}^{2,0}$ $R_{24}^{0,36}$ $Q_{29}^{0,29}; P_{2}17; Q_{1}10$ $P_{3}16$	2 3 4 4 3	06.56 10.21 11.08 13.44 14.17	$\begin{array}{c} 0.24\\ R_1 19\\ R_2 19\\ O_1 25\\ O_2 25\\ R_3 19 \end{array}$	5 8db 5db 10	22.73 24.80 26.16 28.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 5 <i>db</i> 3 3	73.49 74.08 76.82 80.04 80.85	$R_{120} \\ Q_{127} \\ R_{220}; Q_{227} \\ Q_{327} \\ R_{320}$
3 6 2 4 3	72.25 73.81 75.74 76.71 77.60 79.53	$\begin{array}{c} Q_37 \\ R_25; P_{1}18; R_{1}6 \\ Q_38; Q_210 \\ P_218; Q_111 \\ R_{3}3 \\ O_{2}9 \end{array}$		15.74 17.12 20.13 23.59 24.43 26.58	$P_{3}32 Q_{3}25 R_{1}20 R_{2}20 Q_{1}26 Q_{2}6 Q_{2}6 Q_{2}6 Q_{2}6 Q_{2}6 Q_{2}6 Q_{2}6 Q_{3}25 Q_{3}25 Q_{3}25 Q_{3}25 Q_{3}25 Q_{3}25 Q_{3}25 Q_{3}26 Q$	1 4 1 <i>db</i> ? 1	30.12 32.79 34.09 35.80 37 15	$P_{3}14; P_{2}16$ $Q_{2}5$ $Q_{1}8; Q_{2}6$ $R_{1}4; R_{2}2; P_{3}16$ $Q_{2}7$ $Q_{2}0; P_{2}17$	5 2 2db 3 3	85.32 87.65 88.63 91.11 92.37 97.10	$R_{1}21; Q_{1}28$ $Q_{5}28$ $R_{2}21$ $Q_{3}28$ $R_{3}21$ $R_{2}22: Q_{1}29$
2 1 5 3 5	80.10 81.04 81.61 83.22 83.93	$\tilde{R}_{26}; P_1 19$ R_17 $R_34; Q_2 11$ $Q_1 12$ $Q_3 10$	2 1 3 2 3	27.36 29.30 30.17 34.17 37.58	R ₃₂ 0 P ₃ 33 Q ₂ 26 R ₁ 21 R ₂ 21	$\begin{vmatrix} 2\\ 3db\\ 3\\ 3\\ 1\\ 1 \end{vmatrix}$	39.10 41.27 42.41 43.00 44.52	$\begin{array}{c} R_{23}; Q_{28} \\ Q_{110}; P_{318} \\ Q_{34} \\ Q_{29}; Q_{35} \\ R_{24}; Q_{36} \end{array}$	2 2 2 3D	99.19 33800.61 02.56 04.00 09.37	$\begin{array}{c} Q_{1}229 \\ Q_{2}29 \\ R_{2}21 \\ Q_{3}29 \\ R_{3}22 \\ R_{1}23; \ Q_{1}30 \end{array}$
$2 \\ 2 \\ 5db? \\ 3 \\ 2 \\ 2 \\ 2$	86.22 87.12 87.80 89.08 90.18 91.56	$\begin{array}{c} R_{3}5\\ R_{2}7; P_{1}20\\ P_{3}19; Q_{2}12\\ Q_{3}11; R_{1}8\\ Q_{1}13\\ R_{3}6\end{array}$		38.17 40.35 41.10 43.25 43.81 48.68	Q_{127} Q_{227} R_{321} P_{334} Q_{327} R_{122}	1 4 2 3 3	45.16 46.46 47.70 49.00 49.76	$\begin{array}{c} P_{220} \\ Q_{1}11; Q_{2}10; Q_{3}7; \\ P_{3}19 \\ R_{16} \\ R_{25} \\ Q_{3}8 \end{array}$	2D 2 2 2 2 2 1	$ \begin{array}{r} 11.13 \\ 13.04 \\ 14.33 \\ 16.24 \\ 21.56 \\ 22.49 \\ \end{array} $	$Q_{2}30$ $R_{2}23$ $Q_{3}30$ $R_{3}23$ $Q_{1}31$ $R_{1}24$
10 5 3 5	94.56 97.53 29500.91 01.58 02.75	$\begin{array}{c} Q_{3}12; \ P_{3}20; \ R_{2}8; \\ Q_{2}13; \ P_{1}21 \\ R_{3}7; \ R_{1}9; \ Q_{1}14 \\ Q_{3}13 \\ Q_{2}14 \\ P_{2}22 \end{array}$	$\begin{vmatrix} 2\\ 3\\ 2\\ 3db\\ 3\\ 3\end{vmatrix}$	52.01 52.43 54.54 55.40 57.86 63.71	$ \begin{array}{r} R_{2}22 \\ Q_{1}28 \\ Q_{2}28 \\ R_{3}22 \\ Q_{3}28 \\ R_{3}22 \\ Q_{3}28 \\ R_{3}2 \end{array} $	10 1 1? 3 2	51.66 53.54 54.14 55.22 56.47	$ar{Q}_1 12; Q_2 11; Q_3 9 \\ R_{33} \\ R_17; R_2 6 \\ Q_3 10; P_3 21 \\ Q_2 12 \\ Q_1 12; P_4 4$	2 2 3 2 2	23.46 25.68 26.59 28.87 34.35	$\begin{array}{c} Q_{3}31 \\ R_{2}24 \\ Q_{3}31 \\ R_{3}24 \\ Q_{1}32 \\ R_{2}5 \\ Q_{1}32 \\ R_{2}32 \\ Q_{1}32 \\ R_{2}32 \\ Q_{1}32 \\ $
3 3 2 3	02.73 03.52 04.10 05.41 06.19 07.67	$R_{29} R_{38} Q_{115} R_{110} Q_{314}$	8 <i>db</i> 3 2 5 1	67.06 69.20 70.05 72.47 79.14	$\begin{array}{c} R_{1223}; Q_{129} \\ Q_{229} \\ R_{323} \\ Q_{329} \\ R_{124} \end{array}$	4 1 5 8 3	59.33 60.36 61.67 63.41 66.24	Q_{3}^{110}, N_{3}^{34} Q_{3}^{11} $R_{2}7; P_{3}22$ $R_{1}8; Q_{2}13; R_{3}5$ $Q_{1}14; Q_{3}12$ $R_{3}6; P_{3}23$	3 2D 3D 3 4	39.07 42.32 47.85 49.41 52.41	$\begin{array}{c} R_{12}, \ 0, 232\\ R_{2}25; \ 0, 332\\ R_{3}25\\ 0, 133\\ R_{1}26; \ 0, 233\\ R_{2}26; \ 0, 333\end{array}$
4 3 2 2	09.26 11.37 13.77 14.93	$\begin{array}{c} Q_{2}15 \\ R_{3}9; R_{2}10; P_{1}23 \\ Q_{1}16 \\ Q_{3}15 \end{array}$	$5 \\ 3db \\ 2 \\ 2$	82.38 84.33 85.38 87.56	R224; Q130 Q230 R324 Q330	2 3 3 2	67.36 68.33 69.43 71.49	$\begin{array}{c} R_2 8; \ Q_2 14 \\ R_1 9; \ Q_3 13 \\ Q_1 15 \\ R_3 7 \end{array}$	1	55.28	R ₃ 26

TABLE II. Molecular constants of the upper $(^{3}\Sigma)$ and lower $(^{3}\Pi)$ electronic states of the BF A-system bands.

	B _v (cm⁻¹)	D _v (cm ⁻¹)	α (cm ⁻¹)	$I_{e} \ ({ m g~cm^{2}} \ imes 10^{40})$	r_e cm $ imes 10^8$
v' =0 1	1.6235 1.6030	-4.2×10^{-6} -9.7 × 10^{-6}	0.025	16.93	1.220
v'' = 0 1 2	1.4030 1.3851 1.3672*		0.0179	19.56	1.312

* Extrapolated.

line fitted to the data gives $B_2''=1.3770$. The former value seems too low and the latter too high. The value 1.3672 included in Table II is that obtained from the equation $B_v = B_e + \alpha(v + \frac{1}{2})$ where α is determined from $B_0'' - B_1''$.

The constants for the ${}^{3}\Sigma$ state have been obtained graphically in the following manner. If T(K) represents the total energy of the rotational energy level, then

$$\Delta_1 F_i(K + \frac{1}{2}) = T_i(K + 1) - T_i(K) = R_i(K) - Q_i(K) \pm \delta_{AB}$$

where δ_{AB} represents the Λ -type splitting. Since the ${}^{3}\Sigma$ states may be represented by the equations of Hund's case *b*, we have

$$\Delta_1 F_i(K+\frac{1}{2}) = 2B'(K+1) + 4D'(K+1)^3 + \cdots$$

Averaging over the three sub-states gives:

$$[\Sigma_i \Delta_1 F_i(K+\frac{1}{2})]/[6(K+1)] = B'+2D'(K+1)^2+\cdots.$$

Neglecting the Λ -type splitting we have

$$\sum_{i} [R_{i}(K) - Q_{i}(K)]/6(K+1) = B' + 2D'(K+1)^{2} + \cdots$$

The left side of this equation, evaluated experimentally, has been plotted against $(K+1)^2$. The intercept of the straight line obtained has been taken as the value of B' and the slope as 2D'. The value of B' for v'=0 is the average of the values obtained from the (0,0), (0,1) and (0,2)bands. The value for v'=1 is obtained from the (1,0) band. These values are given in Table II.

Acknowledgments

The authors are grateful to Professor H. S. Booth and Mr. Karl S. Willson who prepared the pure sample of BF₃, and to Mr. George E. Hansche, who assisted in obtaining the spectrum photographs.

FIG. 1. Fortrat diagram and an enlargement of a part of the (0,0) band of the ${}^{3}\Sigma \rightarrow {}^{3}\Pi$ system of BF. The points are the identified members of the branches and are placed directly above the line so identified.