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study of molecular hydrogen ions produced from
the ethylene C2H2D2 is also of interest. It is
possible to tell whether the molecular hydrogen
ions formed come from two atoms belonging to
the same radical, or whether all the combinations
of hydrogen atoms are possible. In the first case
the ratio DD/HD would be 0, and in the second
case it would be 4. Using first a hot tungsten
filament as electron source, the ratio obtained
was 4. But because of a possible thermal de-
composition of the ethylene against the filament,
the same experiment was repeated with an oxide

coated filament, and gave the result 1/15. The
comparison between the two results shows
clearly that in the first experiment the most
important role was played by the molecular
hydrogen ion coming from thermodissociation.
With the oxide coated filament, this effect is far
less important. In view of this, we can assume the
true ratio to be less than 1/15. This is strongly in

favor of the first assumption mentioned before.
The authors take this opportunity to thank

Professor Walker Bleakney for many helpful
dl scusslons.
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An atomic distribution function for liquid sodium is
developed. A simple liquid model of the quasi-solid type
is assumed in which each atom is trapped by its immediate
neighbors in a small spherical cell within which it is free
to move about. The resulting distribution function contains
three parameters which are evaluated by fitting the func-
tion to the experimental distribution curves for liquid

sodium given by Trimble and Gingrich. An approximate
value of the free volume of the liquid as a function of the
absolute temperature is obtained. By means of the free
energy equation the entropies and latent heats of fusion
and vaporization for liquid sodium are calculated and
compared with the observed values.

INTRODUCTION

' 'N a recent article, Tximble and Gingrich' have
~ - given atomic distribution curves for liquid
sodium at temperatures of 100'C and 400'C.
These curves, which are derived by an analysis
of the x-ray diffraction patterns of the liquid, '
give the radial atomic configuration in the liquid.
Presumably they should yield important infor-
mation about the liquid state of sodium.

For a profitable use of atomic or molecular
distribution curves, it is of considerable value to
represent them by an analytical function. Prins'
has proposed a series of error functions for the
general liquid distribution function. This repre-
sentation is based upon a "smeared out" model
of the corresponding crystalline solid. Berna14 has

* On leave of absence at M. I. T. during 1937—38.' Trimble and Gingrich, Phys. Rev. 53, 278 (1938);also,
Tarasov and Warren, J. Chem. Phys. 4, 236 (1937).

~ Zernike and Prins, Zeits. f. Physik 41, 184 (1927).' Prins, Physica 3, 147 (1936).' Bernal, Trans. Faraday Soc. 33, 27 (1937); also,
Kirkwood, J. Chem. Phys. 3, 300 (1935).

generalized the treatment to some extent. For
the case of monatomic or quasi-monatomic
liquids, assumed to possess molecular homo-

geneity, '. he has shown that the distribution
function of a liquid can be derived from a
knowledge of its intermolecular potential func-
tion. Unfortunately this potential function is not
known in many cases, or, if known, is expressed
in a form so complex as to destroy its utility.

The purpose of this paper is to develop a
distribution function for liquid sodium somewhat
different in form from that proposed by Prins.
A direct consequence of this development is the
determination of the so-called free volume of
liquid sodium.

FREE ENERGY EQUATIoN AND FREE VoLUME

The concept of free volume has been very
fruitful in the study of liquids and gases. Guggen-

~ All interior molecules of the liquid have statistically
equivalent molecular environments.



ATOM I C DISTRIBUTION FUNCTION 1063

heim' has shown that its use effects an essential
simplification in the expression for the free
energy (Helmholtz) of a simple liquid. It is
assumed that the potential energy of a simple
liquid has a pronounced minimum for a certain
set of molecular configurations, and is effectively
infinite for all others. This particular set of
configurations is characterized by assigning to
each molecule in the liquid a small volume v

within which it is more or less free to move
independently of the other molecules without
appreciably altering the condition of minimum
potential energy for the entire assembly. This
volume may be ca11ed the free volume of the
molecule. On this assumption the free energy of
a simple liquid is given approximately by the
equation, '

I'" = —NkTDn J(T)+in vj+C. (1)
In Eq. (1) 4 is the minimum potential energy
of the molecular assembly and J(T) is the ordi-
nary partition function for the molecules. The
other symbols have their usual significance. For
a monatomic liquid at moderate temperatures
J(T) may be assumed to take its classical value,

(2 7rnzk T/h') ~

According to Guggenheim Eq. (1) is valid
either for a quasi-solid model of a liquid in which
the molecules are not allowed to change places,
or for an imperfect gas model in which the
molecules are allowed to change places. Eyring
and his associates, ' who have made material
contributions to the theory of the liquid state,
appear to hold a slightly different point of view
on this matter. '

Lennard-Jones and Devonshire" have been
very successful in accounting for the main
features of the liquid and gaseous states of those
molecular aggregates whose molecular potential
may be satisfactorily represented by the well-

Guggenheim, Proc. Roy. Soc. A135, 181 (1932); also,
Fowler, Statistical 3IIechanics (second edition), p. 522 et seg.' Not valid for helium and hydrogen.' Eyring and Hirschfelder, J. Phys. Chem. 41, 249
(1937);Kincaid and Eyring, J.Chem. Phys. 5, 587 (1937);
Hirschfelder, Stevenson and Eyring, J. Chem. Phys. 5,
897 (1937).

9According to Eyring et al. the communal sharing of
free volume by the molecules in a liquid contributes a
term, —Nk'1, to its free energy. Cf. Gurney and Mott,
J. Chem. Phys. 6, 222 (1938); Fowler, Statistical Me-
chanics (second edition), pp. 191—192.

' Lennard-Jones and Devonshire, Proc. Roy. Soc. A163,
53 (1937); A165, 1 (1938).Lennard-Jones, Physica 4, 941
(1937).Wheeler, Ind. Acad. Sc. Proc. 4, 291 (1936).

known function, X/r" —p/r'. They consider each
molecule in the liquid or dense gas as being
temporarily trapped in a cell by its immediate
neighbors. The effective volume of the cell
constitutes the free volume for the molecule.
Thus C in Eq. (1) may be determined as a
function of the specific volume and v as a
function of the specific volume and temperature
of the liquid. Hence the free energy is known.

Eventually it may be possible to apply some
such method as that of L.-J. and D. to liquid
sodium. A fairly good approximation for 4
(in the solid state) appears to be available. "
A corresponding expression for v is needed. It will

be shown that an analysis of the atomic dis-
tribution curves for liquid sodium apparently
yields good values of v at 100'C and 400'C and,
in addition, gives the approximate variation of v

with the absolute temperature.

DEVELOPMENT OF ATOMIC DISTRIBUTION

FUNcTIQN

In developing the atomic distribution function
for liquid sodium a quasi-solid model for the
liqui'd is adopted. This model is essentially
equivalent to that proposed by L.-J. and D. , i.e.,
each atom in the liquid is assumed to be trapped

Fto. 1. Atomic cells of two neighboring atoms. The
shaded portion of the left sphere represents the volume
integral in Eq. (6). It is generated by the motion of d7.

&

when the line R of 6xed length and direction is moved
parallel to itself through all positions consonant with the
condition that d71 and dv& remain in their respective
spheres.

(at least temporarily) in a small spherical cell by
its immediate neighbors. In order to proceed it
is necessary to make some assumption concerning
the form of the potential energy function within
the cell. The papers of L.-J. and D. suggest two
general types of functions. One is the ordinary
parabolic type used extensively in the theory of

»Frohlich, Proc. Roy. Soc. A158, 97 (1937); also,
Bardeen, Phys. Rev. 53, 683 (1938).
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solids. The other is the discontinuous box type
in which the potential is practically constant
throughout the cell except at the cell boundary
where it becomes infinite. Since this latter form
appears to give a better correspondence with the
experimental data, it will be assumed in the
following development. "

Let the distance between the cell centers I'j
and I'~ of two nearest neighboring atoms in the
liquid be Rp as shown in Fig. 1. About each
center let us describe a sphere of radius a.
Let the volume v of each sphere represent the
free volume for the atom trapped within it.
The probability that atom 1, i.e., its center, lies
in the volume element dvq having coordinates
x~, yI. , z~ with respect to I'~ may be written in
the form,

p(xg, yg, sg)dr)/v, (2)

xg ——xg+X —Xp,
y~=yi+ ~—I'p,

zQ —z] +Z Zpy

(4)

where Xp, Yp, Zp are the relative coordinates of
the cell centers, and X, Y, Z are the relative co-
ordinates of the two atoms at dv. ~ and d~~.

Making these transformations in expression (3),
we get, -

»«i= (xl +yl +sl )'*(0.
where

A corresponding expression may be written for
atom 2.

The probability of atom 1 lying in d7& and
atom 2 lying in d~& will be"

p(1)p(2) dr, d r g/v'.

Let us replace the coordinates x&, y&, z& by a new

set X, 7; Z de6ned by the linear relations,

with 6xed X, Y, Z, viz. ,

(1/v')dXdI'dZ)t )I t p(x, )

Xp (x1+X—Xo, )dx dy 1ds1 (6)

3H H3-
1 — +

4a. 16a 3

Substituting this quantity in expression (6) and
writing dX, d F, dZ in spherical coordinates, we

get,

3H H'
1/v 1 — + R' sin gdRdgd@.

4a' 16a 3
(7)

Expression (7) is the probability that the two
atoms will have relative spherical coordinates of
R, 0, p, the line joining the cell centers giving the
direction of the polar axis. A direct integration
of this expression over 9 and p gives the proba-
bility of finding the two atoms within a distance
R to R+dR of each other. The integration limits
for p and 0 are, respectively, 0 to 2~ and

R'+Rp' —4a-'
0 to Hp=cos

If we bear in mind the conditions to which the p
function is subjected in (2), it is clear that the
volume integral in expression (6) is equal to the
volume common to two intersecting spheres, each
of radius-a. , whose centers are separated by the
distance,

H = [(X—Xo)'+ ( F—Yo)'+ (Z —Zo)'j'
= [R'+R(P —2RRp cos 8)i,

where 0 is the angle between R and Rp as shown
in Fig. 1. The volume common to the two inter-
secting spheres is

(1/v') p(xg, )p(xg+X —Xp, )
Xdx~dy~ds~dXd I dZ (3) The integration gives"

2RRp

The probability of relative coordinates X, Y, Z
occurring between the two atoms may be ob-
tained from (5) by integrating over all x&, y&, s&

"The development given is based upon classical
principles. It is unlikely that the use of the quantum
theory would lead to very diferent results except for light
atoms or low temperatures. Vide, e.g. , Slater, Phys. .Rev.
38, 237 (1931); also, Uhlenbeck and Beth, Physica 3,
729 (1936).

"The events are assumed to be independent.

2~R'dR 40' —(Ro —R)'

2RRp

~

Ro —R
~

3 —(20.) (
Ro —R

(

—(20)
+

4a-RRp 80a-'RRp

'4 It is clear from the development that (8) is only
valid for the interval, Ro—20~R~RO+20. Outside this
interval the probability in question is zero.
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X +-
2o. 40o-'

(9)

Let Np be the average number of nearest
neighbors surrounding an atom in the liquid, and
let po(R) be the density of these atoms at distance
R from the given atom. Then the probability of
finding a neighboring atom at distance R from
this given atom is (4irR'po(R)dR)/¹. Tllls
quantity must equal that given in (9), hence,

3Np
4~Rpo(R) =

So.Rp

5(Rp —R)'
1—

x ~— +
20 40o-3

(10)

for Ro —20 &R &Ra+ 2o..
4m.Rpo(R) =0, for all other R.

A rearrangement of terms in this expression and
the substitution, v =4iro'/3, give

3RdR 5 (R0 —R)'

5Rpo 4 '

this out and has given rough, estimates of ¹ and
R; for the second and third coordination spheres
in terms of those of the first. So far as the author
is aware, the general problem has not been solved.
Assuming the existence of such relationships
there remain in Eqs. (10) and (11) the three
parameters o., Np and Rp, to be determined.
In the next section of this paper it will be shown
that approximate values of these parameters for
liquid sodium may be obtained by an analysis
of its atomic distribution curves.

DETERMINATION OF PARAMETERS

The method of determining the parameters o-,

Np and Rp for liquid sodium is simply that of
fitting the distribution function given in Eq. (10)
to the experimental values given by T. and G.
Because of the difficulty of obtaining reliable
values of N; and R; in terms of Np and Rp,
Eq. (10) is used, and hence, only that part of the
experimental curve for which R—Rp." "

Let us rewrite Eq. (10) in the form,

yo 5(Ro —R)'
o 2

In Eq. (10) po(R) represents the density of the
nearest neighbors of any atom, i.e., the density
of those atoms whose cell centers lie on the first
coordination sphere of radius Rp. It is assumed
that this density is practically the total density
of atoms for the interval, O~R~Rp. Thus in
this interval Eq. (10) gives the atomic distribu-
tion function of the liquid.

In order to extend the range of the distribution
function it is necessary to consider density con-
tributions from atoms whose cell centers lie on
coordination spheres of order higher than the
first. If p; is the density contribution of the N';

atoms lying on the i+1 coordination sphere of
radius R;, then the total density p(R) is given by
the equation,

4irRp(R) =4m.R+p;(R),
i=p

where p, (R) is given by an equation of the same
form as Eq. (10) with No and Ro replaced by
N; and R;.

On the assumption of molecular homogeneity
in a liquid it seems clear that N; and R; should
be functions of Np and Rp. Bernal' has pointed

IR, -Ri iR, -R[—
X 1 — +, (12)

2o. 40o-'

where y =4irRpo(R) and yo= (3¹)/(5o'Ro) It is
clear that yp is the maximum value of y. By
constructing a table of y R values obtained
from the 4irR'p(R) curve given by T. and G. ,

it is an easy matter to determine values of yp

and Rp. By'substitution of these values of yp

and RD in Eq. (12) and use of successive pairs of
experimental values of y and R, the equation
may be solved for o- by iteration. The constancy
of o- for different y R values is an indication
that Eq. (10) is approximately correct, at least.
The results of the calculation are shown in
Table I.

An examination of Table I shows that the
variation in the values of o. for each distribution
curve is small. There is very little change in

"Unfortunately this portion of the curve is influenced
considerably by the large angle part of the experimental
scattering curve; thus its exact shape is not as reliable as
mould be desirable.

~' It is assumed that the overlap from the second
coordination sphere of atoms is negligible up to this point.
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TABLE I. Calculated values of o.

Rin A y(exp. ) o inA RinA y {exp.) oinA

DlaX.
1
2
3

A. Temperature 100'C
3.79 2.45
3.00 0.39
3.20 0.88
3.40 1.57
3.60 2.17

0.62
0.60
0.60
0.58

Ave. 0.60

max.
B. Temperature 400'C
3.80 1.84
3.00 0.56
3.20 0,99
3.40 1.37

0.76
0.78
0.76

Ave. 0.77

Rp ——3.79A
o =0.60A

Np ——9.28 atoms

yo =3No/5oRo =2.45
o./T& =0.0311

Ro ——3.80A
o.=0.77A

Np=8. 95 atoms

yp
——1.84

o/T& =0.0297

the values of ND and Ro in going from 100'C to
400'C for liquid sodium, but there appears to
be a considerable increase in the value of 0,
and hence, in the free volume of the liquid. It is
found that 0/T', T being the absolute tem-
perature of the liquid, has practically the same
value at 100'C and 400'C. Consequently it
seems safe to assume that o/Tl is constant over
the indicated temperature range.

It is of interest to compare the values of
y=4mRp(R) as calculated by Eqs. (10) and (11),
from the parameter values given in Table I-A,
with those values given by the experimental
curve of T. and G. for 100'C. In the interval,
O=R=RO, Eq. (10) is used. In order to extend
the range beyond R=RO, Eq. (11) is used along
with the approximate values of N1, N2, R1 and
R2 as given by Bernal. ' The results are shown in

Table II and Fig. 2.

APPLICATIONS

It is now possible to make use of the free
energy equation (1) in order to determine some
of the properties of liquid sodium. The free
volume per atom of liquid sodium may be
written in the form, s=47t0'/3=bT&, since 0 is
approximately proportional to T'. The value of
b is 126X10 " cm' degrees & from Table I-A.
J(T) is assumed to take its classical value,
[2m mk T/h, 'g~ Making these . substitutions in

Eq. (1), we obtain for the free energy of liquid
sodium

t'2smkTp &

F= —XkT ln~ ( +in (bT') +C' (13)
k )

In Eq. (13) both b and 4 are unknown func-
tions of the specific volume of the liquid. Hence

+ln (bT&)+3 . (14)

TABLE II. Com parison of values of y = A'R p(R) as
calculated by Bgs. (10) and (11)from the parameter values
given in Table I-A with the values given by the experimental
curve of Trimble and Gingrich. Temp. 100'C; o =0.60A;
No=9.Z8; Ro=3.~9A.

R in A

2.6
2;8
3.0
3.2
3.4
3.6
3.8

R &Rp

4.0
4,2
44
4.6
4.8
5.0
5.2
54,
5.6
5.8
6.0
6.2

4mR2p(exp. )

0
0.40
1.16
2.83
5.32
7.81
9.31

N1 =6 R1 =5.1

8.31
6.32
5.49
5.15
5.15
5.32
5.82
6.57
7.32
8.73

10.15
12.32

4~Rp(exp. )

0
0.14
0.39
0.88
1.57
2.17
2.45

¹
=13 Rg =6.2

2.08
1.51
1.25
1.12
1.07
1.06
1.12
1.22
1.31
1.51
1.69
1.99

4~Rp(calo.)

0
0.06
0.34
0.87
1.57
2.19
2.45

2.23
1.66
1.13
0.90
0.96
1.15
1.21
1.17
1.27
1.56
1.94
2.14

~" BC/BT is assumed to be negligible. 4 is presumably a
function of the temperature through the Fermi energy of
the electrons, a factor which becomes important at high
temperatures. Nk/ J= 1.986~"cal. degree ' mol ~; mk/h~
=1.215)&10' c.g.s. units' b=126)&10 3 c.g.s. units.

it is not possible to obtain the equation of state.
It is, however, quite feasible to determine the
entropy of liquid sodium by means of the
relation, S= —(BF/BT) y Using t.his relation, the
entropy is given by the equation, '

(aF q
—

t 2~mkTq -*

S= —
] f

=xk in]—
(aTJ p ( k'
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The value of the entropy of liquid sodium at its
melting point (370.5'K) as calculated by Eq. (14)
with conversion from ergs to calories is 15.7
cal./degree/mol. The corresponding entropy of
solid sodium at this temperature, as taken from
the work of Simon and Zeidler, " is 13.9 cal. /
degree/mol. The difference of these two values,
1.8 calories degree ' mol ', is the entropy of
fusion of sodium. The latent heat of fusion
corresponding to this entropy change is 2.8
kilojoules per mol. This may be compared with
the observed value of 2.65 kilojoules per mol as
given in the International Critical TabLes. No
doubt the good agreement is fortuitous to some
extent since the entropy of fusion of sodium is
small compared with the entropies of the solid
and the liquid at the melting point. Also there is
some variation in the value of S for the solid as
given by diAerent authors.

The specific heat at constant volume for liquid
sodium may be obtained from Eq. (14) by means
of the relation, Cr ——T(BS/BT)r The calc.ulation
yields the classical value 3%k which is approxi-
mately correct. The values of C~ for the alkali
metals appear to rise somewhat above the
classical value. '8

At the boiling point of sodium under atmos-
pheric pressure (1153'K) the entropy of the
liquid as determined by Eq. (14) is 22.4 cal.
degree ' mol .'."The approximate entropy of the
vapor at this temperature may be calculated by
the equation, "
S,~„=XkDn(2mnskT/h')~

+in (V/X)+5/2+in 2j, (15)

where V is the volume of a mol of the vapor at

"Simon and Zeidler, Zeits. f. physik, Chemic 4123,
383 (1926); Rodebush and Rodebush, International
Critica/ TaMes, Vol. 5, p. 88.

1' The extrapolation to such high temperatures may not
be justi6able.

20 The vapor is assumed to be a perfect gas except for
the multiplicity of the ground state of the sodium atom
which introduces the term Nk ln 2. The appreciable
number of Na2 molecules present at this temperature is
neglected. Vide. , e.g., Loomis and Nusbaum, Phys. Rev.
40, 380 (1932).

the boiling point. The calculation gives S „„,
=43.4 cal. degree —' mol —'. The entropy of vapor-
ization is thus 21.0 cal. degree ' mol ' at the
boiling point and the corresponding latent heat
of vaporization 102 kilojoules per mol. The
observed value is 105 kilojoules per mol. This
excellent agreement is partially explained by the
fact that V/X for the vapor is about 10' times
as large as is v for the liquid at the boiling
point. "Hence a relatively large error in v would

X

0

0
2.+

FIG. 2. Values of

c~/c. E&.(to)
calc. Ey.g/)

+ R-A

4~gp plotted as a function of R.

not greatly affect the value of the entropy of'

vaporization. This fact coupled with the observa-
tion that V/N is practically the same for all

vapors under like conditions of temperature and
pressure seems to form the basis of Trouton's
rule" as modified by Hildebrand, namely, that
the entropies of vaporization of all pure liquids
are the same at temperatures where the vapor
concentrations are the same. "

It is a pleasure to acknowledge the writer' s
indebtedness to Professor J. C. Slater for his

stimulating aid in the inception and solution of
this problem, and to Professors N. S. Gingrich
and B. E. Warren for their very helpful sug-
gestions and information.
"At the b,p. of sodium V/N for the vapor is 1.56 X 10 "

cc per atom while v for the liquid is 4.90)& 10 "ccper atom.
'2 Trouton, Phil. Mag. P| 18, 54 (1884).
'3Hildebrand, J. Am. Chem. Soc. 3'7, 970 (1915); see

also reference 10.


