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The Spacing of Energy Levels in Light Nuclei*

Lz,Ovo MoTZ
Columbia University, ¹wFork, New York

EUGENE FEENBERG
Nevfj York University, Washington Square College, ¹m York, New Fn~&

(Received August 29, 1938)

The single particle model supplemented by a semi-

empirical determination of the dependence of potential
energy on symmetry character is used to obtain statistical
information about the distribution of energy levels ip light
nuclei (A~16). Table II shows the analysis of the low-

lying configurations for A =16 into states with definite
values of the orbital angular momentum and the sym-
metry character. Similar tables which we have prepared
for values of A (16 have been omitted because of their
length. Tables III to VI give the spin multiplet structure
as a function of the symmetry type and the isotopic number

(
N Z(. Fin—ally, Tables VII and VIII show the depend-

ence of the level spacing on total angular momentum and
on ~N Z~ in th—e several isobaric series with A =10, 11, 12,
and 13.

The most frequently occurring value of the orbital
angular momentum is I,=2 (D states). Levels with total
angular momentum I"=2 (even nuclei) and Ii=5/2 (odd
nuclei) are most closely spaced. The level. spacing is not a
monotonic decreasing function of A; for example, in the
series A =4n and ~N —Z) =0, Be' has 87 levels, C" 192
and 0'6 has 60 in the energy range 0-23 Mev. In the series
A 4n th=e level density is considerably greater for ( N —Z[
=2 than for )N —Zl =0; the reverse is true in the series

A =4n+2. For odd nuclei the level density is practically
independent of ~N Z[ up to—an excitation energy of
20 Mev, but for higher excitation energies it increases
with )N Z(. —

INTRODUCTION

ARDEEN and Feenberg' have calculated the
level spacing in intermediate nuclei using

~ ~

~ ~ ~ ~

the statistical model supplemented by Wigner's2

semi-empirical theory of the dependence of po-
tential energy on symmetry character. The
results are not immediately applicable to light
nuclei (A 16) because the statistical model does
not provide a suitable set of single particle levels
in this case. In place of the statistical model we
utilize here the closely related model of single

. particle orbits determined by the motion of the
individual particles in a spherically symmetrical
potential well. The state of a particle is specified

by the quantum numbers n, 1, m&, m, . Protons and
neutrons are treated on exactly the same footing.

The arrangement of the energy levels for the
single particle model has been worked out by
Elsasser' for an infinite well and by Margenau'
for a finite well. In both cases the order of the
levels is the same; the effect of the finite potential

18.7
(X/A) **Ic'.

g2
(2)

With A =238 and X= 146 (uranium), the
maximum kinetic energy becomes (13.5/8') mc'.
If we choose A= 1.7)&10—"A& cm, 8 takes on the
value 0,61, so that we have

is to lower and compress all the levels which fall
below the top of the well. '

The equations which determine the distribu-
'
tion of single particle levels in a finite potential
well are given in reference 4. In the present
calculations R, the radius, and V, the depth of
the well, are chosen so that V is at least as large
as the maximum kinetic energy in a completely
degenerate neutron gas of 146 particles. This
maximum kinetic energy can be computed from
the relation

X= 32s'(RP)'/9h' (1)

where N is the number of neutrons and E is the
maximum momentum. Placing R=BA'*e'/ttsc',
we obtain

* Publication assisted by the Ernest Kempton Adams
I und for Physical Research of Columbia University.

' J. Bar'deen and E.Feenberg, Phys. Rev. 54, 809 (1938).
2 E. Wigner, Phys. Rev. 51, 947 (1937).' W. M. Elsasser, J. de phys. et rad. 4, 549 (1933).
4 H. Margenau, Phys. Rev. 45, 613 (1934).

Maximum kinetic energy =36.4 mc2

= 18.5 Mev. (3)
' H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 173

(1936), Fig. 8.
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The influence of the finite depth of the well
on the positions of the levels can be represented
fairly well by a change of scale, i.e. , by multi-
plying the levels found by Elsasser for a well of
finite depth by a factor C(A). This factor can be
computed from the numerical results for the
levels (1s) and (2p).

With V= 38.6 Mev and A =15, we find

C(15) =0.621 (1s level)
C(15) =0.595 (2P level).

zQ
C)

I—

LaJ

2 4 6 & 4 2 ff the variation of C(A) for different levels is
neglected, the dependence on A is given with
sufficient accuracy in Table I. For the finite well
the spacing between single particle levels is pro-
portional to the factor C(A)/A i which varies less
rapidly with A than A

i
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FzG. 1.The energy level diagram for C'2. The number to
the left of each level is the multiplicity of the level in the
configuration of space orbits. The dotted arrows indicate
the splitting which occurs within the normal state con-
figuration and the partition t43$ in the Hartree approxi-
mation (references 7, 8).

If we adopt this value for V, we find that the
separation between the 1s and 2p levels in Ã" is
of the order of magnitude found experimentally
for the lowest excitation energy of 1P', vis: six
Mev, so that this procedure seems to be reason-
able. To find the positions of all the levels for
each nucleus, we should have to solve the equa-
tions given by Margenau. 4 Since we are not
interested in the details of the single particle
model, however, but rather in the rough statis-
tical features, an approximate solution will suffice.

THE SYMMETRY PROPERTIES OF NUCLEAR

CONFIGURATIONS

The linear manifold in function space gener-
ated by the complete set of configurations con-
taining a particles in the Is shell, b particles in
the 2p shell, etc. is transformed into itself by
rotations and permutations of coordinates. Con-
sequently, this manifold can be expressed as a
sum of invariant subspaces which are associated
with definite values of the total angular mo-
mentum and with definite symmetry types.
Methods for determining the angular momentum
values and the symmetry types contained in a
configuration have been described and applied in
several recent papers. ' '

We have prepared tables of the multiplet
structure (angular momentum values and sym-
metry types) associated with a number of low
lying configurations for all the nuclei from
2=4 to 2=16. These tables include all the
excited configurations up to about 30 Mev
excitation energy for the heavier nuclei and con-
siderably higher excitation energies for the lighter
nuclei. Following the convention of atomic

' E. Wigner, Phys. Rev. 51, 106 (1937).' F. Hund, Zeits. f. Physik 105, 220 (1937).

TABLE I. Values of C(A) for various values of A.

A 4 5 6 7 8 9 10 11 12 13 14 15 16

C(A) 0.453 0.487 0.514 0.538 0.555 0.568 0.580 0.591 0.601 0.609 0.615 0.621 0.625



ENERGY LEVELS IN NUCLEI

spectra, we use the symbols S, P, D, Ji, 6, JI, I,
J, K for the angular momentum values 0, 1, 2, 3,
4, 5, 6, 7, 8, respectively. The various (irre-
ducible) symmetry types are denoted in the usual
manner by the partition symbols [X&X2 .X&7.

An example of an energy level diagram con-
structed from the tables is shown in Fig.
All levels associated with a given configuration
and symmetry type are plotted with the same
excitation energy. In making such diagrams one
must take into account the total excitation
energy of the configuration, which is equal to
the sum of the kinetic energy excitations (de-
noted in the upper left-hand corners of Table II
as Kinetic Excitation Energy), and the potential
energy, which depends in a simple manner on
the symmetry character. The latter term, which
is indicated in Table II as Symmetry Displace-
ment, can be computed from the formula

x(&) )x(&)&

x(1) ~x(1) & ~

found by Wigner' for the symmetry dependent
part of the potential energy. Here x(P) and. x(1)
are the characters associated with an interchange
and with the identity, respectively. The subscript
0 indicates the state of greatest symmetry per-
mitted by the exclusion principle. The matrix
element Z(A) must be determined empirically.
To obtain numerical values for Z(A), we use the
Li' —Bes and 8"—C" mass differences in the

U(12) =4Z(12) = (B"—C")+(H' —n')+the
Coulomb Energy Difference (C"—B"). (6)

With estimated Coulomb energy differences' of
1.5 Mev in Eq. (5) and 2.5 Mev in Eq, (6), the
results are

Z(8) -4.2 Mev,
Z(12) 3.9 Mev. (7)

The value of g(12) is uncertain by &0.2 Mev
because the 8"mass value has not been definitely
established. We have used the mean of the upper
and lower bounds given by Livingston and
Bethe. ' Although Z(A) must fall off asymp-
totically as 1,~A, a much smaller variation for
small values of A is not unreasonable. '

An estimate of the level density can be ob-
tained from diagrams such as Fig. 1 if one
knows the spin multiplicity associated with each
symmetry type. Tables III, IV, V, and VI,
computed by the, methods described in references
$. and 6 give the structure of the spin multiplet
as a function of

~
X—Z

~

and the symmetry
character. All partitions which differ only in the
number of four groups have the same spin
multiplet structure; also interchange of the
numbers of three groups and unit groups leaves
the spin multiplet structure unchanged. Thus,
for example, the irreducible representations
[443317, [3317, and [3117 are all associated
with the same spin values.

relations
'E. Feenbehg and M. Phillips, Phys. Rev. 51, 597

U(8) =42(8) = (Li' —Be') + (H' —n') +the
Coulomb Energy Difference (Be'—Li'), (5) 373 (1937).

TABLE II. The muEHplet structure for A =16.

SYMMETRY DISPLACEMENT

KINETIC
EXCITATION

ENERGY
IN MEV CONFIGURATION

0

[44] [433']

PARTITION

[4'2']
[4s21~]
[4&3&2]

102

[4232 ~2]

0
9.02

13.32
16.24
18.04
19.85
20.54
22.34
25.26
26.65

(1s)'(2p) '
(») '(2p)"(3d)
(») '(2p) "(»)
(1 )'(2p) "(3d)
(1s)'(2p)" (3d')'
(»)'(2p)" (4f)
(1s)s(2P) I'(2s)
(»)'(2p)"(3d) (»)
(»)'(2p)" (3d)'
(»)'(2p)"(»)'

S
FDP

PD'
IHG4F'D'P'S'

GFD
S

GF'DsP2S
HG2F'D'P'S

DPS

FDP
P
D

IHsG6FsD9PVS'
GFD

S
Q2F4D6P4S2

H2G4F6D6P6S2
D2P2S2

GFD'PS
HGF'DP'

DS

GF DsP2S FDP
HG2FsDsPsS GFD2PS

DPS P

IHGsF2D'PS' H2G2FeDsPe GFD2PS
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SYMMETRY TYPE
[PARTITION] 0

SPIN
2

C2]
Li']!»]

[21']
[1']

[321].
[31']
[2']

[2212]
[214]

[3212]
I 3221]
[321']

L2']
I 2'1']
L2 14]

1
1
1
2

2
1
2
2
1
2
3
2
3
2
2

1
1
2
2
1
3
3
3'
4
6
2
4
6

TABLE IV. The spin multiplet structure for
~
N Z~ =Z. —

SYMMETRY TYPE
[PARTITION j

SPIN
2

TABLE III. The spin multiplet structure for
~
N —Z~ =0, The tables indicate a general increase of level

density with e in each nuclear series A=4n,
4n~1, 4n+2, up to about A =12 and then a
sharp decrease. An estimate of this effect in the
4n series can be obtained by counting all the
levels up to 23 Mev excitation energy for
Be C" and 0" En making the count, the
multiplicity of levels with de6nite values of the
total angular momentum is determined from
the orbital angular momentum and spin multi-
plicities in the usual manner. The numbers
found are 87, 192 and 60, respectively, standing
in the ratios 5: 11:3.4. In the 4n+2 series the
maximum occurs at A =10, and in the 4n~1
series at A =11.The reason for the decrease in
the number of levels for A larger than 12 is to
be found in the operation of the exclusion
principle, which becomes very eff'ective in cutting
down the number of levels associated with the
low lying configurations when the p shell is

[2]
[12]
[31]
[22]

Li']

[23]
[2'»]
[214]

[3212]
[32'1]
[3213]

[2']
[2'14]

2
1
2
1
1

3
2
2
2
1

DISCUSSION OF THE TABLES

SYMMETRY TYPE
[PARTITION] 1/2 3/2

SPIN
5/2 7/2 9/2

Li]
[21]

[3»]
[221]
.[21']

[321']
[314]
[221]

[3 13]
[32212]
[3214]

L241]
C2313]

2
1

. 2
3
2

2
4
3
3
6
4
5

1
1
2
2
3
5
3
3
5
4
8

. 7
4
7

1
1
2
2
2
3
3
5
6
3
5

2
2
2
3

TAst. s V. The spin multiplet structure for
~
N Z~ = j. —

The multiplet structure for A = 16 is shown in
Table II. Similar tables which we prepared for
A (16 are omitted because of their great length.
An examination of these tables reveals that the
number of levels with given orbital angular
momentum attains a maximum at I = 2 (D states)
for almost all the configuration and partitions.
A closely related dependence on the total angular
momentum is found when the spin multiplicities
(Tables III—VI) are taken into account. For even
values of A the number of levels with given
total angular momentum (F= S+L) has a
maximum at 8=2; for odd values of A the
maximum occurs at F=5/2. This is shown in
Tables VII and VIII.

SYMMETRY TYPE
[PARTITION ]

L21]

[31']
[221]
[21']

[32»]
[314
[231]

[3213]
[32»2]
[3214]
[241]

[2313]

1/2

1
2

3
1
3
2
2
5
3

3

3/2

1

1
2
3
2
2

3
6
5
3
6

SPIN
5/2

1
1
2
1
2
2
3
5
2

7/2

TABLE VI. The spin multiplet structure for
~
N Z~ =3. —
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A =10
IN —Zl=o I N —ZI =2

A =12
IN —ZI=O IN —ZI=2

0
1
2
3
4
5

7
8
9

76
201
261
245
177
101
46
16

1

34
78

108
89
66
31
14
3
1

17
32
48
37
30
14
10
3
1

95
250
318
287
205
132

73
29

1

nearly or completely filled. It is clear that
beyond 0" the level density should again rise
rapidly with increasing A. Thus both C"and Ne"
should have more levels in a given energy
interval than 0'

Tables VII and VIII show the dependence of
level density on total angular momentum and

I
Ã —Z

I
in the isobaric series with A = 10, 11, 12

and 13. The . results for the dependence on

~

X—Z
I

are very similar to those found in
reference 1 for n uclei of intermediate mass.
One sees, for example, that the energy levels of
B" and B" should be more closely spaced than
those of Be"and C", respectively. For odd nuclei
the level density should increase with increasing

~

X—ZI for sufficiently high excitation energies.
This effect does not appear in Table VIII, where
the dependence of level density on IX—ZI is
shown to be almost constant, because we have
stopped at 23 Mev excitation energy. In the
range 23—31 Mev the level density for

I
X—ZI =3

is double that for
I
N ZI =1. I—n Tables VII

and VIII the total number of energy levels
obtained by counting all the levels for all values
of the total angular momentum is included. .

TABLE VII. The dependence of the level spacing on total
angular momentum and on ~N Z~ for the 4n—and

4n+Z isobaric series. Total number of levels
in thh range 0—Z3 Mev excitation energy.

TABLE VIII. The dependence of the level spacing on total
angular momentum and on )N —Z~ for the 4n&1

isobaric series. Total number of levels in the
range 0—Z3 Mev excitation energy.

1/2
3/2
5/2
7/2
9/2

11/2
13/2
15/2
17/2

Total

A
I N —Z I=1

96
156
175
143
92
48
19
5
1

=11
Ix —zI=3

92
158
168
135
87
45
18

5

709

A =13
Ix —ZI=& Ix —ZI=3

84
136
140
113
73
41
18
6
1

79
119
122
104
66
33
13
4
1

612

A different total number of levels is obtained if
one 6rst counts all the levels belonging to the
various L, values in a partition and then multi-

plies this number by the spin multiplicity of the
partition being considered. The numbers ob-
tained in this way are in'all cases slightly larger
than those given in the tables.

Recently an alpha-particle molecular model
has been used by Wheeler" to construct energy
level diagrams for C" and 0". The molecular
model and the single particle model agree in

predicting that the angular momentum value
which occurs most frequently is I =2. However
the former model gives 0"a level density double
that of C", whereas with the latter model the
same ratio of level densities is less than one-

third. The two models also disagree in the magni-

tude of the level density for C", the molecular

model yielding the greater density by a factor
between two and three; agreement can be ob-

tained by a reasonable adjustment of the param-
eters (nuclear radius, elastic force constants)
available in the two methods of calculation.

Total 1398
'e J. A. Wheeler, Phys. Rev. 52, 1083 (1937),


