Proton Induced Radioactivities

II. Nickel and Copper Targets

CHARLES V. STRAIN The University of Rochester, Rochester, New York (Received October 14, 1938)

Nickel bombarded with 6.3-Mev protons shows activities of half-lives of 10.5 ± 0.6 min., 3.4±0.3 hr., and 12.8±0.8 hr., corresponding to known periods of Cu⁶², Cu⁶¹ and Cu⁶⁴, respectively. The reactions are principally of the p-n type but there is evidence that in the case of Cu⁶² proton capture occurs at energies below the p-n threshold. The maximum β -ray energies obtained by absorption method are 2.8, 1.2 and 0.68 Mev for Cu⁶², Cu⁶¹ and Cu⁶⁴, respectively. Thick target excitation curves are given. Copper bombarded with 6.3-Mev protons shows two activities of half-lives 38.3±0.5 min. and 235±20 days due to Zn63 and Zn65, respectively. Both must be formed by p-n reactions. The Zn⁶³ positrons have a maximum energy of 2.3 ± 0.15 Mev. Thick target excitation curve shows a threshold proton energy of 4.1 ± 0.1 Mev in good agreement with the energy relations. Average (thick target) cross section for the $Cu^{63}(p-n)Zn^{63}$ reaction is 0.28×10^{-25} cm². For protons of energy 6.1 Mev it is 0.95×10^{-25} cm.

INTRODUCTION

HIS work is a continuation of the studies¹ being made in this laboratory of the nuclear reactions produced by high energy protons. The present paper summarizes the results obtained when targets of nickel and copper are bombarded by protons of energies up to 6.3 Mev accelerated in the cyclotron. The proton beam currents were of the order of $0.5\mu a$ which is sufficient to produce large activities. Thus a 30-minute bombardment of a copper target by this beam produces an initial activity of about one millicurie and with the ionization chamber and d.c. amplifier this activity (38 min.) can be followed for about 16 half-lives.

I. RADIOACTIVE CU FROM NI TARGETS

Periods

Nickel bombarded with 6.3-Mev protons shows Cu activities with half-lives of 10.5 ± 0.6 min., 3.4 ± 0.3 hr., and 12.8 ± 0.8 hr. (cf. Fig. 1). The 10.5-minute positron emitting activity has been shown by Heyn,² Bothe and Gentner³ and Ridenour and Henderson⁴ to be due to Cu⁶². The 3.4-hour positron emitting activity has been shown by Ridenour and Henderson⁴ to be due to

Cu⁶¹. Each of these could be formed either by a proton-neutron (p-n) reaction or by proton capture. The 12.8-hour period is known⁵ to be assigned to Cu⁶⁴ which can be formed only by the p-n reaction.

The absorption curves in aluminum of the positrons emitted by Cu62 and Cu61 show maximum positron energies⁶ of 2.8 ± 0.3 and 1.2 ± 0.2 Mev respectively (cf. Figs. 2 and 3). Cu⁶⁴ decays as a branch reaction,⁵ emitting either a positron going to Ni⁶⁴ or an electron going to Zn⁶⁴. Cloudchamber photographs of the β -rays from an aged sample showed 210 electron tracks and 138 positron tracks giving a branching ratio of 1.5 electrons per positron, in agreement with VanVoorhis'5 data. Absorption measurements (Fig. 3) show a maximum energy of 0.68 ± 0.1 Mey, also in agreement with VanVoorhis' cloudchamber data, which showed about the same energy for positrons and electrons.

Excitation curves

Thick target excitation data were obtained by bombarding identical targets for the same length of time with known proton currents, reducing the beam energy in steps by aluminum foils of known stopping power. The decay curves were followed

¹L. A. DuBridge, S. W. Barnes, J. H. Buck and C. V. Strain, Phys. Rev. 53, 447 (1938).

 ² F. A. Heyn, Nature 138, 723 (1936).
³ W. Bothe and W. Gentner, Naturwiss. 25, 90 (1937).
⁴ L. N. Ridenour and W. J. Henderson, Phys. Rev. 51, 1102 (1937).

⁵ S. N. VanVoorhis, Phys. Rev. 50, 895 (1936).

⁶ The relation obtained by E. E. Widdowson and F. C. Champion, Proc. Phys. Soc. 50, 185–195 (1938), was used to obtain the maximum energies from the aluminum ranges of the beta-rays.

to obtain the activity associated with each period. The initial activities corrected to infinite bombardment are shown as a function of proton energy in Fig. 4. Since Cu⁶⁴ can be formed only by a proton-neutron reaction in this case the excitation curve is that for the single process, $Ni^{64}(p-n)$ Cu⁶⁴. The theoretical threshold⁷ for this reaction is rather low (2.5 Mev). Some activity could be detected below three Mev but it was weak because of the low penetration factor and the low abundance of Ni⁶⁴. A consideration of the stable isotopes of nickel shows that both Cu⁶¹ and Cu⁶² might be formed by either a protonneutron reaction or by simple proton capture. Although at sufficiently high energy the p-nreaction seems more probable, it is interesting to determine whether the capture process does occur. This can be done by determining whether Cu^{62} is formed below the *p*-*n* threshold. In the case of Cu⁶² the positron energy is 2.8 ± 0.3 MeV and hence the threshold⁷ for the p-n reaction must be 4.6 ± 0.3 Mev. However, the excitation curve for this period (Fig. 4) shows activity at proton energies below three Mev. This must be ascribed either to the occurrence of proton capture or to contamination. Carbon impurity from which N13 (11.0-min. half-life) is formed is suggested and no other impurity of the correct half-life seems possible. The positron absorption curves, however, for samples activated at four Mev and at six Mev were the same within limits of error (Fig. 2), and showed no evidence of the much softer (1.25-Mev) positrons from N¹³. It is

evident then that the Cu⁶¹ $(p \cdot \gamma)$ reaction is occurring at low energies, though the activity rises sharply above 4.6 Mev where the $p \cdot n$ reaction sets in. The cross section for capture at four Mev is approximately 0.7 percent of the total cross section at 6.3 Mev when corrected for isotopic abundance.

In the case of Cu^{ε_1} the predicted threshold is 2.9 Mev (positron energy 1.1 Mev) and our data show no detectable activity below three Mev. However, White, Delsasso, Sherr and Ridenour⁸

⁸ M. G. White, L. A. Delsasso, Rubby Sherr and L. N. Ridenour, Phys. Rev. 54, 314 (1938).

FIG. 2. Absorption curve in Al for Cu^{62} positrons. Circles are for nickel sample bombarded at 6.3 Mev. Squares are for nickel sample bombarded at 4.0 Mev.

⁷ For a discussion of the energy relation see reference 1.

find that Cu^{61} (3.4 hr.) is formed by protons of energy less than 1.9 Mev. However, they also report a low value (2.1 Mev) for the threshold of the Ni⁶⁴ (p-n) Cu⁶⁴ reaction which has a computed threshold of 2.5 Mev, which is difficult to understand. However, even if one assumes that their energy values are 0.4 Mev low there is still evidence that proton capture is effective in forming Cu⁶¹.

Cross section

The d.c. amplifier and ionization chamber were calibrated as follows. The deflection produced by one beta-particle per second traversing the chamber was computed from the depth of the chamber, the specific ionization of the particle and the measured current sensitivity of the amplifier. The effective solid angle subtended by the chamber was measured and the number of beta-particles per second, emitted in all directions, required to produce a centimeter deflection was computed. This ranged from 80 to 160 β /sec. depending upon the β -ray energy. This value was checked with a standard uranium

FIG. 3. Absorption curve in Al for Cu⁶¹ and Cu⁶⁴ β -rays.

FIG. 4. Thick target excitation curves for Cu isotopes.

source. With this calibration and with the value of the stopping power of nickel for protons computed from the data of Livingston and Bethe⁹ the cross sections for the reactions for protons of energy between 0 and 6.3 Mev and also for energy between 6.0 and 6.3 Mev were computed. The results are given in Table I.

The value for Cu⁶¹ and Cu⁶⁴ are uncertain since the isotopic abundances of Ni⁶¹ and Ni⁶⁴ are not well known. Also it is assumed that proton capture plays a negligible role. Consequently the values for Cu⁶¹ and Cu⁶² may be high. Cu⁶¹ will be affected most since the isotopic abundance of Ni⁶⁰ is approximately 30 times that of Ni⁶¹.

RADIOACTIVE Zn ISOTOPES FROM Cu TARGETS

For short proton bombardments of copper a strong activity is observed with a half-life of

9 M. S. Livingston and H. A. Bethe, Rev. Mod. Phys. 9, 261-272 (July, 1937).

		VIELD* RAD. ATOMS PER 10 ⁶ PROTONS		Cross section $+$ $\times 10^{26}$ cm ²	
Assumed Process	HALF-LIFE	Obs.	FOR SINGLE ISOTOPE	Av.	6.3-6.0 Mev
$\begin{array}{c} {\rm Ni}^{61}(p\text{-}n){\rm Cu}^{61} \ ({\rm and} \ {\rm Ni}^{60}(p\text{-}\gamma){\rm Cu}^{61}) \\ {\rm Ni}^{62}(p\text{-}n){\rm Cu}^{62} \ ({\rm and} \ {\rm Ni}^{61}(p\text{-}\gamma){\rm Cu}^{62}) \\ {\rm Ni}^{64}(p\text{-}n){\rm Cu}^{64} \\ {\rm Cu}^{63}(p\text{-}n){\rm Cn}^{63} \end{array}$	3.4 hr. 10.5 min. 12.8 hr. 38.3 min.	$\begin{array}{c} 0.48 \\ 1.11 \\ 0.24 \\ 18.4 \end{array}$	29. 30. 26. 27.	0.29 0.30 0.26 0.28	1.05 1.50 0.78 0.95

TABLE I. Proton induced radioactivities in Cu and Zn.

* For a thick target at 6.3 Mev

† Assuming p-n reactions.

FIG. 5. Decay curve for Zn⁶³. Copper+protons.

 38.3 ± 0.5 min. (cf. Fig. 5). The absorption curve for the positrons emitted (cf. Fig. 6) show a maximum energy of 2.3 ± 0.15 Mev. This activity has been shown by Pool, Cork and Thornton¹⁰ and by Bothe and Gentner¹¹ to be due to either Zn⁶³ or Zn⁶⁵. However, a long lived activity has since been definitely assigned to Zn65 and consequently the 38-minute activity can be assigned to Zn⁶³.

The thick target excitation curve is shown in Fig. 7. The samples showed no detectable

¹⁰ M. L. Pool, J. M. Cork and R. L. Thornton, Phys. Rev. 52, 239 (1937).
¹¹ W. Bothe and W. Gentner, Naturwiss. 25, 191 (1937).
¹² FIG. 7. Thick target excitation curve for Cu⁶³(p-n)Zn⁶³.

contamination and only the Zn63 period is excited in short bombardments so that it was possible to fix the proton threshold energy at 4.1 ± 0.1 Mev. This is in agreement with the computed threshold of 4.1 ± 0.17 Mev. The cross section for this

reaction for proton energies ranging from 6.0 to 6.3 Mev is 0.95×10^{-25} cm² (cf. Table I).

A long lived activity is observed in copper samples which have been subjected to long bombardments. The decay curve (cf. Fig. 8) shows a single half-life of 235 ± 20 days. A cloudchamber investigation made by Mr. George Valley¹² shows that the radioactive decay takes place either by positron emission of K electron capture. The negative electrons which are observed are identified as internal conversion electrons. This same activity has been obtained by bombarding zinc with deuterons¹³ and consequently must be assigned to Zn⁶⁵.

239 (1938).

DECEMBER 15, 1938

I wish to express my thanks to Professor L. A. DuBridge and Professor S. W. Barnes for advice given during the investigations, to Dr. J. H. Buck for help in bombarding samples and taking data, and to Mr. George Valley for the cloudchamber photographs. The work has been supported in part by a grant from the Research Corporation.

PHYSICAL REVIEW

VOLUME 54

Proton Induced Radioactivities

III. Zinc and Selenium Targets

JOHN H. BUCK* University of Rochester, Rochester, New York (Received October 14, 1938)

Zinc bombarded with 6.5-Mev protons shows activities of half-lives $18.0 \pm 0.5 \text{ min.}, 72 \pm 4 \text{ min.}, 9.4 \pm 0.2 \text{ hr.}, \text{ and}$ 84.4 ± 2.0 hr., corresponding to the known periods of Ga⁷⁰, Ga68, Ga66, and Ga67, respectively. In addition, a new period of 48 ± 2 -min. half-life is observed and assigned to Ga⁶⁴. Thick target excitation curves are given for Ga⁶⁴, Ga68, and Ga. 70. Selenium bombarded with 6.3-Mev protons shows activities of half-lives 6.3 ± 0.2 min., 17.4 ± 0.5 min., 4.4 ± 0.3 hr., and 33 ± 1 hr., corresponding to the known periods of Br⁷⁸, Br⁸⁰ (2) and Br⁸², respec-

INTRODUCTION

HIS work is a continuation of the studies¹ made in this laboratory of the nuclear reactions produced by high energy protons. The present paper concerns the results obtained when targets of zinc and selenium are bombarded by protons of energies up to 6.5 Mev. Results with tively. The previously observed discrepancy between the thresholds for the two Br⁸⁰ activities and their maximum β -ray energies has been confirmed. Thick and thin targets excitation curves were obtained. The cross section for the production of the Br⁸⁰ isomers by the Se⁸⁰ (p-n) reaction are 0.82 and 0.22×10^{-25} cm² for the short and long periods, respectively, at a proton energy of 6.3 Mev. The ratio of these two cross sections rises from 3.6 at 6.3 Mev to over 200 at 3.2 Mev.

these targets have already been reported¹ for proton energies up to 3.8 Mev. Much larger yields are obtained with the higher energy beam and additional periods are produced. Further studies of the excitation functions have therefore been made, particularly for the Br⁸⁰ isomers produced from Se.

RADIOACTIVE Ga ISOTOPES FROM Zn

The complete decay curves for the radioactivity produced by 6.3-Mev protons in a pure

¹² A preliminary report was made by S. W. Barnes and George Valley, Phys. Rev. 53, 946 (1938). A more detailed report will be published soon. ¹³ J. J. Livingood and G. T. Seaborg, Phys. Rev. 54,

^{*} Now at Massachusetts Institute of Technology, Cambridge, Massachusetts. ¹ DuBridge, Barnes, Buck and Strain, Phys. Rev. **53**, 447

^{(1938).}