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The Saturation Requirements for Nuclear Forces
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The inequalities between the coeScients M, II, 8, V, representing the proportions of
Majorana, Heisenberg, Bartlett and ordinary interactions in the symmetric Hamiltonian,
arising through considerations of saturation and of the instability of odd-odd nuclei heavier
than N" are represented graphically (Fig. 1).The allowed values of M, H, 8, V correspond to a
part of a plane bounded by three straight lines. These inequalities are sufficient fo'r saturation at
infinitely high density of nuclear particles and all conditions derivable from the necessity of
saturation for the potential energy in the high density condition are derivable from those listed.
The limits set on the interactions in the 'P and 'P states by the inequalities are discussed. The
results are summarized in Table I, Eqs. (7) and (8) and in the adjoining section. The sufficiency
of the conditions is discussed in Section 2. The physical limitations are gone into in Section 3.

1. NECESSARY CONDITIONS

The potential energy between a pair of nuclear
particles will be represented by

[3IIP +HP~+BP + U 1]J(r); J(0) (0, (1)

where iV, H, 8, U are ordinary dimensionless
numbers and P~, P~, P~ are, respectively, the
Majorana, Heisenberg and Bartlett exchange
operators. The function J(r) is taken to be
negative in the vicinity of r=0. The coefficients
3II, H, 8, U will be supposed to be connected by

(2)M+H+B+ V =1.
The potential energy in the stable 'S state of
the deuteron is J(r) In the '.S state scattering
experiments indicate a smaller degree of attrac-
tion represented by the potential gJ(r) with

g 1/2. Thus

(3)3f—H —8+ U=g & i.
If a definite value of q, say g=3/5 is assumed,
the above relations restrict the four quantities
3EI, H, B, U so that only two of them are inde-
pendent. The quantities M and H will be used
as independent variables and a diagram using
M and H as coordinates will be employed. The
interactions in the 'P and 'P states will be
written as ('P) J(r), ('P)J(r). Positive values of
('P) and ('P) correspond to attractions in these
states. These quantities are given by

' G. Gamow and E. Teller, Phys. Rev. 51, 289 (1937).' G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936);
D. Inglis and L. A. Young, Phys. Rev. 51, 525 (1937);
E. 1A'igner, Phys. Rev. 51, 947 (1937);N. Kemmer, Nature
140, 192 (1937); E. Feenberg, Phys. Rev. 52, 667 (1937);
cf. also related discussion by H. Volz, Zeits. f. Physik 105,
537 (1937).

('P) = —M H+B+ U= 2M 2H+1, (3.1)—
('P) = —M+H —B+V= 2M+2H+g. (3.—2)
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T is customary at present to use in nuclear
theory a symmetric Hamiltonian consisting

of interactions between pairs of nuclear particles
represented by potentials of the following types:
Majorana exchange (exchange of space coordi-
nates), Heisenberg exchange (exchange of space
and spin coordinates), Bartlett exchange (ex-
change of spin coordinates), ordinary non-
exchange potential. It is, of course, not certain
that the actual forces are of this type and that
the saturation of the nuclear forces owes its
origin to a preponderance of exchange forces
rather than to saturation phenomena of other
types. ' It appears to be, nevertheless, of interest
to systematize the available information' re-
garding the possible proportions of the different
types of exchange forces as obtainable from
considerations of stability of heavy nuclei (satu-
ration) and the instability of nuclei heavier than
N'4 with an odd number of neutrons X and an
odd number of protons Z. A brief elementary
discussion is given below of the inequalities that
must exist between the four kinds of potentials
together with a diagrammatic representation of
the values that are possible according to present
evidence. A proof is then given by means of
group character formulas that the elementary
method contains all of the information derivable
from requirements of saturation.
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FIG. i. Graphical representation of inequalities. Origin of 3f, H coordinate
system is at 0. Origin of B, V coordinate system is at III. Origin of ('P), ('P)
coordinate system is at P. To any point in the plane there correspond the values
of M, H, B, V, in these coordinate systems. The inequalities c„~O, H+2B —M~O,
H —M~O exclude all points above the lines c„=0, H+2B —1II=O, H —M=O.
The lines c„=0are marked by c„ in the figure. The region allowed by all the in-
equalities considered here lies below the lines c&, c1 and M=H. The shaded area
I, II, III, IV is that part of the allowed region for which M, H, B, V are positive.
The scale of ('P), ('P) differs from that of 3f, H, B, V and is marked in the
coordinate system ('P), ('P). Diagram is drawn for g =3/5.

Z =0 (4.4)M= 4L1+q —('P) —('P) j (3.3)
c5 ——2 V M H+B =——3M——2H+-', (3+q) =0;

(3.4) 0„=N; 0.„=—Z; Z= N (4.5)H=-'L1 —
q
—('P)+('P)1

B= -'L1 —q+ ('P) —('P) 3

V= lL1+q+('P)+('P) j.
(3 5) c6 = 8 U —3M —4II+58

= —11M—9H+ —,'(13+3q) «0;
0.„=¹ 0 =0; Z=N.

(3.6)
(4.6)

Denoting the projection of total spin along an
arbitrary axis by aft/2 and distinguishing be-
tween protons and neutrons by suf6xes m and v

one has the following inequalities

The first four inequalities are not new' and some
additional conditions are known as well. ' It will

be shown below that with the value of g indicated
by present experimental data all the inequalities
are consequences of (4.1), (4.3) and (5.2). If one
assumes the inequalities (5), conditions (4.2),
(4.4), (4.5) and (4.6) do not give any additional
information. On the other hand, if the in-
equalities (5) are not used then (4.5) gives new
information inasmuch as it is sufficient for the
validity of (4.1) and (4.3) in the region of
small M and large II.

c, =4U —M 2H+2B = 5M —4H+3+q—«0;—
o„=o =0; Z=N (4.1)

c2 = 2 U —M —2II+B= —3M —3H+-', (3+q) 0;
0„=0 =0; Z=O (4.2)

ca ——2 V M H+2B = 3—M —3H+2- —
= c2+-', (1 —q) «0;

cr„=N; cr =Z; Z =X (4.3)

One can express also M, H, B, U in terms of c4= V M H+B=——2—M —2H+1
('P) and ('P) as independent variables: =-,'( —1+2cg) «0;
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The above six inequalities may be obtained by
using trial wave functions contained in a volume
that is sufficiently small to make J(r) equal to
J(0). The trial wave functions give an expecta-
tion value for the energy which is higher than
that corresponding to an accurate solution of
the wave equation. The numbers of neutrons
and protons, N and Z, are contained in this
expression as N' and Z' as well as in lower
powers of N and Z. The sum of all terms in N'
and Z' must, therefore, be positive or zero.
Otherwise the energy in the most stable condition
will go to —~ as —N' or —Z'. The conditions
(4.1) to (4.6) are obtained in this manner and .

by neglecting the Coulomb energy which is
justifiable' in view of its relatively small value.
In addition the nonexistence of stable odd-odd

'

nuclei heavier than N" gives'

H &+28 =—3' H+—1 —g—~0 (parallel
spin of v and m in unstable nucleus) (5.1)

H M~O (—antiparallel spin of v and ~
in unstable nucleus) (5.2)

The variables H, 3f are used in Fig. 1 as Car-
tesian coordinates of a point in a plane. Any
one of the inequalities c—0 has the geometrical
significance of dividing the H, 3II plane into an
allowed part below the line c =0 and a forbidden
part above that line. Only the part of the plane
below the six lines given by the inequalities
(4.1) (4.6) and the two lines corresponding to
(5.1) and (5.2) can represent a satisfactory set
of M, H, 0, U. The six lines corresponding to
c„=0 are marked as c„ in the figure. The two
lines corresponding to Eqs. (5.1) and (5.2) are
labeled by these equations. It is seen that for
g=3/5 the permissible region of the plane is
bounded by the three lines

g~('P) ~ —3q.

(&)

(8)

Still closer limits on ('P) are set by requiring
that V, M, H, 8 should all be positive. The
corresponding region is shaded in Fig. 1 and is
seen to be a trapezoid. Its vertices are the
points I, II, IXI, IU and the points at the
intersection of c1——0 with c3 ——0 and H=3f are

TABLE I. Valzses of ('P), ('P), U, 2lf, H, 8 for points
(I), (II), (III), (IV), (V), (VI).

POINT
INTERSECTING

LINES

c1=0
H=O

(3P) (1P) V M H

—2q —1 3q —6 8q —1 q+8 0
5 5 10 5

1—Q

2

axes. Unity is seen to be represented by a smaller
length in these coordinates than in the 3f—H
system. As has been noticed by Feenberg, ' the
inequality c3—0 determines an upper limit of
—1/3 for ('P) which is of interest for the
scattering of protons by protons. According to
this the repulsion between protons in the 'P state
should be greater than that corresponding to a
potential J(r)/3—. The condition is apparent in

the diagram. The line c3 =0 is one of the bounding
lines of the allowed region and for it ('P) = —1/3.

An upper limit is set for ('P) by the condition
H =3II. For this line ('P) =g and only smaller
values of ('P) are allowed. If it is supposed that,
in addition, the interaction is such' that c1——0
then ('P) must be greater than that corre-
sponding to the intersection of c1——0 with c3 ——0,
which is —3g. The latter condition L('P) ~ —3gf
was first given by Feenberg. If one similarly
restricts the allowed region for ('P) by the
requirement c1 ——0, then H( M imposes the
additional condition ('P) ~ ——', (4g+3). Thus for
c1——0

c8 ——0, c1——0, (6)
H=O
V=O

0 1+q 0
2

1—q

2

The axis of H is also the negative of the axis of
J3 with 8=0 which comes at H=2(1 —g). Simi-
larly the values of V increase upwards along the
3I axis with U=O coming at M=-,'(1+g). In
the same figure a rotation through m/4 gives
lines of constant ('P) and ('P). The values of
('P) increase as one moves up and to the left,
those of ('P) as one moves up and to the right.
The scales for ('P) and ('P) are shown on these

(IV)

V=O
B=O

B=O
cg=0

—2 q

5
8—6q

5

0

3—q

10

1+q 1-q
2 2

1+3q 1—q

5 2

c1=0
e3=0

c1=0
H=M

1

3

—4q —8
9

1—8q 1+3q 1—3q

6 3 3

7q+3 q+3 q+8
18 9 9

1+3q
6

3—11q
18

' D. Inglis, Phys. Rev. 51, 531 (1937); E. Feenberj-',
Phys. Rev. 51, 777 (1937).
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designated by V and VI respectively. In Table I
are given the values of ('P), ('P), V, M, H, B
for these six points. The values of U, M, H, 8
are very much restricted if one excludes negative
values of these quantities. The simultaneous
requirements of U, M, H, 8—0 and c&=0
determine ('P) particularly well and place it
between the values for the points I and IU. For
g =3/5 these limits give —11/25 & ('P) & —13/25
and for g=1/2 they are —2/5)('P) )—1/2.
If one removes the requirement c~=O but keeps
U, , B~O, then the points I and III set the
limits on ('P) which give for g=3/5, —11/25
& ('P) & —1.Similarly removing the requirement
c~=0 but keeping V, ~, 8~0 the value of
('P) is seen to lie between the limits set by
points II and IV. Thus —1&('P) &-', (3—6g)
which for g=3/5 becomes —1&('P) & —3/25.
The requirement of positiveness of M, H, 8, V
is seen to restrict ('P) within a narrower region
than ('P)

2. SUFFICIENT CONDITIONS

The inequalities (4.1) (4.6) have been ob-
tained by considering states with special spin.
orientations that have been listed. It is not
obvious that they correspond to the most
stringent conditions on U, M, H, 8 because by
a suitable change of the wave function it may
be possible to lower the expectation value of
the energy. It will be shown in this section that
the requirement of the absence of terms in the
expectation value of the potential energy, that
go to —~ as —

¹ and —Z', in the approxi-
mation of long range forces, gives conditions on
U, M, H, 8 that follow from the inequalities
(4.1), (4.3), (5.2). This means that these in-
equalities are su%.cient for saturation of the
potential energy at high particle densities where

by saturation is meant the impossibility of
finding a trial wave function which gives, at
high particle densities, a negative expectation
value for the potential energy varying quad-
ratically with the number of particles. For
certain functions J(r) it can be shown then by
an argument analogous to one previously used'
that the same holds for every wave function
independently of its extension in space. Since

4 E. Wigner, Proc. Nat. Acad. 22, 662 {1936}.

the expectation value of the kinetic energy is
positive these conditions are also sufhcient for
the saturation of the total energy.

For wave functions with a small spatial
extension the J(r) in (1) may be replaced by
J(0) . The problem of finding a trial wave
function with the lowest expectation value for
(1) is then reduced to that of finding the eigen-
funetion of

—MP~ —HP~ —8P~ —V 1

which corresponds to the lowest eigenvalue.
Since the four operators in this sum commute,
there is a complete set of eigenfunctions common
to all four of them. The lowest eigenvalue is
obtained for that eigenfunction for which the
sum of the four eigenvalues is lowest.

It has been shown by Dirae' that the eigen-
functions of P~ correspond to definite values of
the total spin S.Similarly, according to Feenberg
and Phillips, ' the eigenfunctions for P have
definite isotopic spin~ T and those for PM are
known~ to have definite "multiplicity. " The
part of the potential energy which is proportional
to the square of the total number of particles
becomes

P.= —A'J(0) ( 'V+ P+ '—(P-'+P"+P-")jM
+(-'+7")H—(s+~') I ( )

Here' A=N+Z=atomic number, S=S/A, T
=T/A, S=particle spin in units is, 7=isotopic
spin, P=greatest S possible for the multiplet,
P' =greatest T possible for this S, P"=greatest
F/A possible for these 8, 7'.

Since M&0 (see diagram), it will su%ce to
consider the following cases:

(1) M&o, H&o, B&o;
(2) M&0, H&0, B&0;
(3) M&0, H&0, B&0.

The case M &0, H&0, 8 &0 need not be con-
sidered because B+H= —,'(1—g) &0, which is
impossible for H&0, 8&O. For each of the

'Cf. P. A. M. Dirac, The Principles of Quantum 31e-
chanics, second edition (Oxford, 1935) $61.

s E.Feenberg and M. Phillips, Phys. Rev. 51, 597 (1937).' E. Wigner, Phys. Rev. 51, 947 (1937).
8 E. Wigner, Phys. Rev. 51, 106 (1937). The notation

used in the present paper diff'ers from that of this reference
in referring to 5, T, Y of Eqs. ' {11)of the latter as PA,
P'A, P"A.
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above cases the expression for the energy will be
minimized by choosing suitably S, T, P, P', P",
It will then be required that E, as given by
Eq. (9), be &0. For any other choice of S, T,
P, P', P" it follows that E)0. In this way one
obtains, therefore, sufhcient conditions for E&0
and it is necessary for nuclear stability that all
such conditions be fulfilled. Since the actual
energy may be lower than (9) these conditions
may not be sufficient for stability but it appears
likely that they are, 4 since this has been shown
to be the case for a special class of functions J(r)

For case (1) the minimum E is obtained for
P=P'=P"= T=S=O which leads on substitu-
tion into Eq. (9) to ci&0 and is therefore con-
tained. in the preceding inequalities. For case (2)
one may consider: (a) M—2B)0and (b) M 2B—
&0. For (a) the combination

',P'M S'B-=P'(~—~M B)+(P'—S')B—
is a minimum when P =S=0. The minimum of
Z corresponds, therefore, to P=S=P'=P"= T
=0 which gives ci &0 as in case (1). For (b) the
combination —,P'M —S'B is a minimum when P
has its maximum and P' —8' has its minimum
value. Since P is the largest possible S; the
minimum P' S'=0 and the —maximum P= 1/2
which corresponds to a parallel orientation of
all the particle spins. The best values are thus
P=S=1/2. For these values the minimum E
corresponds to P' =P"= T=0. Substituting into
Eq. (9) one finds then cs&0 in agreement with
the fact that in the inequality (4.3) all particle
spins were taken to be parallel.

For case (3) it is convenient to rearrange the
expression for E:
E= —A'J(0) [-', M+-', H ——',(q+3)]+E., (9.1)

E,= —A' J(0) [-',M(P'+ P"+P'")
+H(T'+S') ——,'(1 —q)S'j. (9.2)

The variable terms are contained in E,. Here
H&0, ——,'(1—q) &0. Hence, for fixed P, P', P",
a minimum is obtained for T=P', S=P".
For these values Eq. (9.2) becomes

E,= —A'J(0) ( [H+-,'M ——',(1—q) jP'
+(H+ 'M) P"+ 'MP'" } -(9.3)-

In this expression the coefficient of P" is positive
since M&0. The coefficient of P' is necessarily

less than that of P". Therefore, there are three
possibilities: (a) H+-', M ——,'(1 —q) &0, H+-', M
)0; (b) H+-', M —-', (1—q) &0, H+-', M&0; (c)
H+-', M ——,'(1 —q) &0, H+~M&0. For (a) the
minimum E is obtained if P=P'=P"=0. In
this case, therefore, S= T=0 as well. The
minimum E is the same as in case (1) and one
obtains ci &0. For (b) the minimum E is obtained
by using maximum P=-,' and minimum P'=P"
=0 as in (2b). The condition c~&0 is, accord-
ingly, obtained again.

For (3b) the coefFicients of P' and P'~ are both
negative. In order to obtain a low E it is now
advantageous to use large values of P and P'
and at the same time P" must be made as small
as possible. It is not possible, however, to vary
P, P', P" independently of each other as the
minimum of E is approached. In fact the
minimum for Eq. (9.3) with independent varia-
tions of P, P', P" corresponds to P= 0, P' = 1/2,
P"=0 which is an impossible set of these
quantities since P—P' —P". The way in which
P, P', P" may vary can be inferred' from their
expression in terms of A4 —A3)A.g~Ag~0.

1
P = (A4 —Ap —Ag —Ai);

2A

P' = (A4 —Ay+Ay —Ai)
2A

1P"= (A4 —Ag —Ag+Ai);
2A

A =A4+Ag+Ag+Ai.

If here A~&0 one can decrease A~ and increase
A4 by an equal amount. This leaves A, P"
unchanged and increases both P and P' which
gives a lower energy. Thus A&=0 will include
the most favorable cases. With this restriction
P"=P+P' ——,

' and

E„=—A' J(0) LH+ M—-', (1—q) ]P'

M
+ (M+H)P" +M(PP'+ ,') (P+P') . -(9.—4)—

2

Further

Jt4/A =P+P'&A, /A = ', P'&x,/A-—
= —,

' —P &0. (9.5)
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The above inequalities (9.5) confine the possible
P, P' to a triangular region in the P, P' plane
bounded by the lines P=-,', P=P', 2P'+P= —,'.
In this triangle the values of P, P' can be varied
arbitrarily. If one uses the facts that in the
present case H(0, M+2K(0 while according
to conditions already derived &+II&0 one
finds by means of Eq. (9.4), after a somewhat
lengthy but quite elementary discussion, that
the minimum P. corresponds to P = 1/2, P' =0,
P"= 0 which gives cz (0 as in (3b). This ex-
hausts the possibilities.

3. FINAL REMARKs

It should be observed that the conditions (4)
have been derived on the assumption of the
absence of other nuclear forces than those given
in Eq. (1). In particular forces of the "many
body" type could bring about saturation in
spite of the inequalities (4) not being fulfilled.
Even if under ordinary circumstances these forces
should be negligible they may possibly be of
special importance in the state of high density
considered for saturation. ' A similar remark
applies' to the influence of a velocity dependence
of the potential.

It should also be pointed out that the in-
equalities (4) are obtained by a consideration of
an idealized state of high density which would
be the actual state, if the inequalities (4) were
not satisfied. On the other hand, inequalities (5)
follow from the consideration of actual nuclei
and involve several approximations. One can
derive them on the basis of the high density
model also but this certainly is not the condition
in actual nuclei. All other considerations on this
question are based, apart from some, rather
rough approximations, on the assumption that
II and B are small compared" with M and

' J. A. Wheeler t Phys. Rev. 52, 1083 (1937), especially
p. 1106), has investigated the saturation properties of
many particle forces.

"The following qualitative arguments suggest that H
and 8 separately are small compared with M and hence
neither of them has a large negative value. (1) The
empirical ma ss differences N" —C"+C'4 —N" =0.0026,
C"—B"+Be"—B"=0.0027 He' —H'+ He' —Li' =0.0039
give approximate values of —2(H+B)J(r) in N", B" Li'.

should not be used, therefore, to establish the
inequality H & M. It is rather the apparent
agreement of these considerations with experi-
ment that gives one confidence in the inequality
II(3f.The underlying experimental rule" holds
without exception for" A &14. In fact, ' this
seems to indicate that II is materially smaller
than 3f, as otherwise accidental factors would
be likely to make at least some of the heavier
odd-odd nuclei stable.

On the other hand, information regarding the
approximate symmetry of the nuclear Hamil-
tonian arises out of experimental material with
ordinary rather than high nuclear densities. It
is more closely related to the inequalities (5)
than to (4) and one may be skeptical about the
latter from this point of view.

Very little is known about the space de-
pendence of the function J(r) and still less about
J(0). It is possible that the coefficients M, H,
B, V should be multiplied by different functions
J(r) and there is a chance that the four J(r)
are roughly the same for distances of the order
2 &&10 " cm but that the J(0) are widely differ-
ent. If such should be the case the saturation
inequalities (4) will have very little meaning.

One of us (E.W.), would like to express his
indebtedness to the Wisconsin Alumni Research
.Foundation for its support of this work.

The last value is not very reliable experimentally and can
be expected to be great on account of the loose packing of
He'. The first two are seen to be practically the energy
difference 'S—'S in H'. If H and 8 were separately large
such close agreement would not be expected for then the
wave functions would be changed appreciably from the
symmetry required by the preponderance of M. (2) Con-
siderations of the kind as the one leading to Table II in
footnote 7 and the apparent existence of S"and Ca."$A. O.
Nier, Phys. Rev. 53, 282 (1938)$ may be considered as
qualitative arguments supporting the above view. From
this point of view (5.1) is a more restrictive assumption
than (5.2) inasmuch as in the region of positive H and 8
a greater part of the plane is eliminated by (5.1). Small
negative values of H or 8 cannot be excluded by the above
arguments. Nevertheless, the set '

of values M = 14/12,
H = —7/12, 8 = '10/12, V= —5/12 proposed by Volz,
reference 2, contradicts the inequality c3 &0.

»%. D. Harkins, Phys. Rev. 19, 135 (1922). J. Am.
Chem. Soc. 39, 856 (1917);45, 1426 (1923);J.Frank. Inst.
194, 165, 329, 521, 645, 783 (1922); 195, 67, 553 (1923);
Phil. Mag. 42, 305 (1921)."For A ~14, the conditions are different and odd-odd
nuclei can be' stable even if H is quite small.


