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In this paper we give an improved treatment of the
multiplication and absorption of cosmic-ray electrons and
gamma-rays in the atmosphere. After a brief recapitula-
tion, in I, of the principal processes involved in the cascade
theory of showers and the resulting diffusion equations, we
give, in II and I1II, a solution of these diffusion equations,
making no further approximations. In IV, an expression
for the probable number of charged particles is given; the
values of the functions necessary for numerical calcula-

tions are given in a tabular form. In V, it is shown how
the Bhabha-Heitler cut-off energy method for estimating
the effect of ionization losses may be consistently used.
In VI, a comparison is made with the Carlson-Oppenheimer
calculations. The differences near the top of the atmosphere
are small and in a direction to improve the agreement with
observations. At sea level the new calculations give an
intensity roughly £ of the Carlson-Oppenheimer results.

ECENT experiments with ionization cham-

bers and vertical coincidence counters have
extended the study of cosmic-ray intensities
nearly to the top of the atmosphere. In this paper
we shall return to the question of a theoretical
estimate of the intensity to be expected on the
assumption that cosmic rays consist only of
electrons, positrons, and gamma-rays. It is known
that this assumption fails to give an adequate
description of the observations, and that other
phenomena, which have to do with the produc-
tion and absorption of the ‘‘penetrating’”’ com-
ponent, must be essentially involved. We want
here to improve the theoretical treatment of the
multiplication and absorption of the ‘‘soft”
radiation, in the hope that this will help, when
further'experimental results are available, to
throw light on the behavior of the penetrating
component.

Carlson and Oppenheimer! have given an
expression for the average number of charged
particles that would be expected at a given depth
below the top of the atmosphere, provided only
that this distance is not too small. In their
calculations they made two types of approxi-
mations: (a) Analytic forms for the probabilities
of pair production and gamma-radiation which
closely approximate the quantum theoretical
expressions in the high energy region were used;
(b) Whereas, in calculating the energy distri-
bution of emitted gamma-rays, the. theoretical
spectrum with constant intensities was used, a

! Carlson and Oppenheimer, Phys. Rev. 51, 220 (1937).
Referred to as C.O.

distribution corresponding to constant proba-
bility for various quanta was used to estimate the
direct effect of radiation on the energy distri-
bution of the charged particles. We have found it
possible to calculate the probable number of
charged particles at a given depth without
making the second approximation, and to extend
the calculation to the case of small thicknesses.
The approximations (a) are very good, and these
have been retained.

I

For convenience, a brief resume of the principal
processes will be given. The three essential
processes which will be considered are: (1) pro-
duction of gamma-rays by charged particles,
(2) pair production by gamma-rays, (3) ioniza-
tion losses of the electrons and positrons. The
Compton recoil of electrons under impact by
photons was not explicitly introduced, because %
air at the low energies for which pair production
gives too few particles, the recoil electrons
absorb enough gamma-radiation to keep the
gamma-ray absorption coefficient nearly con-
stant. The Compton effect produces one particle
per photon, whereas pair production gives two.
Either process contributes the same quota to the
ionization, since such charged particles have
energiesso low that they are stopped by ionization
losses so quickly that they radiate very little. No
consideration will be given to other processes, as
production of high energy secondaries or pairs in
the nuclear fields by charged particles, because
they are relatively much rarer, and because the
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resultant particles would be nearly as penetrating
as the incident one.

The analytically amenable expressions for the
probabilities of pair production, emission of
gamma-radiation, and ionization losses, which
were chosen by Carlson and Oppenheimer will be
used for these calculations.

The probability that an electron or positron of
energy greater than E shall radiate a photon of
energy between E and E+AE, while passing
through matter a distance Ax, will be taken to be

PAEAx=(K/E)AEAx. (1)
If the atomic number of the matter is Z and
the density of atomsis N, :

47%5N
K= In (200/Z%).
hm3c®

The probability that a gamma-ray of energy E
shall produce a pair having energies between E’

and E'4+AE’, and E—E’ and E—E —AFE’, will
be taken to be
P'AE'Ax=(K'/E)AE'Ax’ )
with E’ < E, and for which
K'/K=0¢~%.

The ionization losses will be assumed to be
independent of the energy and will be evaluated
at energies for which they are important. If one
regauges the measure of distance by the trans-
formation {=Kx, the energy loss by ionization
per unit distance becomes

B=(@4rNZe*/Kmc?) In (8/ZRh). 3)

Let N(¢, E) be the probable number of charged
particles of energy greater than E to be found at a
thickness ¢. Further, take v(¢, E)AE to be the
probable number of photons having energies
between E and E+AE at t. Then, in accordance
with (1), (2) and (3), diffusion equations take the
form

dy/dt=—oy+N/E, (4)
AN 9N o @ n(E')
—=B———|—2af dE’ ——ZdE"
dt oE /g g E"
2 N(E4+E')—N(E)
of "
0 E'

® N(E+E')—N(E')-
+f (E+E") ()dE’ )
E

El
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If one supposes that the incoming radiation is a
charged particle of energy E,, the boundary
conditions which the solution to (4) and (5) must
satisfy are

E<E,
E> E,.

¥(t=0, E)=0; N(=0,E)= (6)
II

An exact solution of Eqs. (4) and (5) with the
boundary conditions (6) may be found for 8=0.
If one writes

Yo=e€""'3/E, (7)
then it follows that
No=e"12,.

®

In Eq. (8) and succeeding equations a dot will
represent differentiation with respect to ¢. The
substitution of (7) and (8) in (5) gives rise to the
integral-differential equation

o 00 ZO(E”)
K (20) =§o—aég—20f dE’f __dE"
E

—f dE’
0 E'
f‘” 2(E+E)— éo(E’)d
B E

E'=0. (9)

Simple solutions of the form zo=ertEY exist,
provided u is one of the roots of the quadratic
equation

p—(o+L(»)e—2¢/y(y+1)=0,  (10)
in which
L(y)=‘f0 (1+% y~1dx 1 (_1tx_);cy x—ydx
=—-[v(n+y] (11
Y(y)=(d/dy) InT(y+1); ¥=0.577---
The roots of (10) are
u‘=a+L.(y)i[(a+L(y)) 20 ]‘*
v 2 2 Tye+nlT
w>v. (12)
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The general solution of (9) is now given by
e’
f ( [AG)e+BeT (13)
27r2

if the contour C and 4A(y) and B(y) are de-
termined so that this integral exists.

To satisfy the boundary conditions (6) one
must have

éﬁ<t=01 E) =

20(t=0, E)=0;
0 E>E,.

The contour for the integration with respect to
vy was chosen to be a straight line parallel to the
imaginary axis, at a distance § to the right, and
from —7o 44§ to 4 +4.

Equation (13) may then be written

dy
s=— [ ZM[AG)er+B()e]
2mide y
with A=ln (E/E).

From z(¢=0, E)=0, it must be true that

B(y)=—A4(®). (14)
The second boundary condition leads to
dy 1 ~
— [Lea (y)[nﬂﬂ* (15)

2o y A<O0.

Multiplying (15) by e~%* and integrating with
respect to N from 0 to «, one gets
dy u—v

1
—A@)——=——
2miJe y Y=o Yo

for R(yg)>0. (16)

The integral in (16) may be evaluated by
taking the residue at y=wy,, from which one
obtains

A@)=1/(n—). (17)

The solution satisfying the boundary condi-
tions (6) is:

dy —ert
__e)\y

(18)

zoz—

2md e y m—v

Equation (18) is an analytic expression of the
solution of the cosmic-ray problem considered by
Bhabha and Heitler.2

2 Bhabha and Heitler, Proc. Roy. Soc. A159, 432 (1937).
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If one takes as before

y=e"t%3/E; N=e 4, (19)

a solution of (4) and (5) with 850 which satisfies
the boundary conditions (6) to terms of order
B/E, may be found. The equation which z must
satisfy is:

K(5) =805 /0E

with the operator K defined in Eq. (9).

In analogy with the work of Carlson and
Oppenheimer, we look for simple solutions of
(20) which depend upon a parameter, say y, and
which may be combined to satisfy the boundary
conditions. We set

o245 G

P(=s)T(y+s)

(20)

XC(y, 5) (21)

The contour for the integration with respect to
sis from —{® to 7x. The contour is kept to the
left of the poles at 0, 1, 2, etc. and to the right of
the poles at —y, —y—1, —y—2, etc. We look for
a C(y, s) which for R(y) >0 is free of singularities
in the strip 0=R(s)=1, since one can see that
this condition is necessary to make the total
number of particles in the shower finite. Substi-
tuting (21) into (20), one obtains:

[o) () ot

X {u?— (0+L(y+8))u-‘20/(y+8)(y+s+1)}
F(—S)T(y-H‘)

foz) ) o

Xuly+s). (22)

In order that the integrals over E obtained by
this substitution converge, it is necessary that
R(y+s) >0, although the expressions thus ob-
tained may be analytically extended into the left
half-plane. One may now note that the coefficient
of C(y, s) in the left-hand side of (22) differs from

- that of the right side by a first power in E. If one
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then takes the C(y, s) to satisfy the functional
relation

{u—=(e+Ly+s))u—20/(y+s)(y+s+1)}
s(y+s—=1DuC(y, s—1)
(y+9) '

(21) is at least a formal solution of (20). To
insure that (21) be a solution of (20), y will be
restricted to R(y) >0, and u will be taken to
satisfy (10). When these conditions are satisfied,
one may deform the contour for the integration
with respect to s for the last term in (22) and
show that (21) is a solution of (20).

If u? is eliminated from (23) by means of (10),
it may be written :

(¥ (y+9) =¥ () 1+20[1/y(y+1)
—1/(y+s)(y+s+1)]}Cly, 5)=
s(y+s—1Du

(y+S)

Thus for R(y) >0, C(y, s) is free of singularities
for —1—R(y) <R(s).

As there are two roots to (10), there are two
linearly independent solutions of (20) for each
value of y. The C(y, s) corresponding to the two
roots u and » will be denoted by C,(y, s) and
C,(y, s). In addition, the C’s will be chosen so
that C,(y, 0)=C,(y, 0)=1. A solution satisfying
the boundary conditions (6) to terms of order

B8/E, may now be written :

XC(y, )= (23)

C(y, s—;l). (24)

- I‘(~S)I‘(y+3)
_— —eM } d )
b4 6 f S( I‘(y)
C“ , yt_cv , vt
x{ (v, s)e (y, s)e } (25)
M—v

for evaluating the integral over s in terms of the
residues of the poles at 0, 1, 2, etc., we find

dy ert—et 1

g=—o | —eM i dye“f(—ﬁ—)
2ride y u—v 2w E
Cu(y, Dert—C,(y, 1)e
x{ }+o<ﬁ/E)2+---. (26)
m—v

From (26) it follows that (25) satisfies the
boundary conditions (6) for E>>f, at least to
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order 8/E; this suggests that the total energy of
the shower is E, to terms of order 8. This is
shown to be true in Eq. (41). Further, the total
number of particles of energy greater than zero at
t=0 determined from (25) is 140(8/E,), as
B8/Ey—0, which follows from Egs. (28) and (34).
It is only for large E,/B that (25) satisfies the
boundary conditions, and it is only for this case
that we shall calculate the total number of
particles.

v

For the purpose of calculating the number of
charged particles in the shower, deform the
contour to the left. There are no singularities
between s=0 and —y. In the limit E=0, the
only contribution to the integral comes from the
simple pole at s= —y. One then has

dy y { Gy,
2m gy

m—v
From Egs. (19) and (27), one can easily obtain

Culy, —y)er—

z2(E=0)=

_y)evt} .

e=In (Eo/B). (27)

—at dy

—_—— ———_eéy

2rmide y

y { Cu(y, —y)uert—Cy(y, —y)ve

}. (28)

u—v

It is convenient to divide (28) into two parts,

ayfuCu(y,
#=— y['u _(.y__y_):l.eezﬁ(#—d)t (29)
2mde y uw—v
and »
dy VCV( y )
Ny=—— —[ A ]e”’*("“")‘. (30)
2mide y w—v

The first part, (29), gives the principal
contribution to the shower. In the second, »
is less than zero for all y on the contour, so (30)
falls off exponentially with increasing ¢.

For large values of ¢ and ¢, (29) may be calcu-
lated by the saddle point method. The quantity

uCu(y, =)/ (=) (31)

is a slowly varying function of y, and may be
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taken from under the integral sign and evaluated
at the saddle point. One then obtains

Cuy(ys, — Y useystne—at
- (32)
(27 (ue' 2 4+1) Pus—vs)
with the saddle point determined by
M3,t+€_1/y8=0, (33)

in which u' =du/dy; v’ =du'/dy.

In fact, (32) gives satisfactory results even for
small ¢. For small values of ¢ and large values of €
the saddle point detéermined by (33) is at y very
near zero, so it is possible to approximate u by
(26/v):. When this is effected, (29) may be
evaluated in a rapidly converging series, and one
obtains

Cl-l sy — Vs)Ms @ 20’6 %, n
o= (Ver =V ot [(20¢)¥] . 34)
(us—ws) =0 P(An+1DI'(n+1)

Numerical calculation of (34) shows that even
for t=0 the corrections to be applied to (32) are
small; for =0, they amount to a decrease of
eight percent.

The function C,(y, —y) is a very complicated
but slowly varying analytic function of y for all y
near the saddle points determined from (33). Itis,
however, easily calculated from (24) for integral
values of y. Its values for these points were
plotted, and a smooth interpolating curve drawn
through them.

If the substitutions

H(y)=2m)Culy, —9)n/(u—v),
k=p,——0', a= —,u’y, b=,u"y2

(35)

are made in Eqgs. (32) and (33), they may be

TABLE 1.
¥ k a b H
0.2 1.8876 1.485 2.06 0.286
0.4 0.9538 1.207 1.51 0.330
0.6 0.4944 1.063 1.41 0.351
0.8 0.2026 0.957 1.37 0.352
1.0 0.0000 0.857 1.35 0.342
1.2 —0.1479 0.762 1.33 0.320
1.4 —0.2588 0.669 1.30 0.294
1.6 —0.3418 0.581 1.26 0.267
1.8 —0.4055 0.504 1.18 0.243
2.0 —0.4542 0.428 1.08 0.221
2.2 —0.4920 0.366 0.99 0.201
24 —0.5215 0.313 0.91 0.185
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written in the simple forms

N, = (1+bt)-}Hekt+ev (36)

and

t=(ey—1)/a. 37)

In Table I, the values of a, b, k, and H are
given over a range of values sufficiently large to
cover showers from the top of the atmosphere to
sea level. The value of ¢ given by (37) increases
uniformly as a function of y.

For air the value of 8 is about 90 Mev. { is in
units of 0.4 m water equivalent.

N, is completely negligible for values of ¢
greater than 0.5. For values of ¢ less than this, it
is easy to estimate its contribution to the size of
the shower: (a) N,=%, N,=%at¢t=0; (b) at =0
the slope of N, is equal and opposite to that of
N,; (c) N, falls exponentially to a half-value of
1 at about t=0.2.

A%

We will now look at Eq. (18) and see if we can
find a rational way in which to introduce a low
energy cut-off by means of which we can estimate
the total size of the shower. This is the procedure
suggested by Bhabha and Heitler.2 We introduce
E,, supposed independent of ¢, and assume that
the energy distribution of particles of energy
greater than E, is not disturbed by the ionization
losses, and that because of the ionization losses
there are no particles of energy lower than this.

Since the initial energy of the shower E, must be
absorbed by ionization, we must have

f No(E.)dt=E,/B

dy 'ue(ll" o) t+Ncy
Lo
27r1

with A, =In (E/E,.).
These integrals are easy to evaluate if we
neglect terms of order 8/E,; then (38) gives

=[ uw(1)(=1) ]ﬁ
Lu(1) —»(1) Ju'(1)

T, -1

(39)
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In accordance with (39), the number of
particles in the shower becomes

(0.467)_y3#sefvs+(ns—v)t
0=
(27 (u "y 52 41) (s —vs)

with the saddle point determined as before by
Eq. (37). This equation, (40), is of the same form
as (32) with C(y, —y) replaced by

[_u'(l)(u(l)—V(l))]l’_( 1 )”
w(1) “\ou67/

For y=0 and 1, these give identical results, and
for y=2 they give 3.28 and 4.58, respectively. It
should be observed that the proper ‘“‘cut-off
energy’’ is less than half 8.

Calculating the total energy of the shower, as
given .by (29), and again neglecting terms of
order 8/E,, we get for this energy

Cu(1, =Du(1)
[u(1) —»(1) Ju'(1)
VI

(40)

(41)

o=E,.

In their work, Carlson and Oppenheimer
replace the last two terms of Eq. (5) by an
approximate expression which enabled them to
find a differential equation for z. The approxi-
mation was made in such a manner that the
number of particles lost in one energy range
appeared in some other, and so that the average
energy lost by radiation by the charged particles
was gained by the gamma-rays. The approxi-
mation distorts the energy distribution among
the charged particles so that there are too many
very high energy particles, too many low energy
particles, and too few of intermediate energy
(~B). In Fig. 1 the effect of this distortion on the
results for the average number of particles is
shown for Ey=1008. The curve marked I was
obtained from the C. O. calculations, and the
other, marked 77, from Eqgs. (36) and (37). Their
approximation : (a) slightly lowers the height of
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F16G. 1. I is a plot of the number of particles against ¢ as
determined from the C. O. calculations. I7 is a plot of the

same as given by Eqs. (36) and (37). III shows the

contribution to the shower by N,. The calculations were
made for E;=1008. One unit of ¢ is about 0.4 m water
equivalent.

the maximum, (b) moves the maximum about
0.2 m to greater thicknesses, (c) considerably
overestimates the size of the shower at great
depths. At ten meters depth, near sea level, the
C. O. formula gives N=7.5X10"3, and we find
N=4.5%X10"3, for a 9X 103 Mev particle with
vertical incidence.

The changes in the theoretical curve near the
top of the atmosphere help to remove some of the
discrepancies found in this region by Bowen,
Millikan and Neher? between their experimental
results, and the calculation of C. O. applied to an
isotropic incident distribution. So detailed a
comparison can hardly be significant, however,
unless it takes into account the large deviations
from isotropy to be expected from the effects of
the earth’s field. Near sea level, on the other
hand, our results are about half those of C. O.
and thus accentuate still further the discrepancies
with the experimental curves, -discrepancies
clearly associated with the penetrating com-
ponent.

The author wishes to thank Professor J. R.
Oppenheimer and Dr. R. Serber for many
valuable suggestions that have furthered the
writing of this paper.

3 Bowen, Millikan and Neher, Phys. Rev. 52, 80 (1937).



