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Stress inhomogeneities in a vibrating body give rise to
fluctuations in temperature, and hence to local heat
currents. These heat currents increase the entropy of the
vibrating solid, and hence are a source of internal friction.
The general theory of this internal friction is here devel-
oped. The simplest example of stress inhomogeneity is
that occurring in the transverse vibrations of reeds and
wires. Explicit formulae are obtained for reeds and wires,

and the effect is calculated of crystal orientation in single
crystal specimens. Microscopic stress inhomogeneities
arise from imperfections, such as cavities, and from the
elastic anisotropy of the individual crystallites. The
internal friction due to spherical cavities is calculated.
The internal friction due to elastic anisotropy is investi-
gated for cubic metals, and is found to be greatest for
lead, least for aluminum and tungsten.

)1. INTRQDUcTIoN

N a recent paper' the writer investigated
& - theoretically that part of the internal friction
of a vibrating reed which arises from the Row of
heat back and forth across the reed. On corn-

paring the calculated values of this thermoelastic
internal friction with the experimental values of
internal friction for longitudinal vibrations in
rods, he predicted that over a wide frequency
band the internal friction in reeds due to this
thermoelastic effect was of a larger order of
magnitude than that due to all other causes. In
the succeeding paper an experimental verification
of this prediction will be presented. The striking
agreement of prediction with experiment renders
it opportune to investigate more thoroughly the
thermoelastic effect. Such an investigation is here
undertaken.

This paper begins with a generalization of the
analysis given in reference 1 for transverse
vibrations (f2). It is found that for a rod of
arbitrary cross section vibrating transversely,

* Now at the College of the City of New York.' C. Zener, Phys. Rev. 52, 230 (1937).

with frequency v,
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Here E~ is the adiabatic Young's modulus, E~
the isothermal modulus, both measured along the
axis of the wire. In the case of a rectangular cross
section (reed), the frequency for maximum Q ',
sp, is given by

vo= (m-/2)Dd
—'

Here D is the thermal diffusion constant of the
material, d is the width of the rod in the plane of
vibration. In the case of circular cross section
(wire),

vp
——0.539Du ',

where a is the radius of the rod, or wire. Eq. (1) is
valid for both isotropic and anisotropic rods.
Tables are given to show the dependence of
(Es Zr)/Es upon crystal or—ientation in single
crystal rods. It is predicted that the internal
friction in single crystal zinc rods will vary
radically with crystal orientation, differing by a
factor of seven for parallel and normal orientation.
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with pfI =1.

C„and C, are the specific heats at constant
pressure and constant volume, respectively. The
factor (R is that fraction of the total strain energy
which is associated with fluctuations in dilation.

Equation (2) may be most readily interpreted
by regarding Q

' not as a function of frequency
v, but of x=logIO v. We then obtain

Q '= 2L(c. &.)/~.] —Zf~&&(x ») (3)—
where $(x) =sech I (log. 10)xI.

The 8 function, first introduced by Bennewitz
and Rotger, is plotted in Fig. 1.It is symmetrical
about its maximum at x=0. Each term in the
summation is thus a f8 function with the weight
fj„shifted so that its maximum is at xq. The
associated v~ is interpreted as the reciprocal of a
time of relaxation for the establishment of
temperature equilibrium across a distance I.I,.
From the diffusion equation one finds vI, =D/LP.

~ K. Bennewitz and H. Rotger, Physik. Zeits. 3'7, 578
(1936'.

The thermoelastic effect is present wherever
there are inhomogeneities of stress. . These
inhomogeneities may be inherent in the type of
vibration, as in the transverse vibrations of reeds
and wires, or they may be caused by cavities, by
a mixture of two phases, by the random orienta-
tion of the individual crystallites, etc. Whatever
the cause of the stress inhomogeneity, the
thermoelastic effect may be investigated from
two v'iewpoints. We may seek the rate of dissi-
pation of the mechanical energy of vibration.
This dissipation is due to the slight difference in
phase between the stresses and the corresponding
strains. On the other hand, we may seek the rate
of generation of heat. Stress inhomogeneities give
rise to heat currents, which increase entropy, and
an increase of entropy is inevitably associated
with generation of heat. In )3 both of these points
of view are investigated. The mechanical analysis
for the dissipation of vibrational energy, and the
thermodynamical analysis for the generation of
heat, both lead to the same general expression for
the Q

' of a cubic metal with no internal strains,
namely

Q '=L(t=.—~./)~.] + Zf L" /(. '+ ')] (2)
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FIG. 1. Plot of the g function.

' R. L. Wegel and H. Walther, Physics 6, 141 (1935).
4F. Forster and W. Koster, Zeits. f. Metallkunde 29,

116 (i.937).

A particularly simple type of stress inhomo-
geneity is formed by a spherical cavity in a
vibrating solid. During vibrations these cavities
will cause comparatively large local heat currents.
The internal friction resulting therefrom is
calculated in $4.

The elastic anisotropy of single crystals, com-
bined with their random orientation, renders it
impossible for strains which are macroscopically
homogeneous to be also microscopically homo-
geneous. Hence in a vibrating polycrystalline
solid heat currents flow back and forth between
adjacent crystallites. The internal friction re-
sulting therefrom may be roughly guessed at
from Eq. (3) by replacing the summation by a
single Si function, with the associated vq equal to
D/L', where L is the mean diameter of the
crystallites. The ratio 61 is estimated in CIS for
various polycrystalline metals. It is found that
the Q

' for aluminum is lower, for lead is higher,
than for any other common metal. This is in
agreement with the recent careful experiments of
Wegel and Walther, ' and of Forster and Korster, 4

who find that aluminum has the least, lead the
greatest, internal friction of any nonferromag-
netic metal investigated.

Two experimental methods are commonly
used to measure internal friction. In the first, one
determines the number N of oscillations required
to reduce the amplitude of free oscillation to
1/e'th its initial value. The quantity 5=1/N is
called the logarithmic decrement of the solid. In
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the second method, one measures the width 6v of
a resonance curve at half-maximum (plot of
square of amplitude against frequency). On
dividing this width by the frequency at the
maximum, one obtains a second dimensi. onless
measure of internal friction. Internal friction
may be interpreted theoretically from two points
of view. If we regard the elastic modulus as
complex, M+irN, then the ratio m/3II is a dimen-
sionless measure of internal friction. Again, if
we denote by Z the energy of vibration, and by
AZ the loss per cycle of the energy of vibration,
then»/Z is also a dimensionless measure of
internal friction. These theoretical measures are
related to each other, and to the experimental
measures, by the equation

Q-'= (1/2~) (tAE/E) =m/M.

ft2. TRANSVERSE VIBRATIONS OF REEDS
AND WIRES

paragraph, the stresses F„and Z, are held
constant. The integration is over the cross
section of the rod. The temperature fluctuation
AT is completely determined by the diffusion
equation

BtIT/Bt =DV2tte T+rt(Be„/Bt),

and by the appropriate boundary condition. D is
the thermal diffusion coefficient of the material,
and

g = (BT/Be,.)q.

Corresponding to the physical condition that no
heat flow across the surface of the rod, this
boundary condition specifies that the normal
component of the gradient-of AT vanish at the
surface.

The energy of vibration per unit length is equal
to the maximum strain energy per unit length, E.
We may write this energy in the form

When the width of a rod (wire or reed) is small
compared with the wave-length in transverse
vibrations, the only stress of importance is the
tensile stress along the axis of the rod. This
simple stress system enables us to obtain a
particularly simple expression for the thermo-
elastic internal friction of thin rods in transverse
vibrations.

When the x axis is taken to lie parallel to the
axis of the rod, this tensile stress is denoted by
X . We consider X, as well as the strain e and
temperature fluctuation AT, to be a harmonic
function of time. Hence by substituting

X,= (BXe/Be,)re„+(BX,/BT)e„AT

The modulus e may be called the effective
Young's modulus. It is the adiabatic modulus E,
for rapid vibrations, the isothermal modulus E~
for slow vibrations. Since these two moduli differ
from one another by less than one percent, very
little error is made in

by replacing ~ by either E~ or ET throughout the
entire frequency range.

By using the evaluation of hZ given in the
appendix, and by replacing E by (4), we obtain

in the expression for the energy loss per cycle per
unit length, with

»= v ' time average of
~

X,(de„/dt)do. ,

we obtain

»= v 'f' time average of ~~AT(de, /dt)do. .

In the partial derivative,

t = (BX,/BT)e...
as well' as in all the partial derivatives in this

The constants fq and vq are obtained from the
eigenfunctions and eigenwert of the differential
equation (a-5). (See Appendix. ) Both f& and
vz/D are functions only of the shape of the rod.
On the other hand, the factor, (f'g/e) is inde-
pendent of the shape of the cross section, but
depends only upon the thermoelastic constants
of the material. Explicit formulae will now be
derived for this factor in terms of these constants,
and tables will be given for interesting cases.

We first replace e by the adiabatic modulus.
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The factor (Pg/e) may then be written explicitly we obtain
as (fg/e) = TErn'/C„.

(BX /BT)e (BT/Be *)s/(BX,/Be *)s,

or in the obviously equivalent form

(BX./B T)8.,(BT/BX.) s. (6)

This expression may now be transformed in two
ways. One transformation leads to the elegant
expression (Es Er)/Es—, the other leads to an
expression containing only experimentally known
constants.

Since only two of the four variables T, X„
e„,S are independent, we may apply to Eq. (6)
the following standard formula in partial
differentiation:

(Bx1/Bx 2)&4(Bx2/Bx 1)&3

(Bx2/Bxs) xg

(Bx2/Bx3) x4

Correlating xI, x2, x3, x4 with T, X, e, , S
respectively, we obtain

Again, we may transform (6) using the second
law of thermodynamics. In the type of vibrations
here considered, X, is the only nonvanishing
stress. Hence the total static energy density 8,
as well as X e

„

is a single valued function of
any two of the variables T; X, e „S.A small
increment in 8—X,e, namely

T dS —e„dX„
is thus a perfect differential. It follows that

(BT/BX,) s = —(Be../BS)x,= —(T/C„)(Be,/B T)x..
Substituting this equation into (6), and replacing

(BX,/BT)e by —(BX,/Be„)r(Be,/BT)x„

Here 0. is the linear thermal expansion coef6cient,
E~ is the isothermal Young's modulus, both
measured along the axis of the rod C„. is the
specific heat, at constant pressure, per unit
volume. Comparing Eqs. (t) and (8), we obtain
the well-known formula

(Es Er) /—Es = TEr~'/C„. (9)

If the rod is isotropic, still another expression
for (l g/e) may be obtained. When s is replaced by
the isothermal modulus, the appendix of reference
1 shows that

where 0- is here Poisson's ratio.
Table I gives the ratio (Es Er) /E s fo—r

various polycrystalline metals, calculated from
Eq. (9). Since Er is affected by fiber structure,
which is always present to some extent in cold
worked specimens, the ratio for any particular
sample may vary considerably from Table I.
Since (Es —Er)/Es varies as the square of n,
it is especially small in those alloys with small
coeScients of thermal expansion, such as invar.

In rods of single crystals, (Es E&)/Es will—
depend upon the relative orientation of the
crystal with respect to the axis of the rod. In
single metal crystals with cubic symmetry, 0. is
independent of orientation. Young's modulus is
greatest along the [1117 axes, least along the
[1007 axes. ' Table II has been constructed by
substituting into Eq. (9) the maxima and minima
values of E~ given in reference 5.

In single metal crystals with hexagonal sym-
metry, both o. and E& depend only upon the
angle 8 between the principal axis of the crystal

TABLE I. Values of (Es—Er) /Es for polycrystalline metals TABLE II. Values of (gs—It r)/It s at 20'C upend crystal axes
at 20'C.

I 111j arid L100$ are parallel to axis of rod.

METAL (P-s —&r)/P-s METAL (&s —&r)i&s
METAL

DIRECTION PARALLEL TO ROD
[&&&] [&00]

invar
W
Bi
PI
Au
Sb
Pd
Pb
Fe

0.00002
.0008
.0014
.0015
.0017
.0018
.0020
.0024
.0024

Ni
CU
Ag
Sn
Ai
Mg
Zn
Cd

0.0029
.0030
.0034
.0040
.0046
.0050
.0080
.010

CU
Ag
Au
Al
Fe(a)

0.0046
.0050
.0028
.0060
.0024

0.0016
.0019
.0010
.0050
.0011

E. Schmid and W. Boas, Xristallplastizitat (Springer,
1935), p. 202.
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TABLE III. Variation of 103 (Bz—Zz)/Zz with e in sine. where m is an integer, and where v is one of the
roots of the equation

T 8 po ]P'o 2Qo 3Qo 4Po 5Qo 6Qo 7Po 80o 9Qo

100 K 6.6 6.6 6.4 5.8 5.0 3.4 1.82 0.64 0.16 0.04
200oK 11.2 11.4 11.2 10.6 9.6 7.6 5.2 2.6 1.4 1.0
300 K 15.4 15.8 15.6 15.2 14.0 11.8 8.2 5.0 3.0 2.4

T 8 0

100'K
200oK 9.5
30po K 12.0

1Qo 2Po 3Po 4Po 5Po 600 7PQ 80o 9Qo

5.6 5.4 4.9 4.2 3.3 2.4 1.6 1.2 1.0
9.3 8.9 8.2 7.3 6.0 4.7 3.4 2.6 2.4

12.0 11.6 11.0 10.2 9.1 7.8 6.2 5.3 5.0

TABLE IV. Variation of 10'(Eg—Z~)/Zg with 0 in cadmium.

J 'I(2prv/D)la} =0.
e„=earcos y,

only those eigenfunctions contribute to the
summation in (5) for which m= 1. From tables'
of Bessel functions we find the first few roots of

to be go, g1, q2 ~ ~ ——1.84, 5.33, 8.53 (12)

and the axis of the rod. Taking the data for E~
from reference 6, and the data for a from refer-
ence 7, we have constructed Table III for zinc
and Table IV for cadmium. In a zinc rod whose
axis is normal to the principal axis of the crystal,
(&s &r)/&s di—sappears slightly below 100'K.
This is because the linear thermal expansion
coefficient normal to the principal axis changes
sign at this temperature.

The constants fp and v& in Eq. (5) have already
been evaluated for a rod of rectangular cross
section (reed) in reference 1. If d is the width of
the rod in the plane of vibration,

Setting g= (2prv/D) ~a, we find the first few
allowed values of v to be

Pp, P1, . =0.539DG 2 4 53DQ 2 ~ ~ ~ .
We may now write f& explicitly as

a

r'J&(9&r/~)«{
p )

a Q

r'dr rJP(gpr/rj)dr
0 0

With the aid of the formulae'

fp, fy, fp
' ' =0.986, 0.012, 0.0016,

vp, vg . . ——(pr/2)Dd-P, (9pr/2)Dd-',
(10) a'J~(a)de= a'Jp(a)

We shall now evaluate these constants for a rod
of circular cross section (wire) of radius a.

Following the analysis given in the appendix,
we must first find the eigenfunctions U~ and the
eigenwert v& of the differential equation (a-5),
where in the present case V' is the two dimensional
Laplace operator. These eigenfunctions must
satisfy the boundary condition

(8/Br) Up ——0 at r =a (1.1)

We next expand e„in terms of these eigen-
functions. f& is then given by

(
I

J

The eigenfunctions of Eq. (a-5) and of the
boundary condition (11) are of the form

cos (happ) J {(2mv/D)'r}, -

' E. Gruneisen and E. Goens, Zeits. f. Physik 20, 245
(1924).

~ E. Gruneisen and E. Goens, Zeits. f. Physik 29, 147,
148 (1924).

and ) gJp'(g)dg=-', gP{JP(g) —Jp(g) Jp(q) },

we obtain

8Jp'(g p)
fp

&'{J~'(&) Jp(&)Jp(&) }

We now obtain the numerical value of f& by
substituting into this equation the values of g&

given by Eq. (12). The Jp(q&) and J&(g&) can be
obtained with sufficient accuracy by interpolation
from the usual tables of Bessel functions, Jp(qp)
from the tables in reference 9, p. 252. We obtain

fp, fp, , fp, ~ =0.988, 0.010, 0.0013

Hence with a circular wire, as with a reed, we
are justified in replacing fp by unity, and all the
other f&'s by zero. This approximation, which

E.g. , G. N. Watson's Theory of Bessel Functions
(Cambridge Press, 1922), pp. 666—695.'E. Jahnke and F. Emde, Funktionentafebz (Teubner,
1933) pp. 213—214.
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eliminates all except the first term in the summa-
tion of Eq. (5), will probably be valid for all
rods with a regular cross section.

II3. GENERAL THEORY

In the expression for the internal friction of a
solid,

(13)

AE may be interpreted either as the mechanical
work A5' required per cycle to keep the solid
in steady vibration, or as the increment per
cycle of the heat content AQ. We shall investigate
5E from both points of view, directly calculating
both AW and AQ.

Consider the vibrations of the solid to be a
simple harmonic function of time. In each
element of volume dv a set of coordinate axes
may then be found with respect to which the
shearing strains e„„e,, e „remain zero. The
work performed upon an element of volume by
giving the three tensile strains small increments is

dude = (X de„+Y„de„„+Z,de„)dv.

dw/dt will be equal to the sum of three terms of
the type X,de„/dt. The net work performed
upon the element of volume during one cycle is
thus equal to the sum of three terms of the type

v ' time average of X (de, /dh)dv

In order to evaluate these time averages, express
each stress as the sum of two terms. The first
term is the value the stress would have if the
temperature remained constant at its average
value Tp. This term is in phase with the strains,
and hence contributes nothing to the above time
average. The second term is due to the deviation
AT of the temperature from its average value.
In the time average the stress X may thus be
replaced by (BX,/BT)AT , where in the p'artial
derivative it is understood that all the strains
are kept constant. We now introduce a simplifica-
tion by assuming that the elastic and thermal
constants of the element of volume have cubic
symmetry. This. assumption not only limits us to
solids with cubic symmetry, but also to solids
which have no internal strains other than that
due to vibrations. This simplification enables us
to replace each of the three derivatives of the

type (BX,/BT) by —(Bp/BT)8, where p refers to
a hydrostatic pressure, and 0 refers to the dila-
tion, e +e»+e„.We now obtain the net work
performed upon the whole solid per cycle by
integrating dmdv over the solid.

AW= —v '(BP/BT)g time average of

)fAT(do/dt)dv. (14)

The temperature fluctuation hT is completely
determined by the differential equation

dAT/d~ =De'AT+. (aT/ae) q(dg/dt) (15)

and by the boundary condition that the normal

component of the gradient of DT vanish at the
surface of the solid.

We shall now calculate the rise in heat content
per cycle, AQ, using only thermodynamical con-
siderations. The rate at which the entropy of
an elementary volume dv changes with time is

equal to T ' times the rate at which heat flows

into. the element of volume:

T ioV~Tt&,

where 0- is the thermal conductivity of the sub-
stance. Since the fluctuations in temperature are
very small, we may write AQ as To 'AS, where
hS is the entropy change of the whole solid per
cycle. Summing the entropy changes in all the
elementary volumes, we obtain

AQ= v '0To time average of Jt T 'V'Tdv.

In the integrand T—' is now replaced by
To ' —To 'AT. Eq. (15), valid only for solids
with cubic symmetry, is now used to replace V'T
in the integrand by

D 'Id(AT)/dt (BT-/89) qd8/dt}—.

The only term in the integrand which does
not vanish upon taking the time average is

To 'AT(BT/80) qd8/dt. U—sing the relation

0/D=C„,

where C, is the specific heat per unit volume, and
using the thermodynamic formula

T 'C, (BT/88) q '(BP/aT)g, -———
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we obtain finally

AQ= —v '(Bp/BT)9 time average of

)t DT(d8/dt)dv. (16)

zZ = (op/—a T),(aT/atl), )"O'd

X Q fv[vt v/(v~'+. v') ],
with Pfa=1

Here 0 is the maximum value of the dilation 0

during a cycle. The energy associated with this
maximum dilation is

,'(8p/80) rJ 0'd-v

This expression is exact only for slow isothermal
vibrations. However, only very little error is

made by using the isothermal diHerential for all
frequencies. Let (R denote the ratio of this
maximum strain energy associated with dilation
to the maximum of the total strain energy, AE.
We obtain

hZ/E = 2~ I (Bp/BT) 8(BT/88) q/(Bp/88) r I 6t

&mfa L~vv/( av'+v')].

We have, from thermodynamical considera-
tions, obtained an expression for AQ which is
identical with the 6 l/t/ obtained from mechanical
considerations.

On comparing Eq. (14) or (16), and Eq. (15)
with the integral solved in the appendix, we find
for DE(=DW=AE)

of the strains about a spherical cavity is taken
from Love. '0

Since a general strain may be represented as
the superposition of a pure dilation and of a pure
shear, we need only consider the two special
cases where the medium, in the absence of the
cavity, has a pure dilation, and where it has a
pure shear. When a spherical cavity in a medium
of infinite extent is subjected to hydrostatic
pressure, the strains about the cavity are pure
shears, the dilation being exactly zero (reference
10, p. 185). One thus concludes that when a
small spherical cavity is placed in a medium with
pure dilation, the only strains introduced by the
cavity are pure shears. Hence such cavities give

. rise to no thermoelastic damping of vibrations
composed only of dilations.

On the other hand, a spherical cavity placed in
a medium containing only pure shears introduces
local strains which have dilation. From the
strain given in reference 10, p. 256, we find this
dilation O~ to be

0= L
—5ps/(9X+14y)]

&& (a/r)2 sin' 9 cos &p sin y. (18)

Here a is the radius of the cavity; p and ) are
elastic constants related to Poisson's ratio o. and
Young's modulus E by Eqs. (24), p. 101 of
reference 1.0; s is the shear at large distances
from the cavity.

As a first step in calculating the contribution
of this cavity to the Q ' of the solid, one obtains
the ratio (R of the strain energy of dilation to the
total strain energy. Now the strain energy of
dilation is

—,'Z ~O'dv

In the appendix of reference 1 it is shown that
the bracketed expression is equal to (C„—C„)/C„.
Since AE/E=2vrQ ', we obtain finally

Q =L(C„C„)-/C„]tftZ—fl, [v~v/(v~'+ v')] (17).
)4. INTERNAL FRICTION CAUSED BY

SMALL CAVITIES

In this paragraph Eq. (17) is used to calculate
the internal friction caused by stress inhomo-

geneities about a spherical cavity in a vibrating
isotropic solid, In this calculation the description

where X is the bulk modulus. The total strain
energy per unit volume is —,'ps', neglecting the
small contribution due to the cavity. The Q

' of
the solid due to one cavity per unit volum~ is
obtained by setting

6t =
2 X)I

0~2dv/ ~ ps2

Replacing p, ) by their equivalents in 0- and E,

~ A. E. H. Love, Matheesatica/ Theory of Elasticity
(Cambridge Press, 1920).
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TABLE V.

Poisson's
ratio, o 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

P(o') 1.0 1.92 1.05 1.01 0.98 0.93 0.84 0.73 0.55 0.32 0

05-

4

and denoting the volume of the cavity by v, we
obtain

61= (10v/1764) p(o.),

where P(o) = (1—2o) (1+o)/(1 —So/7)',

and is given in Table V as a function of o..
After the finding of the ratio (R, the next step

is to find the constants fk and vk under the
summation in Eq. (17). Following the analysis
given in the appendix, we must first find those
solutions of Eq. (a-5) whose normal derivatives
vanish at the surface of a sphere of radius a,
and also the associated eigenfunctions. In order
that these solutions be quadratically integrable,
we shall impose the second boundary condition
that the solutions vanish at the surface of a
large sphere of radius R, where R)&u. We then
expand 0, given by Eq. (18), in terms of these
eigenfunctions. fk is then given by

fk ek

Here

and

[d/@ Ix '~ »2(x) I jv=d '~»kb)-
—[d/4 IX '~»k(X) I].=a '~-»k(X).

y = gr/a,

g = 27I vkG /D.

The derivative of this function automatically
vanishes at r =a for all values of g. The condition
that this function vanish at r =R is however
satisfied by only a discrete set of q's. The

where 0~1, is the k'th coe%cient in this expansion.
In the final expression for Q ', we shall let the
radius R approach infinity. The summation then
passes into an integration.

The eigenfunctions of Eq. (a-5) may be
written as the product of a surface harmonic and
of a function of r. Only those eigenfunctions will

enter into the expansion of 0 whose surface
harmonics are given by sin' 8 cos q sin y. The
radial dependence of these eigenfunctions is
given by

Fro. 2. Plot of f(x) =18x'/(81+9x' —2x'+xo).

normalization of these eigenfunctions, the.evalua-
tion of the coefficients OA, , and the passing to
the limit R~ ~, involves lengthy but only
standard mathematics, and so will not be here
reproduced.

The result of this calculation is that the
summation

Pfk[vkv/(vk'+ v') j
is replaced by the integration

f(x) [v(x) v/(v'(x) +v') ]dx.
0

The function f(x) is given by

is@
f(x) =

81+9x' —2x'+x'

and is plotted in Fig. 2. It satisfies of course the
normalization condition

g dx= I.
0

The function v(x) is given by

v(x) = (D/2vra')x'.

f5. INTERNAL FRICTION DUE TO RANDOM

ORIENTATION QF CRYSTALLITES

As mentioned in the introduction, the stress in

a vibrating polycrystalline solid will vary from
crystallite to crystallite. This stress fluctuation
gives rise to heat currents between adjacent
crystallrtes, which in turn give rise to internal
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friction. The precise dependence of this internal
friction upon frequency of vibration cannot be
calculated without a detailed knowledge of the
grain structure. However, we can predict the
frequency vo at which Q ' is a maximum, and
we can also predict the area beneath the curve
of Q

' plotted against log v =x. From the
diRusion equation, one can readily see that

vo =D/I. ',

with microscopic fluctuations in dilation, con-
sider a small cube divided in half. Each half is a
crystallite, orientated at random. This system,
together with a specification of the coordinate
axes, is shown in Fig. 3. By compressing the
block along the y axis by a small amount, and
extending it along the x axis by the same small
amount, a strain is produced which, on the
average, has no net dilation. Using superscripts
to distinguish the two crystallites, we obtain the
following equations for the strains in the two
halves of the cube

—',(e.,'+e„')=e,
euu euu

1 2

» 2 ne„=e„=0,
all shearing strains =0. Denoting by 0+ the
dilation of the first crystallite, we may write
the first equation of the above set as

e,'=e+O. . e '=e —.
A solution for is obtained by substituting the

where L is the mean diameter of the crystallites. stress-strain relations
From the relation

X, =C»» exx +C'»2 e„u, &=1, 2,

rg(x)dx=~ log, oe=1.36,

and from Eq. (3), we obtain

Q 'dx=0. 68(R(cv —C,)/C, .

in the equation of equilibrium

X,'=X ',

and by using the above expressions for the
(19) strains. The solution is

In this integral the eRect of the detailed structure
no longer appears. The factor (Cv —C„)/C„may
be calculated from the well-known formula

where

0 =I'e,

(Cll cl1 ) (C12 Cy2 )I'—
C»»'+ C»1'

(20)

(c„—c„)/c„=z' '/c&,

where C is the specific heat, for constant volume,
per unit volume, n is the volume coeKcient of
thermal expansion, and x is the compressibility.
There follows an estimate of that fraction S. of
the total strain energy, in cubic metals, which is
associated with fluctuations in dilation.

In cubic metals a macroscopic pure dilation
implies a uniform dilation of all the crystallites.
Hence we need consider only macroscopic pure
shears.

In order to estimate that fraction of the energy
of a macroscopic pure shear which is associated

TABLE VI. Bgect of elastic anisotropy in cubic crystals.

METAL

(Cy &v}/t v

103)&J Q ~dx

Pb Cu Ag Au Fe Al W

0.065 0,031 0.031 0.014 0.022 0.0009 10 6

0.67 0.028 0.040 0.038 0.016 0.046 0.006

3,0 0.59 O.SZ 0.36 0.24 0.028 10 5

The ratio (Ro for the cube is given by

-,'XO'/-', G(2e)'.

Here X is the microscopic as well as the rnacro-
scopic bulk modulus, and G is the macroscopic
modulus of rigidity. On expressing X and. G in
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terms of Young's modulus and Poisson's ratio o.,

we find

1 1+0'
Sp=—

6 1 —20.

A good estimate of the ratio (R for the solid
would be obtained by averaging Rp over all
orientations of the two crystallites. Since, how-

ever, we are at present interested primarily in
orders of magnitude, only the following rough
average will be performed. The principal axes of
the first crystallite are chosen to coincide with
the coordinate axes. Further, one of the principal
axes of the second crystallite is chosen to coincide
with the s' axis. Let g be the angle which one of
the other axes makes with the x axis. Then (see
p. 151 of reference 10)

CI] —CII =46C44 sin g cos g,

C12 C12 46C44 s111 g cos g,

Crr'+ Crr' ——2C11+46C44 sin' g cos' g.
(21)

4 1+0 (AC44q'

45 1 —20. 4 C11)

Values of this ratio are given in Table VI for
various metals. In constructing this table, AC44

for Pb is taken from reference 11, dC44 for the
other metals is taken from reference 5, p. 21.

Here AC44 is a measure of the elastic anisotropy
of the metal. It is defined by

++44 +44 2 (+11 +12) ~

We now substitute Eqs. (21) in Eq. (20), and
average Sp over g. Vie obtain

APPENDIX

d(~T)/dh=DV4~T+~dG/d4, (a-2)

and by the condition that the normal component of the
gradient of AT vanish at the boundary of the region.

The variable t is eliminated from Eqs. (a-1) and (a-2)
by the introduction of complex quantities:

AT(r, t) =Real part of (r)e' '"t

G(r, t) =Real part of @(r)e'~'"t

We choose the origin of time so as to make 8 real. Then
X is in general complex. Eqs. (a-1) and (a-2) may now be
rewritten as

b,Z = —imP J'$(imaginary part of t)dT, {a'-3)

{DV2—2+is )+2mivy@= 0. (a-4)

The complex function Z may formally be expanded in
any complete set of normalized functions. We shall choose
that particular set of functions Uo, U1, U2 ~ ~ ~ which
satisfy the differential equation

In the text we must evaluate the following type of
integral:

hZ= pt ' time average of J'b, T(dG/dt)dT. {a-1)

Here G is a harmonic function of time t, with frequency v,

and is an arbitrary function of the coordinates. AT is also
a harmonic function of time, but its dependence upon the
coordinates is determined by the equation

Gt, = J'@UI,dr, (a-7)

we obtain Cg= pGt t /(vg, +iv). (a-8)

Now substitute the expansion (a-6) in Eq. (a-3), using
the coefficients given by Eq. (a-8). Since

Imaginary part of Qt, =ipGt, vl, v/(vI, +v ), we obtain

&E=~Pv+G4~41 /(~4'+ ~') (s-9)

Since the functions Uo, U&, U2 ~ ~ ~ form a complete
orthogonal set, the following relation is satisfied'~

Z~G"uGd ) =t (a-10)
By rewriting Eq. (a-9) as

Gt' ~I v
BE=mPy(f G'd7)g.J G2dT p/2+ v2

we make the sum of the coefficients of uj, s/(v/, 2+@ ) equal
to unity.

gradients at the surface. By so choosing this boundary con-
dition, we automatically make that expansion which satis-
fies Eq. (a-4) also satisfy the proper boundary condition.

In the expansion
(a-6)

the constants 5; are in general complex. They are deter-
mined by substituting the expansion in Eq. (a-4), multi-
plying to the left by U&, and integrating over all the
solid. Using Eq. (a-5), and the notation

(DV'+2xvt, ) Ug, =0, (a-5)

and also the same boundary condition that X satisfies,
namely the vanishing of the normal component of their

» E. Goens, Wiss. Abhandl. Physik. Techn. Reichsanhalt 20, 63
(1936).» R. Courant and D. Hilbert, Methoden der Mathematischen Physik,
(Springer, 1924) p. 36.


