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settings. Fig. 7 shows a typical curve which
confirms Maddock's data and is definite evidence
that practically all of the photoelectric emission
of the bismuth film is due to this line.

CoNcLUsIoNs

1. The curves of Figs. 2 to 6 indicate that the
photoelectric emission and the threshold wave-
length of bismuth films increase with increasing
film thickness until a limiting value is attained.

2. The maximum and minimum values of the
threshold wave-length for the four films, given
in Table I, are in substantial agreement despite

the fact that the first film was "gas contami-
nated" to a much greater degree than were the
other three. It also should be noted that the four
maximum threshold wave-lengths do not cor-
respond to films of equal thickness. The minimum
values of the threshold wave-lengths obtained
are for extremely thin films, barely visible.

The author wishes finally, to express his
thanks to the physics department of the Univer-
sity of Pennsylvania for the loan of the Hilger
monochromator and to Dr. C. B. Bazzoni of the
same laboratories for helpful suggestions and
discussions while the work was in progress.
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The losses in the reflection of sound on solids are investigated. The heat conduction of the
solid disturbs the temperature distribution in the gas and sets up a temperature wave. The
fact that the pressure in the gas near the wall is no longer in phase with the density results in a
heating of the gas on the wall. The effect amounts to a few percent for a million cycles. The
scattering of the molecules on the wall, the scattering of the. sound waves by uneven places,
the effect of adsorption are also investigated. They become important only at higher
frequencies.

I. INTRGDUcTIQN

T has been customary to state that the reflec-
tion of a sound wave by a smooth solid wali

is almost complete. In support of this it is argued
that because of the very large density and
hardness of the wall the amplitude of the sound
wave propagated into it will be small.

A few years ago, however, measurements by J.
C. Hubbard gave ultrasonic reHection coefficients
lower than expected and R. W. Curtis' reported
reflection coefficients as low as 70 percent for
1000 kc in air on brass. The present investigation
was undertaken at that time to look for a theoret-
ical explanation for this result. It turned out that
the theory leads to losses of a few percent, but
that it was impossible to account for losses as
high as 30 percent. Recent measurements' and
computations of Alleman, done under Professor

' R. W. Curtis, Diss. 1934, Phys. Rev. 40, 811 (1934).
~ R. Alleman, to be published.

J. C. Hubbard, which include a modification of
interferometer theory to take account of the
effect discussed in this paper show good agree-
ment of his own and previous measurements with
the theory presented here.

To understand how the loss in reflection dis-
cussed here arises attention must first be drawn
to the periodic temperature variations in the gas
due to adiabatic expansion and compression.
At the contact with the wall, the heat conduction
of which is usually very much greater than that
of the' gas, heat will be alternately drained and
put back into the gas, setting up a "temperature
wave" in the solid in addition to the mechanical
wave, which was alone considered before. The
effect increases with frequency, because with
shorter wave-length the temperature gradient
increases. '

'K. F. Herzfeld and F. O. Rice, Phys. Rev. 31, 691
(1928).
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To put this argument into mathematical form,
another reflected wave besides the regular re-
Hected one is introduced. This new wave, a
secondary wave due to the temperature con-
duction of the wall, dies out very rapidly so
that at a greater distance only the regularly
reHected wave is measured, but with a smaller
amplitude than would be calculated otherwise,
because at the surface of the reflector the sum
of the regularly reflected wave and the new wave
must be equal to the incident, instead of the
reflected alone.

The elaboration of this idea is contained in
Chapter II.Chapter III investigates the influence
of the fact that the molecules are not all re-
flected specularly, but scattered in all directions.
This does, however, affect primarily the phase.
jump; the reflection coef6cient is changed only in
the second order. Chapter IV discusses the loss
due to scattering by the unevenness of the re-
Hector, as far as these eminences are large

compared to the mean free path, but small
compared with the wave-length. Chapter V in-
vestigates the possibility that adsorption of gas
molecules on the surface might take place with
a finite lifetime of adsorption and therefore
delayed reevaporation. This results in a normal
velocity component at the wall different from
zero and gives a phase difference between
velocity and temperature resulting in'energy loss.

None of the effects discussed in III to V is,
however, large enough to be measurable at
present.

C„, specific heat at constant pressure per mole.
c= C„(M/D) specific heat at constant pressure per cc.
V, normal sound velocity = f(C„/C„.) (RT/M)]&.
u, flow velocity in the x direction.
T", temperature of solid.
Tfl T ofl

X",heat conductivity of solid.
C", specific heat of solid per cc.
k, coefficient of temperature jump at surface of solid, so

that 8T'/Bx = (T' —T")k.
co, frequency of sound.

II. INFLUENcE QF HEAT CoNDUcTIoN

T"—To Ii exp $2——mi&ut

+(1+i)(C"zr(a/K") '*xj. (2)

The equations of motion for the gas are: the
equation of continuity

or

BD/Bt =D—OBzz/Bx

—Bs/Bt =Bzz/Bx;
(3)

the equation of motion (neglecting friction)

el% 1 BP R l9T RTO Bs

Bt DBx M Bx 3f dx
(4)

and the equation for the coriservation of energy

The equation for the temperature distribution
in a solid is for a one dimensional problem.

C"(8T"/Bt) =K"(O'T"/Bx') .

If we assume everything to be proportional to
e' '"', the appropriate solution of (1) is'

D BT BsD 82T
C,——=&To——+K'

M Bt Bt BID 8x

8T' 8s 3f O'T'
C,— -- =RTO—+—K'

Bt Bt D, Bx'

82u 4~2„~2II 2~i„8TI
+— Q=

Bx2 RTO To ~x
(4')

T', temperature of the gas.
T' —To ——~.
R, gas constant, M, molecular weight.
D density =p Jtt/I/RT =Do(1+s) where s is the com-

pression.
X', heat conductivity.
C„specific heat at constant volume per mole.

K'3II 8'0' 27ricv C, BN
Of

DORTp Bx' RTO Bx
4 See e.g. L. R. Ingersoll and O. J. Zobel, An Introduction

to the Mathematical Theory of Heat Conduction (New York),
Chapter V.

Notations

Index 0 indicates quantities in absence of
sound, one prime refers (if necessary) to gas,
two primes to solid. (3')

The left half-space (x negative) is filled with
the solid, the right half-space (x positive) with

e gas, the reflecting surface being the y —s Make again everything ProPortional toe' '"'and
plane. The solid is considered infinitely rigid, eliminate s from (4) and (5 ) with the help of (3)
therefore the mechanical wave propagated in it
is neglected.
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One tries now solutions of the type

pe2X SR f+XX T To —O~g2% SR 4+

which leads to the following secular equation in )

42rpoa2M) ( K'M 2 airoCa. ) 22rioa

]
l2+

RTp ) KDpRTp RTp ) Tp

or

even more important. However, the absorption
of sound in the gas and on the wall seem separate
phenomena, and a formula taking both into
account would be rather long. In X2', we have
neglected

42r2oa~e2/RT 42rppae2C / V2C

compared with 1. We attempt now a solution in
the form

K' ( K' 22rippM)
X'+( 1+—

22rcpa 0 c RTp

471 GO

I/2
(6) I=gg»& —Pg—»&+Qg —&2&

That is a quadratic equation in X'; one of the
roots, ) P, corresponds to the usual propagation
of sound, the other to the newly introduced
short range (temperature) wave.

By introducing the abbreviation

e'=K'/22rc;

and using numerical values for an estimate, one
has for air under normal conditions

The first member is the incident wave, the
second the usual reflected wave, the third the
newly introduced ("temperature") wave. From
(4') follows

TQ 1 t' 42repp2M)
T' Tp —— (Ae" a*——+Be "2*)

I
Xap+——

27l ZM &al RT, i
1

t
4~pa 'cVq—« "*—

I

l 2'+
I (10)

X2E RT, )

~'=0.041 cm' sec. '

One finds as solution for (6)

pa t' 42rpioa3lli

2e'i 4 RT, )

The surface conditions are, for x =0,

u=0 or A B+G=O.—

Continuity of heat How is given by

K'8 T'/Bx =K"8T"/Bx

47r'Cu

1+e'
I

—4e'i — . (7)
and a possible temperature jump at the sur-

2e'i 4 RTp y2 face by

As V' is for air approximately 10' the 4e' 42rpoa/ U'

is approximately 6.5 10 '~ and will therefore be
small compared to 1 when the experimental
frequency range co is (107.Therefore, the square
root can be developed and gives

U' 1+42roird3/IRe2/RC Tp

k(T' —T")= BT'/coax.

From this follows exactly

laa p 42r2oa2~) 42r2oa2~—=1+2
~

1+
A X2 —Xa ( RTo&a' ~ RTokala2

1 K' )K" yl
+ (&a+&2) —+

k K"(1+i) KarpaC")
(14)

X2 = Zpa/e .

corresponds, as mentioned before, to the
usual propagation of sound. The second fraction
takes care of the absorption of sound due to
heat conduction in the gas. We are, however,
going to neglect that. Otherwise' we would have
to take into account also the effect of friction,
which is similar to that of heat conduction, and
of the internal degrees of freedom, which are

For K"=0 (nonconducting wall) or k=0 we
have, as must be, A=B.

If we use the values (8), we find

8 R—=1—2— —1+——
C„X,—X, C, X,

-1 K' pK" q-:

k K"(1+i) 0 C"aroa&
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Now

Xy 1 —z (4)) '
~

-1.S 10-~~&
Xm U E2)

in air, therefore small for experimental fre-
quencies. The last term in the bracket can be
written

1+i(cog '2 —p ( Xc
~+I

& 2) p (E"C")

Here A is the mean free path, and y the accommo-
dation coefficient for energy.

(Z'c' /X" C")&=1.5 10 4 for air and copper,
and is therefore entirely negligible; copper can
be treated as an infinitely good conductor. Even
for paraf6n the expression is small. The first
term is also small, except for very low pressures.
Therefore we have with sufhcient accuracy'

(8)' R Xg R e(2(o)l
I
—

(
=1—4——=1—47r— . (16)

&A) C l, C„U
That gives for (8/A)' in air,

1 —4.4 10 '(co)'* or 0.96 for 1 megacycle,

in helium,

1 —9.5 10 '(&v)'* or 0.90 for 1 megacycle.

Other terms will be found in III.
The loss on the wall is, however, not due to

heat being conducted away in the solid. The
temperature distribution in the wall is periodic
in time so that all the heat that enters the solid
comes out again. Instead the loss is due to a
heating of the gas by adiabatic compression.
In normal sound propagation, the temperature
is in phase with the density changes and therefore
the amount of work done on the gas during one
period of the sound is zero.

T
Pd U=R —d U=O.

U

The temperature wave, however, which exists
at the wall gives to the pressure an out-of-phase
(watt) component so that the work integral over
a.period is positive. The result is a progressive
heating of the gas near the wall which extends
over a distance of about

real part of 1/Xq ——(2/cv)'*e.

In the physical laboratory at Johns Hopkins
University experiments are in progress to investi-
gate this heating.

III. INFLUENcE oF ScATTERING oF MoLEcULEs

We shall see next whether the details of the molecular reflection on the solid surface affect the result.
The method for this problem has been developed elsewhere. '

We assume that the heat conductivity of the reflector is infinite, that a fraction 1 —o. of the
impinging molecules is reflected specularly, a diffusely according to the cosine law.

We abbreviate by I'p the Maxwell distribution function

M
I exp

&2~RE)
(P+n'+ f')

2RT

where g, g, I are the molecular velocity components. Then the distribution function can be written
for the present case:

BFp 8Pp l9 T BQ
F= (1+s)FO+ (T To) — —— u+ p—fi +pfg8'r 8$ Bx Bx

(17)

' The last term in (16) is of the order of magnitude, 10 (time between collisions/period of sound) &.

~ K. F. Herzfeld, Ann. d. Physik 23, 476 (1935).
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where pf, pf are functions of g, g, I', Tp proportional to the small quantity p which in turn is pro-
portional to the mean free path.

Equation (17) is to hold everywhere in the gas and on the wall. Now on the wall, there are molecules
going toward. the wall 0)$) —oo, and molecules coming from the wall, 0& $& n . The distribution
of the former is given by (17) for negative $; that of the latter by (17) with positive $. But this latter
distribution must also be made up by (1—n) specularly reffected molecules and n diffusely reflected
ones. The distribution of the latter is n(1+s )Fo, their temperature corresponding to that of the wall
where s' is to be calculated. Therefore the distribution of the departing molecules is

t3Fp 8T 8Q
(1 n) (I+&)Fo+(T To) pf +pf +n(1+~ )Fo

BT Bx ax

when u is zero. This must equal (17) for t )0. With the approximation taken here this is impossible.
Instead we take the difference:

BFp 8 1 . 8'lb

nAF = (1+s)Fo+ (T Tp) —+ pfg +pfo
8 1 Bx 8Ã

~~p ~T ~u—(1 —n) (1+s)Fo+ (T To) —pfi +pfa —n(—1+s')Fp (18)
BT Bx I9x

and make (Af)', integrated over all positive values of f and all values of s andi minimum. This inte-
gration will be abbreviated J' dQ. In addition we must give expression to the fact that the total
number of impinging and departing molecules is equal. Introduced in (18), this condition gives:

T Tp p BFo Fp) 2 —n ptT BN (2vr3II)
~f=

I
To ——I+p fi +p fo FoI —

I gfodQ .
To 0 BT 2) n Bx ex KRToi o

If we now make use of (9), (10), (11) and write the following abbreviations

y = —4p'ad%/RTp) P = C,. /C. ,

(18')

(19)

we find:

( Xy) ( BFp Fpi
@=I '+~—

II T
aT, 2)

2 A )2~Mi —:—

f](Ay+ho) To+2~'oip p fo
A EZT, ) tfodQ, (19')

) 2+XI
af= yA

2m' ~

BFp Fpq 2 n — —8
1 —2C 'v—

I
To———

I +2 p To&i~' "fi ——
)oE BT 2) n A

(19")

The result of the minimization is:

8 Xo+Xg t
' Xg t ( BFo Fo) 2 —n—1—2 p'dQ y—I gI To ——IdQ —p XiTo)t P—fidQ

A Xo —Xg ~ )o~ 0 BTo 2) n

If we now keep no terms p' or phq/Xo, we get

'A, y —1 256 2 —n (7r+To& ~ f' /' &Fo Fo)
PT,),

I

——

I
ii f, I T. ——IdQ.

Xo —Xg 1+y(Xg/Xo) 7 n ( 3E J J ( BT 2 2
(20)

' Because f& is odd in &, f&(—p), which is the function for the incoming molecules, is equal to —f&(&).
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The connection between f& and the coefficient of heat conduction shows that

p)t PfgdO C„A U/3E,

where h. is the mean free path. The last expression can therefore be written

2 —0! 03

yi—A,
cx V

where p is a function of T of the order of magnitude 200 and U/co the acoustical wave-lengths.
This term, which is purely imaginary and small, contributes to the reflection coefficient only to the
second order and will be neglected; it does, however, aA'ect the phase jump in the 6rst order. The
first terms are identical with the corresponding terms in (15).Therefore, the detailed law of reHection
of the molecules does not affect the reflection coefficient in the 6rst order. The phase jump in units
of the acoustical wave-lengths is:

R e(2co)i @ 2-n a)

C,. V 2x o. U
(20')

IV. EFFECT OF UNEVENNESS OF THE SURFACE

We want to investigate whether the presence
of Uneven spots on the reflector could scatter so
much sound that the regularly reflected intensity
is measurably decreased.

Take a plane in the y —s plane with a half-
spherical boss of radius u at the origin, on which
a plane sound wave falls at right angles. The
problem of the scattering of sound waves by a
full sphere has often been treated. We shall
follow the treatment given by Lamb. ' A pro-
gressive wave of unit amplitude can be repre-
sented by

e" =Z(2n+1)P(kr)(ikr) "P„(cos 0), (21)

which gives a scattered wave

2 (kg)3e ikr/r— (22)

and the scattered energy (the intensity is 4
times that for progressive waves, but over a
hemisphere)

128 or'
~'--a'.

9 V4
(23)

If we assume the action of several bosses additive
and half the surface covered with bosses, i.e. ,

their number per cm' —,'(~a') ', we find' as the
scattered fraction of the incoming energy

at the surface of the sphere and its equatorial
plane, i.e., the y —s plane.

The velocity potential of the scattered wave
is therefore, if the radius of the boss is small
compared with the wave-length,

ZB„'f„(kr)r"P„cos g.

If we now add a reflected wave to the incoming
wave If we have co=3 10' and a=1/20 mm, the loss

is -,'percent but mounts rapidly with the fre-
quency.

e '~'=Z(2n+1)$„(kr)(ikr)" (—1)"P; (21")

(211) 641r ( a ) ( c
~

-)00]
I

(23')
9 (wave-length) (wave-length)

we simply cut out all odd-numbered terms in the
scattered wave and multiply the even numbered
ones by 2, and get a solution (incoming, reflected,
and scattered waves) which disappears properly

' Lamb, Hydrodynamics, fifth edition {Cambridge, j.930),
pp. 486-487.

9 This number is too large. Multiplication of the scatter-
ing of one.boss by the number of bosses is only justified if
the arrangement is completely irregular, while a completely
regular arrangement would give regular reHection and no

~ scattering. To get the correct value one would have to
multiply the expression for the completely irregular arrange-
ment with the ratio of the compressibility of a surface gas
whose molecules are rigid spheres of the diameter of the
bosses to the compressibility of an ideal gas.
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V. ADSORPTION

In the discussion of this effect, we assume again that the wall is an infinitely good heat conductor,
so that the heat of adsorption does not change the temperature of the gas, but we also assume that
the different eRects are additive, so that we need not now consider the eRects already calculated.
We will follow Langmuir in the assumptions concerning adsorption.

Let the number of adsorbed molecules per cm2 of (macroscopic) surface of the reflector be N. Call
furthermore X, the number of adsorbing spots or the saturation value of N, so that X,—N is the
number of free places. Let r be the average time an adsorbed molecule stays at the wall. The number
of molecules which hit the wall is then

aW y ( 1DTy
~o('+~)

l
Wo+» l =«Wol I+~+-

AT 2 E 2T
(24)

where np is the number of molecules in 1 cc of the gas and S"p the thermal velocity normal to the wall.
It seems, however, doubtful, whether the term ', AT/To s-hould be there, i.e. whether the temperature
at the wall is actually the temperature To+AT calculated from the equation of motion or whether
the cooling eRect of the wall keeps the gas at the wall at 0 T=O. Not wishing to spend too much
time on that question, we are going to write instead

.'PAT/To, —0(P(1, probably P=0.

The equation for the molecules at the wall is then

dN N, —N ( AT&
)toWol 1+&+'2p

dt' N, E. T.p f r

Call Xp the number of adsorbed particles at the given temperature and pressure in equilibrium) i.e.

X,—Xp Np
noWo=—

r
(25')

ol

and call the deviations N'=X —Xp

no~o&o
(Langmuir's adsorption isotherm) (25")

«Wp+N, /r

dN N
¹ ( AT) ()toWp 1)

noWol s+ —',p l

—
l

+—lN',T) &N,
(26)

keeping only first-order terms. If we write now everything proportional to e' '"' and remember

Bs BT AT R
RTp—+C)) =0 OI = s)

B~ B~ To

we find

1 (noWo 11 dN' N No ( P + l.
1+-

l
+-

l
= '

n, w,
l

1+——ls.
27ri(a& N, rl dt N, E 2C„I

(27)

Now it is clear that dN /dt, the change in adsorption, gives the resultant flow towards the wall, i.e.

u)to —— dN'/dt—
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and we find the border condition

1 /'eoWo 1) N, No — ( pR )—u 1+
/ +—

/

= npWp] 1+ /s.
2mico E N, r) No 0 2 C) (28)

Putting now

Q —smwi~t(pe2wi~x/ v pe —2m iezi v) and correspondingly z — (l / V)s'2rirot(ps~wirszf v+pe 2@i weir)—(29)

one can solve and find

or

PRq 1N, / PRq 1 noW-'
—

I 1+ I
'+- 11+ I+

A r npWK 2C„) r moV 4 2C„J 2vrico No
(30)

-2N, '
f

PRq2~~-' — N, ) N, P P&iq '-'—
I 1+

I 1+ 2 —
I 1+ I 1+

rnp'Wo ( 2C„) U noWO E rnoV ( 2C„) ) (30')

If the reffection coefficient is not much different from 1, I I can be replaced by one. It is possible to

transform the equation somewhat with the help of (25') and write

4~~N&( No~ ( pRq-'—
I

1—II 1+
V n (0N) ( 2Cj

(31)

No/rlo would be the height of a cylinder of the gas of 1 cm base containing just the number of ad-
sorbed molecules at the density of the gas. Another way of writing this would be

B 2

=1—4~~ 1

f

—-+—
I 11+—I

V TWO 47WO N, l i 2C.)
(31')

or finally

(31")

where n, is the value of the gas density that would be necessary to have X, adsorbed if the low

pressure linear law would hold.
To get a numerical estimate, take X,=10I5, No ———,

' 10" so that half of the available places are
taken, no=2. 7 10", C, =SR/2 and P=O,

B/2 =1—2 10—"cv'

Only at frequencies above 10 is the eRect appreciable.


