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Under the assumption that the intrinsic magnetic mo-
ments of protons and neutrons are not destroyed by the
nuclear binding process, and with the adoption of a rather
general exchange interaction, the same between all pairs
of heavy particles, the magnetic moment of Li7 is calculated
by a perturbation theory which develops from the approxi-
mation in which the particles move independently in a
central field. The first-order result is that the orbital part
of the magnetic moment has a value between 0.26p~ and
0.30@~, depending on the details of the interaction, and
that the spin part can differ from the proton magnetic
moment by not more than 0.03pz, because of the exchange
nature of the like-particle interaction and the small spin,
dependence of the unlike-particle interaction allowed by
the data on scattering. The second-order modification is

very small (0.01' from the doubly excited states) and is
due principally to the excitation of the s shell, since states
involving only the excitation of the three p particles annul
one another in their second-order effect. The modification
is positive, corresponding to a limited participation of three
protons and four neutrons in the orbital part, rather than
one proton and two neutrons as in first order. Cancellation
of positive and negative higher order contributions facili-
tates rapid convergence. If our result is to agree with ex-
periment, the value of the proton magnetic moment must
be near the upper limit (3@~) of the rather wide range
suggested experimentally, which seems unlikely. Such a
discrepancy may be associated with the inadequacy of the
symmetrical. interaction apparent in calculating binding
energies.

HE magnetic moment of the Li' nucleus is
of especial interest because it is complex

enough to contain both orbital and spin contribu-
tions of the heavy particles in the nucleus, and at
the same time is simple enough to be within the
reach of calculation. Its magnitude has long been
known accurately relative to the magnetic mo-
ment of the simpler nucleus Li' from hyperfine
structure, and the absolute measurement of its
value has very recently attained unprecedented
accuracy. ' Calculation of the moment must at
present depend on assumptions regarding the
nature of heavy-particle interactions. Compari-
son between calculated and experimental values
may serve as a test of the interactions assumed,
and of the validity of the concept of intrinsic
spin magnetic moments of individual neutrons
and protons in nuclei.

FIRST-ORDER CALCULATION

The result in the simple first-order, or Hartree,
approximation, for the special case of an inter-
action involving space exchange and space-spin
exchange of unlike particles and no exchange of
like particles, has been given by Rose and Bethe, '

~ Rabi, Millman, Kusch and Zacharias, Phys. Rev. 53,
495 (1938).

2 Rose and Bethe, Phys. Rev. 51, 205 (1937). Although
the discrepancy in pz„7 is small, one calculates essentially
(pL;7 —p, ), and in it the discrepancy is of the order of
30 percent.

g.+2g ~ 4gi+2g. ,

gq+g~~ 2gi+2gs

(2)

(3)

It has been shown in a previous paper~ that no
' Feenberg and signer, Phys. Rev. 51, 95 (1937).
4 Breit, Condon and Present, Phys. Rev. 50, 825 (1936).' Breit and Feenberg, Phys, Rev. 50, 850 (1936).' N. Kemmer, Nature 140, 192 (1937).
~ D. R. Inglis, Phys. Rev. 51, 531 (1937). Errata:

(a) The second term of f2o20 in (10) should contain w ',
not 7 . (b) The small exchange term which arises from the
K.E. transformation and is derived in footnote 17, below,
was inadvertently neglected in the treatment of Li'.
Eqs. 15 and 17-,' of that paper should therefore contain
57uo. /12 instead of 55a0-/12. The change is small enough
that it does not affect the minimizing process appreciably,

following Feenberg and Wigner's treatment of
the structure, ' and was shown to be smaller than
the experimental value (relative to Li'). We shall
first carry out the first-order calculation as-
suming a somewhat more general form of inter-
action. We assume that the Hamiltonian is
symmetrical in all particles, 4 and that the inter-
action between any two particles may contain
space-exchange, space-spin-exchange, nonex-
change, ' and spin-exchange operators as follows

~= Z~(r) I g.I"+g& "+g &+g.I"I

(&)
g g+g+gi+g~ = 1.

The conditions that there shall exist no exceed-
ingly heavy nuclei with small spin' nor with very
large total spin' demand, respectively,

880
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interaction satisfying these conditions (and the
demands of scattering, g+g, =gs =2/9) seems to
give sufficient binding for Li', but that the
discrepancy is least serious if one selects an
interaction satisfying (2) as an equality. ' The
Li' binding may also be seen' to be greatest by
taking (3) approximately as an equality as well,
although it is not so sensitive in this respect
(compare also reference 6). We shall therefore
consider interactions (1) which satisfy (2) and
(3) and do not differ .very much from that
determined by (2) and (3) as equalities, namely,
that with

g„g, gt, g. =8/9, -2/9, —1/9, 4/9, (4)

respectively. '
The ground state of Li' arises from the

configuration sspp; ssp (two p neutrons and one

p proton outside the closed s shell —symbols
after the semicolon (;) refer to protons). With
neglect at first of both spin-orbit coupling and the
spin dependence of (1), the angular momenta L,
S„and S are separately constants of the motion
and the neutrons' 'S, 'D and 'P combine with the
proton's 'p to give ' 'PPDI' and ' 'SPD. Compo-
sition of the spin vectors gives three 'P and two
'D; the other states occur only singly. The two
'P arising from the neutrons' 'S and 'D are mixed
by a nondiagonal matrix element, even when we
neglect the spin dependence of (1), and give rise
to the ground state. ' The third 'P arising from the
neutrons' 'P is admixed somewhat by the spin
dependence of (1). Since spin-orbit coupling" is
actually very much smaller than the interactions

so the consequent change in the energy is 4,4 mc' (increasing
the discrepancy slightly). (c) In the last line of page 543,
Edna should read An~ for p0 less symmetrical than that
of Li', so the conclusion about higher order orbital con-
tributions applies to Li' (compare reference 2) but not to
Li' in which we are here interested. (d) Professor Mar-
genau, whose comment on the present manuscript has also
been appreciated, has kindly pointed out that the number
of states of the type 01, 0, 1; 01, 0, 1 in Table IV should
not be 12. It should, in fact, be only 3, so }En&"

~

there
deduced is about 4 mc' too great. Compare the conclusion,
that the symmetrical Harniltonian seems inadequate, with
that-of Rarita and Present, Phys. Rev. 51, 788 (1937).

A similar conclusion anent (2) was also reached from
rougher treatment of heavier nuclei by Volz, Zeits. f.
Physik 105, 537 (1937).' The similar values (10, —2, —1, 5)/12, from g0=1 j4,
have recently been used by Heisenberg in another con-
nection, Naturwiss. 25, 749 (1937).

10 D. R. Inglis, Phys. Rev. 50, 783 (1936);W. H. Furry,
Phys. Rev. 50, 785 (1936); G. Breit, Phys. Rev. 51, 248
(1936).

(1) we may neglect its nondiagonal elements.
L and S and their projections therefore remain
good quantum numbers and we need consider
from this configuration only the three substates
of the three 'P with 3III,——1, 3EIq=2. We take
3IIg=-,' rather than —-,'because the spin-orbit
coupling is of such a sign as to make these three
substates give rise to the ground state. "

The space factors of these wave functions
are' "

where we use large letters S, P, D to denote a
composite orbital angular momentum and small
letters for the orbital angular momentum of one
particle, followed by superscripts which refer to
the corresponding 3fl, or m~. We have further
abbreviated the different projections of the single-
particle p function thus: p' =a, p' = b, and

p '=c. We preserve the order: first the two p
neutrons, then the p proton, and omit here the s
particles.

In calculating the matrix of the interaction
for these states we may avoid until later spe-
cializing the shape of the potentials by using the

1'These are easily derived by the rather well-known
' method employing the operator which we shall call n,

representing the sum of the combinations p —ip„of the
projections of orbital angular momentum of the several
particles. :Since this obeys the selection rules AL=O and
AML ———1, it enables one to get the wave functions of
known L and 3fz, from those of the same L and higher S'IL.
Writing out the operator and applying it to the p /, one
finds directly nu= —b, nb=c. For the two neutrons one
then has, normalizing,

then by orthogonahty
whence, applying n,
and by orthogonahty

D2 =aa,
DI = —(ah+ha)/2&,
Do = (2bb —ac —ca) /6&;
PI =(ab —ba) 12&,
Po =(ac —ca)/2&,
So =(ac+ca+bb)/3&.

Similarly for the three particles composing D„p, we have
{within normalizing factors):

andfor Pvpn. .

F' =aaa,
F2 = (ah+ha) a+aab,
FI = (ac+ca —2bb) a —2(ah+ha) b+aac,
D2 = (ab +ha) a —2aab,
DI = (ac+ca —2bb) a+(ah+ha) b —2aac,
PI = (ac+ca —2bb) a+3(ah+ha) b+6aac

64Doa +213DIb 6D2c,

D2 =(ab —ba) a,
DI =(ac —ca)a —(ab —ba)b,
PI = (ac —ca) a+(ab —ba) b.

P'(D„p, ) = {(ac+ca 2bb)a—

+3(ah+ha) b+6aac} /(60) &,

(3)
P'(S,,P ) = (ac+ca+bb)a/3'*,

P'(P„p ) = {(ac ca)a+—(ab ba)b}—/2,
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relations (9) and (10) of reference 3; namely"
L=(xxl Jlxx), X=(xxl Jlyy), and I.—2E
= (xy

l
J lxy), where x has the angle dependence

of the normalized wave function which it repre-
sents. These lead to the convenient relations"'

(aa J aa) =(acl Jlac) =L —X,
(abl J ab) =L 2K,—
(bbl Jlbb) =L,
(ac J bb) = (ab

l

J'l ba) =X,
(ac J ca) =2K,

(6)

"Derivation: subject (x'x'
~
J

~

x'x') to the rotation
x'=x cos+y sin and equate it to (xx~ J~ xx)(cos+sin)'.'"F. Hund, Zeits. f. Physik 105, 220 (1937).

which are used to reduce the matrix elements
in considering successively the interactions of
the various pairs of particles, with the possible
orthogonality of the functions of the other
particle. One must of course also consider the spin
in calculating the matrix elements of the terms in
P" and P . The spin factor of each of the first
two lines of (5) is "S=(apn —pnn)/g2, anti-
symmetric in the spin coordinates of the two
neutrons (here tt and p are the usual Pauli spin
functions for I,= +-'„respectively). The last line

of (5) has the spin factor s'S = (rxPa+Pnn
—2nnP)/Q6 (as is easily seen by the method of
footnote 11, for example). The spin-exchange
operator between one of the neutrons and the
proton then has the matrix elements

(12S
l
P a

l

lsS) — (ssS
l
P r

l

ssS)—
( SIP„..I

S)=~-;. (7)

The & sign is + for one neutron and —for the
other. A similar ~ sign occurs in the space factor
(P(Sp) l JlP(Pp)) with or without space ex-
change, because of the antisymmetry of P(Pp) in

the neutrons. The contributions of the two
neutrons are thus additive in the "singlet-
triplet" matrix elements of JP &' and JP',

, although the corresponding elements of JP& and
J are zero, as required to leave S„a constant of
the motion with spin-independent forces. The
diagonal elements of P„„'are ~1 according to the
symmetry. Because of the possibility that one
might later desire to abandon the symmetrical
Hamiltonian, we list separately the matrix
elements of the like-particle and unlike-particle
interactions, thus calculated. For the unlike-
particle terms of (1) in the representation (5) we

have the symmetric sub-matrix:

gq(L +14K)/3
'I'('D'p) +g(L+ &4K)/6

+g1(2L —K/3)
+go (L —K/6)

(gq(2L —2K)
+g(L —K)
+g14K
+go.2K f 5'/3

'P('P'P) —(gL

+gtr3K I 5&/2

gq(2L+4K) /3
+g(L+2 K) /3
+g 1(2L —8K/3)
+go (L —4K/3)

g(L —3K)

(8)

gq(L+2K)
+g( —L/2 —K)
gl(2L —K)
+go ( —L+K/2)

We first write a matrix of six rows and six
columns, labeled ace, caa, etc. , for the terms in
P»& and 1» between the first p neutron and the

p proton (most of the elements are zero from
orthogonality). We then combine them using the
coefficients listed in (5), then multiply by two to
take account of the second p neutron in all cases
except where the elements are zero as noted just
under (7), above, and finally obtain the elements
of P & =P &P and of P by multiplying the
elements of P' and 1 by the factors given in (7).
The like-particle interaction is of course diagonal
in this representation, having the diagonal
elements [as most easily calculated from (6) and
the simple sum rule:
D =aa; D+P =ah+ha; D+P+S= ac+ ca+ bb—all representing diagonal elements of JP' or J
(compare reference 3)]:

'I'('O'P) ' 2jP(l.+2p) 2P (3+2p)

gq(L K) gq(L+2K) gq( L+3X)
. +g( —L+K) +g( —L—2K) +g( —L+3E)
+gl(L K) +gl(L+2K) +gl(L —3K)
+g, ( —L+K) +g (—L—2E) +g, (L—3K)

Adding the diagonal ma, trix (9) to (8) one has a
secular problem which may be specialized by
introducing relations between the various coeffi-
cients from other sources. By specializing to the
Hartree model with oscillator potential hole, one
may estimate' Z= L/7 (see below), but it might
be well to consider the possibility of considerable
deviation from that estimate. We should also
allow considerable latitude in the selection of the
g's. Since one choice of interactions' gives too
small a magnetic moment, and since the small
admixture of 'P('P'p) can only decrease the
calculated moment (the proton spin and the
neutron magnetic moments "point backwards" );
we may first ascertain whether there is a possi-
bility of finding an interaction which gives a large
enough moment in first order by neglecting the
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admixture of 'P('P'p). The preliminary secular
problem is then merely quadratic, involving the
matrix elements:

2' (ID2p)

2+(IS2p)

g, (4L+11K)/3
+g( —5L+20K)/6
+g1(3L—4E/3)
+g, (—5E/6)

I g, (2L —2K)
+g(L —K)
+g14E
+g 2KI5&/3

—(10)
g, (5L+10K)/3
+g( —2L —4E) /3
+ g1 (3L—2E/3)
+g, ( —10E/3)

We wish to calculate the orbital contribution p, l,

to the magnetic moment, the spin contribution
being the same (p, ) from each of the two states
involved in the approximate wave function

C 0 2P (1D2P) +C 0 2P (1S2P) (1 l )

From (5), or from the very simple use of the sum
rule and vector model (which thus serves to
verify (5)), it is apparent that the orbital"
contribution of the state P(Sp) is +1 (the unit of
magnetic moment here and henceforth being the
heavy magneton p~ ——p&/1840) and that of the
state P(DP) is —(-', ) so the first-order orbital
contribution is, with (CP)'+ (C2')' = 1, ap-
proximately

(12)

With the space-exchange term alone (g = zl
=g, =0) and with X =I./7, to illustrate by the
simplest example, one has from (10) the secular
equations

Cg'(13 —e/Z) +C2'4+5 = 0,
Ci'4+5+ C2'(15 —e/X) = 0,

whence e/E = 14&9= 23 for the ground state and
Cg'/Cg' = 5'/2 so (C ')' = 4/9 and p ' = —' The
results of the same calculation with different
selections of the coefficients are given in Table I.

13 Ke neglect the "wobble of the rest of the nucleus" in
calculating in the usual simple manner the orbital magnetic
moment of a single proton. A factor of about 6/7, which
one might insert in the final calculated p, L, on classical
grounds to account for this effect, would not significantly
alter the conclusions reached below. This approximation
amounts to taking II'= —U ——',(oa)'Zr' instead of the
more complicated expression (3), reference 7, and we do
this also in calculating the second-order effects, of which
only the order of magnitude will be important. The terms
in p, here neglected, reduce the effect of the doubly excited
states in reference 7, so that the convergence there
appeared to set in only beyond the quadruply excited
states. Here we may expect the quadruply excited states to
contribute considerably less than the upper limit which
we obtain for the doubly excited states by neglecting those
terms.

In the last line the coefficients are different for
like-particle pa.irs (g|——1) and unlike-particle
pairs (g, =0.78, g=0.22), corresponding to the
unsymmetrical interaction used by Rose and
Bethe, ' for comparison. For these the correction
arising from the participation of neutron spin due
to the admixture of the 'P('P'P) is' 8p, = —0.07.
This correction is much smaller for the sym-
metrical interaction (1), because the leading term
of the neutron-neutron interaction contains the
space-exchange operator which, together with the
Pauli antisymmetry, strongly separates the state
involving the 'P„ from the others (compare
reference 3, Table II).

The calculation of the admixture of the state
'P('P'p) involves all of the matrix (8)+(9):

TABLE I. Results of the calculations of the orbital contribution
to the magnetic moment for various selecti ons of coePcients.

L/K

1 7
2 7
3 7
4 7
5 7
6 7
7 5
8 10
9 7

fq

1 0 0 0
0.8 0.2 0 0
0.8 0 0 0.2
0.53 0.22 0.25 0
0.8 -0.1 0 0.3
8/9 —2/9 —1/9 4/9
8/9 —2/9 —1/9 4!9
8/9 —2/9 —1/9 4!9

(reference 2)

t/K C2'/Cl' pl, '

23 1.12 1/3
18.4 1,06 0.29
18.4 1.05 0.29
18 1.04 0.28
18.4 1.05 0.29
17.9 1.05 0.28
13.2 1.01 0.26
24.9 1.07 0.30
21.8 1.07 0.30

1/3
0.28
0.28
0.27
0.26
0.28
0.25
0.29
0.23

'4 In order to justify treating the admixture as a per-
turbation, one may solve the cubic secular problem using
the coefficients of equation (4). One finds 27&/K=483. 8,
C12 =0.476, Cp =0.523, C32 =0.00104, 0p = —0.0068 (the
same by the approximation in the text), pL,

——0.286 (com-
pare with p, l. =0.284)."The coupling of S„=1 to S = -', gives 4$& with
p, =2p,„+p, Then 4Sl, with Mq one-third as great, has
p, „=(2p,,„+p,, )/3. But Mp=-', can be attained by putting
Mg„=1, m, = ——', or Mg„=0, m, =-', , so the sum of the
p,„'s is 2p,„.Subtracting we have for 'S&, p„= (4p,„—p, )/3.
This substituted for p, to an extent C3' gives

Bp,,=(4/3)(p, ,„—p, )C .

a b d 278 88+5 3+5
X

b c e =—88+5 295 —24
27

d e f 3+5 —24 90

for the coefficients of Eq. (4) (the sixth line of
Table I), for example. One sees here that the
nondiagonal elements d and e, responsible for the
admixture, are indeed small, and they alter e and
Cu/Ci very little. "The same is true of the other
cases considered. Treating the admixture as a
perturbation, '4 we have

e = (cI,+c)/2+b+ (u —c)'/8b

and"
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bus = (4/3) (u.,—u,.)
y {bd+(s Q)sI /{ {b'+(s —a)'](s —f)')

The values of Spy are so small that the exact
values of p, „and p, ,„are unimportant: the
excess of the Li' moment over the proton moment
is calculated as pl, '+bpq, with p, „—p, = —4.85,
and is evaluated in the last column of Table I.
The very small' effect of the admixture on
p, l, is there neglected. The Li7 moment being'
pL;7 =3.265~0.016, the proton moment' would
have to be at least 2.96 if our assumptions and
first-order calculation are to agree with ex-
periment.

As yet we have not specialized the Hartree
model but have only shown that alteration of the
form of the fictitious potential, which alters
I /K, would not affect the first-order result
appreciably (Table I). As a starting point for a
second order calculation we shall need a definite
set of wave functions, which may be determined
by choosing a quadratic zero-order potential
Uo = -', (o n)'Zr' and varying o to make the first-
order energy a minimum. 7 Assuming henceforth
that J(r) = —Be "', we see that the matrix
(8)+ (9) accounts for the interactions between the
p-particles, with L = —Buf~~rr —— Bu {(1—1—/r)'
+2/r'I and K= —Buf'~~os —— Bu/r', i—n the no-
tation of reference 7 (r=o.+2, u=(a/r)I) The.
rest of the interaction is independent of the
orientation of the p orbits, so it is simply the
s—s and s—P part of (ssbb; ssb~ t'I~ssbb; ssb) for
each of the diagonal elements, and this part
is, by the methods of reference 7, equal to

3Bu{(2 2go)foooo+—( 1 g+Sgt+3g )fto~o

+ (4 —2g —Sgr —6g.)ftoo i I = 3Bu {1 —3g
+Sgr+g. +(5—g —10gt —9g )/r I.

This together with the lowest solution e of the
determinant arising by specializing (10) to the
case (4):

(28I.+82K —27e) (14I.—10K)+5 =0
(14I.—10K)+5 (35L+SOK 27s)—

"The upper limit of the value 2.85%0.15 (Kellogg,
Rabi and Zacharias, Phys. Rev. 50, 472 (1936)) is com-
patible with our assumptions but is far above the value
2.46~0.1 (Estermann, Simpson and Stern, Phys. Rev. 52,
535 (1937)). The latter would be more appropriate here,
pL'7 being measured by its coupling to an external field,
if h.f.s. ,were due in part to some nonmagnetic cosine
coupling (L. A. Young, Phys. Rev. 52, 138 (1937)).

gives the first-order energy for that case (neg-
lecting the small effect of 'P('P'P)), when added
to the kinetic" and Coulomb terms 6cto+0.7(no)1,
and this may be minimized by trial of several
values of 0-. Taking 8=92 nzc', o. =22, one finds
the minimum of the first-order energy at 0.=1.2
or ~=3.2, E'"+8'"= —30.4 mc' The mini-
mizing value of v. is very insensitive to the
selection of the coefficients in (1), as is shown by
the fact that it retains the same value (within
0.03) when we consider instead the quite different
case of the fourth row of Table I, for which
E&"+8&"=—31.5 mc'. If we judge by the Li'
calculations, the minimizing value of v. is also
sufficiently insensitive to the choice of 8 and
rt(r)r;„/r)n 0 03) t. hat trial of other reasonable
values would not be expected to alter the follow-
ing result significantly. This insensitivity arises
essentially from the fact that cr = ~ —2 is a factor
in the minimizing process, but only v enters
the ratio of coeScients in the secular problem.

SECOND-ORDER CALCULATION

The higher order contributions to the binding
energy are arithmetically additive because the
energy differences between excited states and
the ground state all have the same sign, and the
increasing number of smaller contributions makes
it necessary to compute a great number of
contributions to obtain a fair approximation to
the energy. ' The higher order contributions to
the magnetic moment, on the contrary, occur
with both signs with approximately equal
abundance, so that the large number of small
contributions from highly excited states very
nearly cancel out, and the convergence may be
expected to be much more gratifying in calcu-
lating magnetic moments than energies. The
first-order magnetic moment is not a difference
of two large terms, as is the first-order energy,
so it is expected to be better from this point of
view also.

The first-order wave function of the ground
state is, from the above calculation,

'~ The kinetic energy term —(3/7)(ssbb; ssb(Zvsl, ssbb;
ssb) is equal to 81uo/14, since (n(S'/Sx'(n) = —(n+ 2)no
There is also a small exchange term in the kinetic energy
arising from the cross terms g gb/N and the anti-
symmetry. It amounts to —(1 [ 8/Sx ( 0) (0( 8/Bx [ I)/IV
=no. /2N for each like-particle, like-spin s —p pair, or
3m~/14 altogether, for Li'.
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0.67'P ('DsP) +0.74'P ('S'P) +0.069'P ('P'P)
= 0.67(60)—'{(5 94a. c+5l94ca+2 94b. b)a

+3(ab+ bo) b+6aac }(nP P—a)n/2
+0.034 {(ac ca—)a+ (ab ba—)b }
X {(crP+Pcr) —2nnP}/6'

(13)

for the case (4). The coefficients 5.94 and 2.94
are so nearly equal to 6 and 3, respectively,
that we may safely simplify the wave function

by taking them exactly equal. (This approxima-
tion is good for various selections of the g's and

L/K, Cs'/Ci' being almost constant in Table I.)
If, further, we neglect the small triplet term we
have the approximate wave function"

'8 Exact for g =g =0, as follows from considerations of
Feenberg and Phillips, Phys. Rev. 51, 597 (1937), and
kindly communicated by Dr. Phillips. It is remarkable
that the spin-dependence leaves it as good an approxima-
tion as it does."The Cartesian oscillator wave functions used for
calculating the binding energy of Li' are not so convenient
here where the angular momenta are important.

{2(aac+aca+ caa) +bbo+ bab+abb }/+15 (14)

with the singlet spin factor (nP Pa)a/—2 For it.

/ii) Qo 3 as is apparent from the symmetry in

the three particles, one of which is a proton.
Since the second-order contributions need not

be computed with as great relative accuracy as
the first-order, we may use this approximate
first-order wave function in reckoning the second-
order contributions (and later estimate the
errors so committed). We shall also begin by
considering only the leading term in P' in (1)
and discuss the possibility of spin effects later.
We thus are concerned with the contributions of
the higher states to the projected orbital mag-
netic moment pl, . Although it is feasible to calcu-
late in terms of excited states described by the
quantum numbers L and JIJ/Il„ it is simpler to
carry out the equivalent expansion in terms of
the excited states having the individual particle
moments l; and m~, as quantum numbers. "
The excited states, to contribute, must have the
same parity (doubly excited, quadruply excited
states, etc.) and the same Mr. as has the ground
state. The symmetry of the space wave function

(14) simplifies the problem tremendously, be-
cause the possibility of exciting the three P
particles is also symmetric in their coordinates,
so the two neutrons and one proton are admixed

ss
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CS
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ac)
ac)
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ss
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ca;
ca;
ca;
ca I

ss

SC
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' For example, consider the second-order contributions
of states arising from an excitation p~f. If the f particle
have m1=3, we have the three states f'cc and its permuta-
tions, with the same spin factor as has (14), each having
MI, —1 and the same matrix element Ho, '= (f'c~ J~nnl
4/+15 with (14). Since the operator for the proton orbital
moment is diagonal in these functions, the effect of H0, ' is
to add pL H0, "/(B —E0)' to the first-order value pL, 0, but
also to subtract p I pHp

' /(E —B0) by altering the normal-
ization. (That is, the property of the excited state is to a
small extent substituted for that of the ground state. )
Since f'cc and cf'c each have pL= —1 and ccf' has p1.=3,
their average is -'„which is pz, 0 so the net effect of the
admixture is zero."When considering the s shell explicitly, the term aac in
(14) is to be written ssaa; ssc. The corresponding anti-
symmetric function with spin contains many permutations,
P, of s+s a+a; s+s c+, and corresponding to each of them
there is an excited product P(d'+s a+c; s+s c+) which
bears the same relation to it as does d'+s a+c; s+s c+, for
example, to the original term. It is therefore quite arbitrary
whether we expand in antisymmetric combinations of these
products, or in the products singly, interacting with (14)
antisymmetrized and suitably normalized, or whether we
consider only the excited products arising directly from

equally from such excitations" by a symmetrical
interaction (1), and pt, remains —',.

The second-order contribution biz, therefore
arises from the possibility of exciting the $ shell.
Excitations involving the s shell may be grouped
in three classes, arising from terms of the ground
state" by the excitations ss~PP, s~d, or sp —+pd.
Let us consider first the excitations ss~pp, of
which only ss~ac contribute to baal, . Here the
number of contributing states is further limited

by the fact that some of the p states to which
an $ particle might be excited are already
"occupied. " Arising from the terms " in aac we
have the products



D. R. I NGL IS
/

with 7-=3.2. Next, we have twenty-seven states
arising from the terms in b6u by the excitation
ss~ac; nine of the thirty-six permutations (three
of bbrs times twelve of ssac) are "excluded" by
having two like-particle, like-spin a' s. If all
thirty-six were allowed, the excitation ss—+ac,
being permuted, would make no net contribution
to Zm~ so isr. would be due to the original p
particles, and average pl, p. The total excess over
pgp is thus proportional to the negative of Zm&

for the excited particles for the nine excluded
states, which is 2. Since for these 27 states,
Hc, ' ——(ac

f
J

f
ss)/+15, we have for them

(fifteen of them —for each permutation of the
original agc, five: there are three places for the
excited c if the excited a forms a like-particle,
like-spin pair with the original c, otherwise two
places). Of these the second and last are dupli-
cates, differing only by like-particle exchanges,
and likewise the fourth and ninth, and the
seventh and twelfth. Taking one of each pair, we
find that these three states have their average pl,
equal to pl, p so contribute nothing to 6@&. The
other nine states all have the same matrix element
with the ground state, Hc ' ——2(ac[ J[ss)/+15
=28u/(r+15); the evaluation is easily carried
out" by use of (10), reference 7. Their average
isr, is proportional to Zm~ /9=5/9, so their
contribution to the magnetic moment is

bisr, = 2 (Bu/2uo'r) 2/15 = 0.0021.

Next we consider the excitations s—+d, which
may be accompanied by a change of m& of one
of the original P particles, to keep Zm~ unaltered.
Arising from the three terms" in @ac of (14),
there are twelve states which involve the excita-
tion sa—+d'c, for example. They are of two types,
six of the type d'sac; ssc and six of the type d'scu;
ssc, since the matrix element Hp, ' depends upon
whether or not the excited function d' and the
altered p function c (either of the c's) form a like-
particle, like-spin pair. "The latter type, having
d'and c paired, contribute nothing to S'IL„because
the excitation sa—+d'c of two like-particles does
not change Zm& and the pair d'c may be per-
muted with the other a and c just as freely as
could the 12 which it replaces, leaving the average
pz, equal to pL, p for this type. The same is true for
all types with the excited and altered functions
as a like-particle, like-spin pair, so we need not
consider them further. The states of the former
type, d'sac; ssc, have an average no~ of ——,

' from
the P functions and 2(-,'+-', ) =4/3 from the cP

(which may either be in the sixth place or paired
with a), so their average isr, is 1. Similarly for
the other " types of the class s~d we have the
results" listed in Table II. We have yet to
consider the excitations sp —+pd. They differ from
those we have just considered, s~d or what we
might call sp~dp', by interchange of the excited
and the altered functions. This does not alter
the situation which makes a type with these
functions as a like-particle, like-spin pair con-

bPL 9(5/9 lsLO)(—HO'/(&. &o))'—
=2$3u/nar)'/15 =0.0083

TABLE II. Inhuence of the excitations s~d.

pe 60n2o'

{(1 —1/7) B2b/2 I
2

32

15&H..'
4(d2cl Jlas)

6(d 2al Jlcs)

2(d'bl Jlas)
+(d'cl Jlbs)

2(d 1alJlbs)
+2(d 1bl Jlcs)

(d2cl Jlas)

TYPE NR. ft(IJL) Av
—1/3 l

d'sac; ss c 6 2/3

—4/3ss aa;sd 2a 1

d'sah; ss c 12

—24

1/3 36

—2/3ss aa;sd lb 3 —32

4/9d2sbb; ss c 9

d =(H2oo —H020&2iH110)e ~»/Q6,
d = (H101 +2,H011)e p / /Q2,

d = (Hsoo+Hoao —2Hoo2) e )»/ Q6,
a, c=(H100&iH010)e &»/Q2,

b =Hoole P /', s =Hoooe &»,

where IIngn„ng is a product of three Hermite polynomials
appearing in (5), reference 7, and p' = P+q'+ |', one
finds (ac

f
J

f
ss) = (bb f

J
f
ss) = Bu/r and 2l(d'c

f
J as)

(d'b[J [as) = (d'cf Jfbs) = 3'(doa[Jfas) = —(3&/2)
X(d'b J bs) =Bu(1 —1/r)/r and 2&(d'c

f
1fsa) =(d'b[ J[sa)= (d'c J sb) = (d'a[ J[sa) = —(3& 2)/( bd[ J fsb) = Bu/r'.

The further relations (d'c
[ J f

as) = (d 'a
f
J

f cs), etc. , the two
differing only in the sign of the f axis, are apparent.

"Only those excitations which change the individual-
particle projections m& alter the projected magnetic
moment )ML.

one of the six terms of (14) by excitation (or alteration) of
not more than two of the single-particle functions (and
having the same spin order, for g=g, =0). With the latter,
somewhat simpler, convention we keep the normalization
(14) but remember antisymmetry: if such a state as d'sca;
ssc differ from a term of (14), such as ssaa; ssc, only by two
like-particle, like-spin functions, then in addition to the
direct term, (d'cf JB&[sa), in the matrix element Ho,''
there is the exchange term, —(d'cf JP& fas), arising from
the fact that the complete approximate wave function
replacing (14) is antisymmetric in those two functions.
(The direct term is contributed again by the term ssca; ssa
of (14) in the case mentioned. )

'2 Using
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tribute nothing. The interchange alters the types
of Table II in such a way as to give the results
listed in Table III. The contribution of the
states listed in Tables II and III is

Bpg,
——}13(1—1/r)' —5/r'} (Bu/nor)'/60

= (6.4 —0.5) /10' =0.0059.

T vsse NR.

cs ad2; ss c 12
ssd 2a;saa 3
bsad1; ss c 12
csad1; ss b 12
ssaa; sbd 1 3
ssad ';sab 6
csbb; ss d~ 9

t'(IJ L)Av
—1/3 l

—1/3
2/3
0

-1/3
0
2/3—2/9

15&H

2(d2cj Jjsa)
2(d 2aj Jjsc)

(d'cj Jjsb)

(d 1ajJjsb)
(d&cjJjsa)

)PL .60(ao r&/Bu) 2

TABLE III. Indolence of the excitations sp~pd.

The entire second-order contribution of the
states arising by double excitation from the terms
of (14) (with the s shell), when only the leading
(space-exchange) term in (1) is considered, is
thus baal. ——0.015 nuclear magnetons, for v. =3.2.

SECOND-ORDER SPIN EFFECTS

The second-order effect of the main term of
the interaction is thus so small that an estimate
of order of magnitude should suffice for the
rest of the terms. We must give attention to
two possibilities that might make the second-
order spin effects larger than the effects of the
spin-independent terms; we must see that the
spin dependence does not leave large groups of
contributing terms, but destroy their tendency,
noted above, to oppose one another in bp, , and
we must see that the large difference between
the proton and neutron moment does not make
the spin contributions too large. Although we do
not want to consider that g and g, are indi-
vidually not larger than their sum go=0.2, we
do tentatively consider them as individually
smaller than the coefficient of the main term, g, .
Even so, they are together effectively only about
as large as their sum (since the space-exchange
does not change the sign nor order of magnitude
of the matrix elements). "The second-order con-
tributions to bp, ~ are proportional to the squares
of the matrix elements, so they contain a factor
of about go' to make them much smaller than
the bpi, calculated above, and this should be
more than sufficient to compensate the excess of
(y, —p. ,) =5 over y~ =1, if the cancellation is
approximately as general for the spins as for the
orbital momenta. In a preliminary way one may
thus expect bp8 to be smaller than bp, l, in magni-
tude. The sign is expected to be negative, since
by~ is due to a participation in the spin by the
neutrons.

We proceed to investigate briefly the cancel-
lation in Res. The spin-dependent terms of (1)

sd'+
$$

$$

aa; ss
ah+; d' —s
6c ) d $

(where only the altered m. are indicated) and
from the term aca, besides three canceling pairs,
the states

ss ac+; d' s a
ss ah+; d 's c
sd+ ac) ss c

and similarly three from the term caa. The matrix
element IIO, ' for the first of these nine states, for
example, is 2 Ig(d'c

~
Jjcs)+g, (d'c

~

2
~
sc) }/+15

and their total contribution is bps = (11/30)
X [g(1 —1/r)+g. /r}'(Bu/nor)'(p, ,„p..) whi. ch-
is about —0.0026 for g=go and about —3&(10 '
for (4). For the states arising from the terms in
bba, the situation is similar, but the lack of the
factor 2 in these terms of (14) makes their con-
tribution about one-fourth as large. Thus the
bp, 8 from these states is in magnitude not more
than about half as large as the Dpi, from the
states of Table II, which also arise by the s—&d

have matrix elements with states having two of
the opposite m„ in the order + —+ —;+ —+,
exchanged. If the two both refer to protons, or to
neutrons, the state contributes nothing to bpq,
but if one refers to a proton and the other to a
neutron, the state contributes &(p, —p, „)
X (IIO,'/(Z~ —Zo) )' Among the excitations
ss~PP, for example, one finds the state c s—a+a
s+a+c+ to cancel the effect of the state s+c+a+a—;
a s c+, and similarly for all of these states
except s+a+c+a; c s a+ of which by~ is very
small, containing go', and negative. Among the
excitations s~d, those states in which the
altered m, are both from the s shell of course
cancel. Of those having an altered m, from the p
shell, we have, arising from the term aac of (14),
besides two canceling pairs, the states
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excitation, in spite of the fact that the individual
contributions of the states listed to btMg are all of
the same sign, in contrast to Table II ~

The states arising from other types of excita-
tion ar'e also not numerous, and their contribution
is, similarly, small and negative. The excitation
s p~~p d differs from s p~~d~p, con-
sidered above, principally by an interchange
which exchanges the roles of g and g, . The type
s p~ —&s~f contributes nothing, the excited
states being symmetric in two like s particles.
The excitation of the p shell alone does give a
small contribution here: there are five con-
tributing states of the type p p~ —+f~p and
five of the type p p ~d d, the matrix ele-

ments of which are of a higher order in 1/r than
those considered. above, and therefore smaller.
Without more detailed calculation one may
safely conclude that the second-order modifica-
tion of (14) by the doubly excited states due to
any reasonable spin dependence of the interac-
tion (1) leads to a —Bye which is considerably
smaller than the bp~ due to the spin-independent
terms. The more exact first-order wave. function

(13) differs from (14) principally by the inclusion

of a term arising from 'P„with a coefficient about
one-tenth as large as that of either of the other
two terms. The effect of this term and the leading
term in I'' of (1) is to make (13) have matrix
elements with excited states arising from triplets.
These states thus contribute to bp, independently,
and their contributions contain a factor of the
order (Cg/Ci)'=10 ' compared to the contribu-
tions calculated above. These are therefore
unimportant, in spite of the fact that spin
magnetic moments are somewhat larger than
orbital magnetic moments. The effect of the
term arising from a triplet in (13) with the spin-

dependent terms of (1) is to modify some of the
matrix elements calculated above, but the
modification contains a factor of the order

goC, /Ci-—1/50 so the inffuence of these terms is

not great enough to change significantly the very
small value of bp, already calculated.

The more exact wave function (13) differs

slightly from the approximation we have used

(14) also in the coefficients of the terms arising
from the singlets. Although the exact symmetry
of (14) greatly reduces the labor involved in

computing A@I., it could not be expected to make
any essential difference in the magnitude of the
result. (The fact that the terms with m~ ——1 are
relatively smaller in (13) has two opposing
effects: it reduces p, & o and thereby increases baal,

from all the excited states, and it decreases the
matrix elements preferentially for excited states
having m~ ——1, and thus tends to decrease Stir, ).
For (14), Bur, =0.015, as we have seen, and the
spin effects give rise to a smaller, and negative,
8p&, which makes bp, =0.01. The slightly altered
(probably greater) gati& from (13) would probably

.leave bp, =0.01, but one may more safely take
0.02 as an upper limit for bp due to doubly
excited states in second order.

In determining the sum of the large number of
smaller contributions due to more highly excited
states (of the nth order in 1/n r for n-tuple excita-
tion) and higher orders, the cancelation of
positive and negative contributions, so important
in our considerations above, would be expected
to be even more complete, making the con-
vergence very rapid (in contrast to the compu-
tation of binding energies, ~ where the contribu-
tions all have the same sign). In the absence of
a complete investigation of the convergence, it
seems very unlikely that the final result would
differ from the first-order result by more than
0.04. This, with the results of Table I, places a
lower limit of the values of the proton magnetic
moment with which our assumptions are com-
patible at 2.92 nuclear magnetons, " 0.33 below
the lower limit' of the observed pz, .

In perturbation theory, the magnitude of the
second-order contribution may be considered as
a fairly reliable criterion o'f the accuracy of a
first-order result. The result of our second-order
calculation is, broadly speaking, that the first-
order (Hartree) calculation seems to give with
good accuracy the value of the magnetic moment
of Li' whick follows fronz our assumed interaction
In the first-order calculation, the orbital moment
is due almost equally to the three p particles,
making pl. =-,'. If pI. were due equally to all seven
particles, one would expect it to be 3/7, and the
small positive value of the second-order bpL,

(arising from excitation of the s shell) may be
interpreted as indicating a slight tendency
toward that situation.


