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Calculations were made with trial wave functions cor-
responding to such excited states of H' and He' which, in
the Hartree approximation, would contain one or two
particles excited into the p shell. If only one particle is
excited there is no state which would be completely sym-
metrical in space coordinates and if two particles are
excited only an S and a D state have this property. On
account of the supposed predominance of the Majorana
exchange forces in the nuclear Hamiltonian, these should

be the lowest excited states in H' while in He4 the I' state
'

in which only one particle would be excited in the Hartree
picture lies close to these. No stable excited states are
indicated for either of the nuclei when the forces are of the
exchange type unless the range of force is much greater than
the accepted range. Several improved forms of the D state
wave function were tried but they failed to lower the energy
sufficiently to make the states stable.

'HE normal states of the nuclear three and
four particle systems have received con-

siderable attention. The results, although not
entirely consistent, indicate that to a fair ap-
proximation, at least for these light nuclei, the
forces between all pairs of particles are equal
when the Coulomb repulsion between protons is
neglected. It is then of interest to investigate on
such a model the nature and positions of the
excited states of these nuclei. The exchange
properties and range of the forces will obviously
play an important role in their determination,
since the different types of excited states possess
various types of symmetry. Calculations were
first made for He4 by Feenberg' who found that
one might expect a stable I' state if the forces are
of the ordinary type with a range greater than
2)&10 " cm. Feenberg did not investigate in
detail the existence of such a state under the
assumption of exchange forces. Margenau' has
pointed out later that this state becomes
unstable when the exchange operators are intro-
duced into the Hamiltonian.

There are several ways in which the results of
the calculation might be verified experimentally.
In the case of H' (or He') a state with negative
energy but which is unstable with respect to
disintigration into a deuteron and a neutron (or a
proton) may make its presence known either by a
resonance peak in the scattering cross section
curve or by an asymmetry in the scattering when
the energy of the incident neutrons (or protons)
is such that the total energy of the system is

~ E. Feenberg, Phys. Rev. 49, 328 (1936).
2 H. Margenau, Phys. Rev. 53, 198 (1938).

equal to the energy of this state. A similar effect
may be expected in the scattering of deuterons by
deuterons if He4 possesses an excited state with
negative energy greater than twice the deuteron
energy. If in a nuclear reaction an H', He', or He4

nucleus is formed in a state above the ground
state, y-rays will be observed. Among the prod-
ucts of the reaction there will also be present a
group of particles with range less than that which
corresponds to the case where all the reac-
tion products are formed in the ground states.
y-rays have been observed' in the reaction
Li~+ H' = 2He4. This may be interpreted as
emission from an excited state of He' although it
now appears more probable that the y-rays are
emitted by Be' nuclei produced in an excited
state. In the reaction H2+H'=He'+n Bonner4
has observed a group of recoil protons with range
less than the maximum range. This may be due to
some of the He' nuclei which are left in an
excited state. As has been mentioned above and
as will be seen later the theory fails to predict
stable excited states for either of these nuclei.

TYPEs oF STATEs

The calculations have been made by use of the
symmetric interaction potential

I";=t (I a)I''; +gI";"]~(r';)-
between each pair of particles with J(r, ;)

3 Crane, Delsasso, Fowler and Lauritson, Phys. Rev. 48,
125 (1935).

4 T. W. Bonner, Phys. Rev. 52, 685 (1937).Also Washing-
ton meeting of the American Physical Society, April, 1938,
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= —A exp ( n—r; ) A. is determined as a func-
tion of the range of forces 1jgn by numerical
integration of the deuteron radial equation. '

g was
taken to be 0.235. In units of length equal to
I3/(Mmc2)' and energy equal to 233c2 the Hamil-
tonian, if Coulomb repulsion terms are neglected,
takes the form

Calculations were made for both nuclei with P,
D, and S state wave functions. The wave
functions corresponding to'these states are of the
form

p=q f s.

q is a function of the space coordinates and has
the symmetry required for a P, D, or S state
wave function. f is a function of the interparticle
distances only and becomes small for large
separations of any pair of particles. s is the spin
wave function and is symmetric or antisymmetric
in the like particles according as q f is anti-
symmetric or symmetric in these particles. The
function g which represents a P state corresponds
to a state in which, in the Hartree approxi-
mation, a single particle is excited into the p shell
while for S and D states it corresponds to the
excitation of two particles. One might then
expect the P level to lie below the S and D
levels. However, this is offset by the fact that the
space parts of the S and D wave functions can be
made entirely symmetrical in all the particles
while this is not possible in the case of the P

state. The Majorana force is supposedly the
predominant force in the interaction between
nuclear particles and a Majorana interchange of
two particles will introduce repulsion terms only
in the energy expression for the P state. It thus
seems plausible that, while for ordinary forces
the P level will be the first one above the ground
level, it will lie above the S and D levels for
exchange forces, This is what the results of the
calculation indicate.

The P and D state wave functions are auto-
matically orthogonal to the ground state wave
function, the ground state being an S state. The
excited S state must be made orthogonal to the
ground state since it is not automatically so.
However the ground state wave function is itself
not known accurately and thus the excited S
state can be made orthogonal only to an ap-
proximate normal state wave function. In the
present work this approximate wave function was
taken tO be X eXp [——',v1(r12'+r13'+r23')] far H'
and the corresponding function was taken for
He4. The v~ was chosen in each case to give the
lowest normal state energy. Since these functions
are only approximately correct for the ground
state the trial wave functions of the excited
states will not be quite orthogonal to the real
wave functions of the normal state and a certain
amount of the ground state may be introduced
into the excited state wave function. It is then
possible for the calculated energy to lie below the
actual energy of the excited state. For this reason
the S state results do not constitute upper
limits for the actual solution of the Hamiltonian.

The three wave functions used for H' are
H'

P lP = N(xl, x2) exP [——,
' v(r12 +r13 +r23 ) ]nln2n3,

1
p=&(»2y12+3313y13+~23y23) exp [——',v(r12+r13+r23)]- n3(nlp2 n2p1)

Q2

S f=Ã[6 —(v+v1)(r12 +r13 +r23 )] exP [—2v(r12 +r13 +r23 )] 3( nP n1n2 2P1)'g2

where 1, 2 are neutrons and 3 is a proton. X is the normalizing factor. n and p are spin wave functions
corresponding to orientation of the spin along the positive and negative s axis, respectively. In the S
wave function v1 is the value of v for which exp [—

—2,v(r122+r132+r232)] gives the lowest ground state
energy. Since r» ——r» —r&~ the integration can be performed over dv. »d7». This automatically elimi-

' E. Feenberg and S. S. Share, Phys. Rev. 50, 254 (1936).Table II.
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TABLE I. Energy values, in units of mc', of the ecxited states of H' as a function of the width parameter v of the nave function.
It is clear how the energy is varying without Piling in the blank spaces.

a=10 ~

0.5
1.0
3.0
4.0
5.0
7.0

10.0

&ppg(4P)

1.5
1.9
0.8
0.0—0.4
1.3-
5.6

1.9
2.8
8.9

13.1

&p~g( D)

0.7
2.5

5.8
10.0
23.3

+exc('D)

2.0
7.2

13.2
20.1
35.4

0.7

2.0
3.2
4.6
8.1

17.7

&exc('»

0.9

3.3
6.7
9.8

18.6
33.4

n =20

0.5
1.0
3.0
5.0
7.0

10.0
12.0

2.1
3.5
5.9
7.0
7.7
8.8

10.6

2.3
3.8
9.6

16.9
25.1
39.5

2.0
6, 1

17.5

3.3
10.6
22.6

0.9
1.5
3.9
6.8

14.5

1.1
1.9
5.4

10.3
21.1

nates the coordinates of the center of gravity. The energy expressions are given below, except for the S
state which is a rather long expression, for both ordinary forces, taken without spin dependence, and
exchange forces.

'P E„g=6v—3'"Av'"(3P+n)/(3v+2n)"' Z =6u 3"Av"—n/(3v+2n)"'
SS 35~22 .3~2 15 3'"(1—g)A v'"

2D B„'=—v —— (9p2+2n'+6nv), E,„,=—v — (9v2+2a'+6nv).
2 (3p+2a) "~ '

2 (3v+2n) I

The numerical results are shown in Table I. It is seen that, as was expected, the P state lies lower
than the other states for ordinary forces and higher for exchange forces. It is also seen that the energy
is lower for the longer range of forces. This is opposite to the way in which the ground state energy
varies with the range of forces and can be explained by the fact that the excited states are spread out
as compared to the ground state, and for this reason the potential energy curve should not fall off too
rapidly if an appreciable potential energy is to be obtained. Except in the case of the I state for an
ordinary force of somewhat too long range, there is no indication of a minimum even for positive
values of the energy. This would lead one to believe that probably no stable excited state of H' exists.
It may of course be that these wave functions are very poor approximations to the correct ones. It
seems likely, however, that they are not so poor that there would not be some indication of a minimum
in the energy curve, at least for the longest range of forces.

The three particle system consisting of a free incident neutron and a deuteron has a total internal
energy which is negative if the kinetic energy of the relative motion of the neutron and deuteron is
less than the deuteron binding energy. It is thus always possible to construct a state, with negative
energy by choosing a wave function which represents a neutron moving in the Beld of a deuteron and
which diminishes quite slowly with increasing separation between the neutron and deuteron. A
possible form of such a wave function' consists of a symmetrized sum of three terms of the type
(y»+y») (s»+s»)f(r») exp [.—a(r»'+r»') ], where f(r») is the exact deuteron wave function. This
corresponds to a D state of the system and it was thought it might represent an attraction between
the neutron and deuteron, i.e. that the energy of the system would be lower than the deuteron energy.
There would then exist a stable excited state of O'. If we let

012 (y13+y23)(sla+s23)f( 12) xp L n(r13+ 23)3
and (4'12+4'la+4'23) y

then ~=(+, ~+)/(+, +)=(+,»0 )/(+, 0 ),
' J. A. Wheeler, Phys. Rev, 52, 1083 (1937).
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where the potential energy term must be multiplied by 1 —g to take into account the spin exchanges.
Since $12 contains the deuteron wave function as a factor and since among the terms of H there are
—-'2(61+62)+ U(r») the energy expression can be written as

jv —jvD+Q~

where PD is the deuteron energy ( —4.3 mcs) and

(+ (H H12) 412) /(+ $12)

H12$12= U12412 2 exp [ 48("18'+ 23 )](&13+728)(sla+s23)(111+~2)f( 12)'

A negative value of E' would indicate an attraction between the deuteron and the neutron. There is no
analytical expression for f(r12), for the error function potential, and to facilitate calculation it was
taken to be exp ( —br122) where f1 was chosen so as to give the lowest energy for the deuteron energy.
g' was found to be positive and approached zero as a approached zero. This indicates that the
deuteron and neutron repel each other when they are in a D state. No similar calculations were made
for the I' or S states.

He4

The trial wave functions for the excited states of He4 are

N(+1++2 318 X4) exp [—
2 v(r12 +rla +r14 +rsa +r24 +r84 )] (nlP2 nsP1) (naP4 n4PB)

Q4
1

'P Q=N(xs —xs) exp [ Bv(r»'+—r—as'+r14'+rsa'+r24'+ra4')] nsns(nsP4 n4PB),

D tt'= N(x12$12+x13$18+x14$14+x23$28+x24$24+x84ya4) exp [——v(r» +r13 +r14 +rss +r24'+ra4') ]
Ay 2

—C12 y A3 4
—A4

'S Q=N[9 —(v+v1)(r» +r13 +r14"+rss +r24 +ra4 )]exp [——,'v(r12 +rla +r14 +r23 +r24 +r84 )]
1

0'1 2 ~2 1 O'3 4 ~4 3 ~

1,2 are neutrons and 3,4 are protons. As in the case of H' the v~ in the S wave function was chosen so
that exp [ ', v1(r» +r13 +f13 —+—rss +r24 +r34 )] gives the lowest energy for the ground state. The
energy expressions for exchange potentials are, except for the S state,

23~22 v'~2(4 v+4n —8 vg —5ng)'I' 2 = ii v-
(2v+n) 8~2

2"2A v'"(8 v+ Sn 12 vg ——7ng)
3I' 8= 11v—

(2 v+n) '"
2 1 A (1—g) v ~ (6v'+4nv+ n )'D Z=13v-

(2v+n)"'

The numerical results are given in Table II. A negative energy minimum for the S state is observed
which by interpolation is about —4.9 mc2 at o, =16. The state would be unstable with respect to
disintigration into either two deuterons, each with energy —,(2 &&4.3 —4.9) = 1.9 mc', or into He' and a
proton. The D and E' state energies lie fairly close together; neither of them have a negative energy
minimum. For reasons mentioned previously it was expected that the correct D state energy would lie
below that of the E state. Several attempts were made to improve the D state wave function. Calcu-



EXCITE D STATES OF NUCLEI 879

TABLE II. Energy values, in units of mc, of the excited states of He4 as a function of the width parameter v of the wave function.
It is clear how the energy is varying without Piling in the blank spaces.

a =10

0,5
1.0
1.5
2.0
2.5
3.0
4.0
5.0
6.0
7.0
8.0

10.0

p (1p)

1.8
2.0
2.5

44

19.0

1.3
1.0
0.8

1.6

14.2

E(iS)

—0.1

—6.2—6.5—5.8—0.8
6.9

2.2

1.5

1.1
1.6
3.5
6.4

a =20

3.0
4.6

6.9

9.5

16.1

49.4

2.7
3.8
4.5
5.1

12.3

p(is)

1.0

0.5

—2.8
303—39—3.8

—1.9
2.9

3.6
5.2

7.2

7.5
8.1

10.0

16.5

lations were made with

+(+12y12 P [ 244 12 ]+x18y18 XP [ 2I4 18 ]+3c14y14 P [ 2P 14 ]++23y28 P [ 2P 23 ]
+x24y24 exp [—2pr24'—]+x34y34 exp [—

—2,pr34'] exp [—
—2,v(r»'+r»'+f14'+f28'+f24'+f84')]

1
n] g

—n2 y n3 4
—n4

A minimum of —0.1 mc' was obtained with v =4 and p = —3 at n = 16.The energy surface plotted as a
function of v and p for n=16 is everywhere positive showing a shallow trough at p, —3 and becoming
0 for v =0 and @=0. A linear combination of two error functions

(3412y12++13y13++14y14++23y23+X24y24++34y34) (Cl exp [—
2 3'1(r12 +f18 +f14 +f23 +f24 +f34 )]

1
+C2 exp [—

2 (f312+2f13 +f14 +f28 +f24 +f84 )]) (42lp2 —422pl) (423p4 —424p8)
Q4

was also tried. The secular equation was solved and the result minimized numerically with respect to
v& and v2. A minimum of —1 mc' in the neighborhood of v& ——6 and v2

——2 was obtained for n = f0. For
n = 16 no negative energies were obtained.

From the results obtained here it appears probable that H' and He4 have no stable excited states. A
stable H' state would need to have an energy below —4.3 mc', while He' would need an energy lower
than —15.1 mc'. Although there are a great variety of ways of improving the wave functions it does
not seem likely that they could be improved sufficiently to give stable states'above the ground state.
A considerable increase in the range of forces would be required in order that any of these states
should be stable. The discrepancies which have appeared in the ground state calculations seem to
necessitate a shorter range of forces than has hitherto been accepted. This would make the states
still more unstable.

It should be mentioned that a free neutron or proton may interact with a deuteron in such a way
that for certain energies a large scattering cross section results. The interaction might in such a case
be described by a potential well surrounded by a potential barrier and the wave function of the
incident particle, neutron or proton, will be a plane wave with unit amplitude when it is far from the
deuteron. Resonance, i.e. a large scattering cross section, will occur if for a certain energy the portion
of the wave function inside the well is much larger than it is for neighboring energies. A similar
consideration applies to the four particle system. The wave functions which have been used in this
work are probably not suitable for the description of such virtual states and would probably give no
information concerning them. In this connection an error function and a simple exponential variation
wave function were used to calculate the energy of the deuteron in the singlet state. The curve for the
energy plotted as a function of the width parameter of the wave function showed no minimum and no
evidence of the deuteron virtual level. The writer wishes to express his thanks to Professor Breit and
to Professor signer for many helpful suggestions.


