
MAY 1S, 1938 PH YSI CAL REVIEW VOLUME S3

The Electrical Oscillations of a Prolate Spheroid. Paper I
LEIGH PAGE AND NORMAN I. ADAMSi JR.

Sloane Physics Laboratory, Yale University, New Haven, Connecticut

(Received March 29, 1938)

Differential equation. Solutions in spheroidal coordinates of the differential equation of the
electromagnetic field are obtained which are valid all the way from the surface of a prolate
spheroid of eccentricity unity to infinity. Free oscillations. The wave-length ) and logarithmic
decrement 8 of the fundamental free oscillations are computed for all eccentricities. Forced
oscillate'ons. The wave-length ), current I, and phase @ at resonance are computed for six
eccentricities near unity for an antenna stimulated by a uniform field varying sinusoidally
with the time. Three resonance curves are computed, the radiation resistance at resonance is
calculated for six eccentricities and off resonance for two. Expressions for the entire field at
all points are given, and reduced to explicit form for the radiation field. An expression is ob-
tained for the mean rate of radiation.

The object of this paper is to obtain solutions
of the differential equation of the electrical
oscillations of a prolate spheroid which will

describe the electromagnetic field with an accu-
racy greater than that of experimental measure-
ment all the way from the surface of the most
eccentric spheroidal conductor to infinity, and
will permit the discussion not only of the free
oscillations, but as well of the oscillations forced
by a uniform oscillating electric field, such as
that of an exciting electromagnetic wave of
length long compared with the shorter axis of
the spheroid. Although the methods developed
are applicable to all the harmonics, we shall
limit the analysis in this paper to the funda-
mental or first harmonic and, to the approxi-
mation to which they are needed for the solution
of the forced case, to the thir'd and fifth har-
monics. The spheroid will be supposed to be
perfectly conducting, the only resistance taken
into account being that of radiation. Heaviside-
Lorentz symmetrical units are used throughout
the analysis.

THE DIFFERENTIAL EQUATION

Let x, y, s be a right-handed set of rectangular
coordinates with the x axis along the long axis
of the prolate spheroid, and put p'—=y'+s'. We
introduce the prolate spheroidal coordinates
$, g, @ by the transformatiori

(&)

(2)

(3)

& =fthm

~ =fI (& —P) (v' —&) I
'*

tan P=s/y,

HE problem of the electrical oscillations of
a perfectly conducting prolate spheroid is

of great interest because, in the case where the
eccentricity is nearly equal to unity, it represents
to a high degree of precision the problem of the
straight wire antenna. The first attack on this
problem was made by Abraham, ' who succeeded
in finding the frequencies and decrements of the
free oscillations in the limiting case of eccentricity
unity, and in obtaining formulas which give
rough approximations to the frequencies and
decrements for eccentricities a little less than
unity. Macdonald' also has obtained an expres-
sion for the fundamental frequency of the free
oscillations of a straight antenna of negligible
diameter by treating it as the limiting case of a
cone of very small vertical angle. Obviously
this is a very poor physical approximation, and
therefore it is not surprising that Macdonald's
value of the frequency differs from Abraham' s
by over twenty percent, and from the experi-
mental value by nearly as much. Recently
Stratton' has investigated the solution of the
scalar wave equation in spheroidal coordinates,
but his differential equation is not the one to
which the problem here considered leads. Ap-
parently no one has made much progress in
solving the problem of the forced oscillations of a
prolate spheroid, which are, of course, of far
more practical importance than the free oscilla-
tions in the application to the antenna.

' Abraham, Ann. d. Physik 66, 435 (1898); 2, 32 (1900).' Macdonald, Electric 8'aves (Cambridge University
Press, 1902).' Stratton, Proc. Nat. Acad. Sci. 21, 51 and 316 (1935).
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where A satisfies the differential equation

(l P)g2+/gP+ (~2 1)ll3+/g~2

+33(4I' —p)& =0 (7)

Here ~ and p are respectively the permittivity
and permeability of the medium surrounding
the spheroid, and

0.8

0.6

$0~ 10A

(=o

FIG. 1. Spheroidal coordinates.

e =—(40/v)f =2vrf/X,

where v—=c/(3I4)'* is the normal wave velocity in

the medium, c represents the velocity of light
in vacuum, and ) is the wave-length.

The variables are separable in (7), and if we

put A(p, 4I) =X($) Y(4I) we obtain the two ordi-

nary differential equations

(1 p) d2X/d)2+ (n 32p) g —0 (9)

(q3 —1)d' Y/dvp+ ( n+—3'3I3) Y= 0, (10)

where 0. is the constant of separation.

SOLUTION OF THE EQUATION IN

First we solve (9). Putting

&(5) = (1—p) 'u(k)

we find

du u
(1—P)———+nu = 43Pu (12)

1 —P

from which we infer that the characteristic
solutions u~, u2, u~, form an orthogonal
set of functions. We express the characteristfc
values and the characteristic functions as power
series in e', vis.

nl nl0+nl13 + l2En. +nl33 +nl46 + '

and

ul($) ulO(f) +ul1($) 3 +ul2($) 3 + l3u($) 3 + ' ' '
~

1 1 BA

&x& ~f I(1—P)(n' —P)}' ~v
(4) Evidently

where —1 &~$ &&1, 1 &~4I & n, 0 & @& 24r. The co-
ordinate surfaces &=const. constitute a set of
confocal hyperboloids of revolution about the
x axis, and the coordinate surfaces g=const.
are a set of confocal prolate spheroids of eccen-
tricity 1/4I. The constant f represents the semi-

interfocal distance, which is approached by the
semi-major axis u of the prolate spheroids as g
approaches unity. The unit vectors (&, n&, Il&, in

the directions of increasing (, lI, p, respectively,
constitute a right-handed set in the order
named. The radius vector r, whose square is
r3=f3(q3+ p —1), becomes effectively equal to flI
at great distances from the origin 0, and the
cosine of the angle 0 which the radius vector
makes with the x axis approaches g when r
becomes very great. A section through the x axis
of the coordinate surfaces is shown in I ig. 1.

We are interested in fields whose time de-

pendence is specified by the factor exp (—34v/).

Evidently the only nonvanishing field compo-
nents are E~, E„, H@. If we put A —=pH&, it has
been shown by Abraham' that the field equations
give

(Il) * 1 BA

4 Z) ef }(lI3 —1)(lI3 —P) } ' 8$

(6)

nl3 ——l(3+1), )=1, 2, 3

and ul3 is the associa. ted Legendrian polynomial

»3= &ll(k) = (1 —P) '(d/4')Pl(k)

where 1=1 represents the fundamental or first
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harmonic, l=2 the second harmonic, l=3 the
third harmonic, and so forth.

By the usual perturbation methods we find
for the fundamental

1 4
Al 2+ 6 C

5 5'7

+ e' — e'+ (13)
3 55 7 5'7'11

and for the fifth harmonic

ng 30+—— e'+
3 13

5
u5 =Psi(k)+ P»(t)

33 11

15
— Pv~(t) "+ (18)

11 ~ 132

» =P»(5) — P3i(k) e'
3 52

+ —P (8)+ P (5) "
32, 54 32. 52, 72

31

+»i(() e'+
34 5 7'11 13

For the third harmonic we get

7 152
0.3 = 12+ —&2+ + ~ ~ ~

3 5 34 ~ 5'11

u. =Pgg(g) +
6 2

P (5) ——P (~) e'
5'7 3'7

4
Pgg(g) —— P„(P)

547 3'5 713

P»(t) e'+, (16)3'7 11'13

4
Psi(k) + P"~(k)

3 5'7'11 3 54 7'13

SOLUTION OF THE EQUATION IN g FOR LARGE

VALUEs oF THE VARIABLE

Since we are interested in a diverging wave
system the boundary condition at infinity de-
mands a solution of (10) of the form

(19)

where v(v) is a series in descending powers of q.
If we put s=i jert—the differential equation for v

becomes

d v dv u —e
s'—+2(s+1)—— v =0. (20)

ds 1+e~s~
4

We expand the denominator of the last term by
the binomial theorem and look for a solution
of the form

v = 1+ass+ ams'+a, s'+
in which we use the characteristic value a ~

already obtained for the particular harmonic
under consideration.

After some labor we obtain for the funda-
mental the two way infinite series

I'g(rt) =e "& 1

i 2
+

5
~4+ ~6

5'7 3 5'7
62

e8+. . .
5' 7' 11.

3943
4+ ~6+. . .

5'7 3 5'7 3 5'7'11
34,588. 1 i 94 2014 1

+—— 1 — e'+ e'+ e'+
5 ~ 5'7 3'54 7 3 5'73 11 3

+
5 7

289 75,914
1 — c'+ e4+3' 5' 3' 5' 7' 11

(Formula continued on next Page).
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3 i 46 761 914
+—— 1 — e'+ g4+ o ~ ~

5 7 e 3 52 3'54 7'11
371

+- 1— ~2+ .
3 7 35'11

1
+

3'7

182
)2+. . .

5' 11

1
+ —1 + e ~ ~

3 11

1 i
— 1+

3'11

1
~ ~ ~

~9
(21)

The calculation of this series gives us an
absolute check on the correctness of the previ-
ously computed characteristic value (13), for
the successive terms in the series for ni are of
just the magnitude necessary to cause each
alternate coefficient of s to start with a power of

two greater than the previous coefficient.
Shortly we shall obtain an absolute check on the
correctness of every coefficient in (21).

Similarly, we obtain for the third harmonic

and for the fifth harmonic

Z 1 1
Y;(g) =e "& 1+15-{1+ }——105—{1+

1 1
-420—{1+ }—+945—{1+

~4 ~4

1
+945—{1+ }—+ (23)

~5 ~5

+6— 1— 382 1
~2+ 4+

3'5 3'5'11
1—15—1—

$2

22 398 1
~2+ ~4+. . .

32. 52 35.54

i 8 3242 1—15—1 ——&2+ &4+
5' 3'54 11

to more than the needed degree of approximation.
While (21) serves for the calculaton of the

frequency and decrement of the fundamental
free oscillation for eccentricities less than 0.8,
the series converge altogether too slowly to be
useful for the important cases of eccentricities
nearly equal to unity. To treat the latter we
must obtain solutions of (10) in the neighborhood
of the origin (q = 1).

SOLUTION OF THE EQUATION IN 5 FOR SMALL

VALUES OF THE VARIABLE
1—10—

z—10—

1667
+ ~ ~ ~

2 335211

2521
Q2 +

33 52 11

If we put t=—p2 —1. the differential equation
(10) becomes

4t (1+t)d' Y/dt'+ 2td Y/dt

+ {e'(1+t) n} Y=0—. (24)
75 1

+ ~ ~ ~

11

75 i
1+

11

1
+ ~ ~ ~

7 (22)

As this equation is of the second order the
complete solution is a linear combination of two
independent primitives. We look, therefore, for
series solutions in powers of e2 the coefficients
of which are polynomials in positive powers of t.
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In carrying through this process each term in
A& and B& was calculated by comparing at least
tao different groups of terms in the two solutions,
and every term in each solution was used at
least once. Therefore the calculation of A~ and
Bj constituted an absolute check on the accuracy
of every numerical coefficient in (21) on the
one hand and in (25) and (26) on the other.

Similarly in the case of the third harmonic
(«e=n6) we find

Denoting the two independent primitives by U
and V, we find for the fundamental (a=«ei),

1
t'

~

e4

2 57)
1 ( 1

tee& —
~

— t-'

25 (25'7

+ (
—t'+-

(3 557 223253 7

t (
«6+.

24 36 5 7 ) (25)

5 t 1 5
U, =t+ t6—

2' (3 5 2'3' 2
(31)(1+t) l —1 - t'4 1 q

Vi ——Ui log +(1+t)l 2+i t ie-'——
(1+t)'*+1 E5 5 )

(1+t) *' —1 1 5
V, = U, log +(1+t)-'*-+-t

(1+t)'+1 3 2
284 151 1

1~ —— t+ — t' ~«4

(5'7 5'7 2'5 7 ) p2 11 5
te (e'+(3'5 2 3'5 2'3' )

(32)667
t

8632 115,646
+i —— t+ t'

E3 5'7 3'5'7 34 5'7
1

2 3 57) (33)Y6=A6U6+B6V6

and the solution satisfying the boundary condi-

26
tion at infinity is

where
The most general solution of (10) is, therefore,

~l ~ 1 Ul++1 Ul (27) A3 —— -- -e4a3, 83 ———
3527

1575 i
b6, (3—4)

23 Q3

where
2 i ———-', 6'a„Bi——

4 (6/6) bi, (28)

ai = 1 — «'+ e'—
2 5' 2'5'7'

26,021
«6+. . .

24, 34.56, 72

in the case of the fundamental, where the
constants A& and B& may be functions of the
parameter e. Now, in order to satisfy the
boundary condition at infinity, (27) must be
identical with (21). Therefore we expand the
logarithm in a power series and replace t by
q2 —1 in the former, and expand the exponential
in a power series in the latter, and compare
coef6cients. In this way we find that

446=1+' ' '

37
b6 =1— e'—+

2 3'5'

In the case of the fifth harmonic (n= «66)

7 21
U6 =t+ t'+ t'+— —

2 23

(1+t) ' —1
U5 ——U5 log-

(1+t)-:+1
2 7 21

+(1+t)'*+-t+—t'+ .
35 2 2'

(35)

(37)

(38)

19
bj—=1—

2 52

2609 32,593
: «4+ «6+ . .

23.54. 72 24. 34.55. 72

= 1 —0.380,000&2 —0.010,649&4

+0.000,164e'+ . (30)

= 1 —0.020,000e'+ 0.000, 763e'

—0.000,026e'+, (29)

where
~5 =~ 5 U5+&5 U5, (39)

A5 =negligible, 85 ——

»—= 1+

3,274425 i
be, (40)—

25 ~5

(41)

and the solution satisfying the boundary con-
dition at infinity is
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FUNDAMENTAL FREE OscILLATIoNs

The boundary condition at the surface of the
conductor for free oscillation is that E~ ——0 for
all &'s. Therefore it follows from (4) that

4a
hQ

l5-

d I'/dg=0, q = go, (42)

where 1/go is the eccentricity of the conducting
surface.

For large values of go we use (21) for the
fundamental. Performing the differentiation and
solving for fee/v by successive approximations
we And

l.0 '

0

3.0-

2.0-

0.5
fa)

53 1 3764 1

875 gp' 65,625 yo'

8,242,450
+ ~ ~ ~

176,859,375 qp'

(3)* 4 1 971 1
+~ 1+——+

2u 15 qp' 7875 gp4

40,412 1 203,351,122
+ - —+ + ~ ~ ~

590,625 qp' 4,775,203,125 qp'

1 —0.0606 —0.0573—
2G gp gp

l;0-

0
0.5

(bj

l

l.o

I'rG. 2. (a) %ave-length ) and (b) logarithmic decrement
6 of fundamental free oscillation of spheroid of eccentricity
1/qp.

If we write
ice/v = y+i/, (44)

the ratio of the half-wave-length 'A/2 to the
ma3or axis 2a of the spheroid is

, .(3)'—0.0466—+ . +i 1+0.2667—'

go 2c r/p

and the logarithmic decrement 6 is

8 = 2 ~y/P. (46)

Unfortunately the series (43) converge too
slowly to permit accurate calculations for eccen-
tricities much, greater than 0.7. In Table I the
quantities X/4a and 8 are given for eccentricities
from 0 to 0.8. The calculated values are plotted
on the graphs of Fig. 2, the portions of the
curves corresponding to values of the eccentricity
near to unity being plotted from the data in

Table II, which will be computed later. We
note that both the wave-length and the decre-
ment decrease with increasing eccentricity.

Since (21) does not converge rapidly enough
to describe the fundamental free oscillations for
eccentricities close to unity, we must resort to
the solution (27). We shall consider only eccen-
tricities so close to unity that to ——gp' —1. and its
positive powers are negligible. If then we put

1
+0.1233—+0.0684—

Qp 'go

1
+0.0426—+, (43)

Qp

where u is the semi-major axis of the spheroid.

1/gp

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1.814
1.809
1.794
1.770
1.734
1.686
1.625
1.549
1.455

3.628
3.618
3.588
3.537
3.461
3.356
3.214
3.024
2.772

TABLE I. trave-lengths and logarithmic decrements for
fnndamental free oscillation of spheroids of

eccentricities between 0 and O.h'.

go+1
l —= log —2

p 1
(47)
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0.25
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length is exactly equal to the major axis of the
spheroid. These values of both wave-length and
decrement agree with those obtained by Abra-
ham for the limiting case.

To discuss the remaining cases we multiply
(49) by m&/uq. Combining the series represented
by c&, b& and m&, we get the formula

1 —{0.360,000+0.200,000l I
e'

—{0.018,612 —0.082,286l I
e'

+ {0.000,093—0.000,481l }e'
= 0.444,444ile'. (51)

We know that e cannot differ greatly from
m/2 over the range considered. Hence we put

0
0 0.050

,(bj
O. I 00

b
a

and write

FIG. 3. (a) Wave-length 'A and (b) logarithmic decrement
8 of fundamental free oscillation of spheroid of major axis
a and minor axis b.

e = (n./2) (1 g —ih)— (52)

A few trials indicate that an accuracy of one-
tenth of one percent or better in the wave-length
and better than one percent in the decrement is
obtained if we retain terms in g, h, gh, h' and
neglect all higher powers. Then (51) leads to
the simultaneous equations

9
ml = 1——E21+ 641—

5 5'7
e'l+

34 5'7
(2.2214 —0.9735l)g+ (1.5472 —2.4039l) h'

=5.1677l(h —2gh), (53)

= 1 —0.200,000cg'+0.010,286&4(

—0.000,500''l+ ~ (48)

the boundary condition (42) gives

b, = (4/9)se'la, /m, . (49)

~ = 1.5708 (50)

correct to five significant figures. This is exactly
7r/2. Hence, as a=f in this case, the half-wave-

We shall compute the wave-length and decre-
ment for six values of / corresponding to values
of ratios of the minor axis 2b to the major axis
2a of the spheroid extending from 0 to about
1/74.

First consider the limiting case (l =0) of
eccentricity unity, the ratio of b to a being zero.
The boundary condition (49) reduces to b& 0. ——
Therefore e is entirely real and the decrement
is zero. This does not mean that no energy is
radiated from the spheroid, but rather that the
energy stored in the electromagnetic field is
infinite compared with the energy radiated
during a period of oscillation. Solving for e

we find

(2.2214 —0.9735l) h —(3 0944 —4 8078l) gh
= 1.7226l(1 —3g —3h') (54)

which we may solve for g and h for any given
value of / in the range considered. In this range
it is unnecessary to distinguish between a and f

In Table II are entered the results of the
computation. The second column contains the
ratio of b to a for the assumed value of /. These
results are plotted in Fig. 3.

FORCED OSCILLATIONS

0.000
0.020
0.050
0.080
0.100
0.125

b/a

0.00
1 02 (10)—n
3.34 (10) '
1.42 (10) 3

4.96 (10}-3
1.35 (10)-2

X/4a

1.000
1.001
1.004
1.009
1.015
1.023

0.000
0.098
0.247
0.396
0.494
0.613

We now turn our attention to oscillations
forced by an electric held A=Roe '"' parallel to
the x axis. As the assumption of a uniform field

TABLE II. Wave-lengths and logarithmic decrements for
fundamental free oscillation of spheroids of

eccentricities near to unity.
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over the region occupied by the conducting
spheroid is a valid approximation only when the
wave-length is long compared with the shorter
axis of the spheroid, we are limited in our
discussion of oscillations in the neighborhood of
resonance to eccentricities close to unity. This,
however, is the range of most interest.

If y is the angle which the unit vector
(Fig. 1) makes with the x axis, we find

p
cos y=q{

Eg' —P)
(55)

With the use of (4) for E« this condition becomes

(BA/fly) p i(lc/p—)—'«u(1 P)Epe—' ' (57)

where we have replaced fop by its equal a.
Evidently A must be a linear combination of

the solutions representing the odd harmonics,
that is,

Therefore the boundary condition at the surface
of the conductor is

t'1 —&'1 l

E,+E&,{
=-

I
=0.

(pop —tp)

To save writing we shall put

fp = 2 lr
—
C(l«/u) ~aEp. (62)

2
~4

54 7

8 Yl(~o)
+ «'+ ul(0)

3 5'7 (d Yl/dg) o

+ «'1—
3 52

2 Yp(no)
«'+ u p(0)

3 5' (d Yp/deal) p

1 Yp(no)
+ —«'{1+ «up(0)3457 (d Y«/dq) p

where

+ e '"' (63)

733
ul(0) = 1+ «' — «4+ «'+2'5'7' 2 '3 '5 7 (64)

Then the current Ip at the center ()=0) of the
antenna is

Ip 2lrc(A——))=p,

A = {Clu, (k) Yl(n) +Coup(5) Yp(n)

+C,u. (g) Y.(&)+" «(1-t ):e-'- (58)

3
up(0) = —— 1—

2

13
~2+ ~ + ~

2 ~ 33 ~ 52
(65)

where ul(P), up(g), u«(t) are given by (14), (16),
(18), respectively, and Yl(q), Yp(g), Yp(g) by
(27), (33), (39).

Determining the coefficients Ci, C3, C5 from
the boundary condition (57) we have

15
up(0) =—{1+

23
(66)

from (14), (16) and (18). We note that ul(0) is
the reciprocal of the series al given by (29).

From (27) we find

c,=z{ —
I «E, 1—

Eu& 5'7
3i

Yl(710) cli
2

(67)

+ «'+
3 5'7

d Yl)
(59)

L. dg)o

(d Yl) 3 i blllll 2

{
I, dg)p 2«l 3

(68)

c.=a{ —
I «E.

Eu)
Q2

3 5'

«4+. . .
32.54

t'd Ypi
(60)

&de o

73389
c,—=1+ «' — «4+

2 5' 2'5'7' 2'3 5'7'

to a sufficient degree of approximation for
eccentricities so near to unity as those under
consideration, where

1
co i

{
—

I
«——Ep «4+

Ey) 3'5 7

t'd Y«)
{
—

I (61)
&dye,

'
=ul(0) = 1+0.020,000«'

—0.000,363«4+0.000,004«'+, (69)
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and from (33)

525 i
Fg(qp) = — —ca,

2 6

* (70)

where

23
c3 =—1+ (2+ .

2 33.52
(72)

(dF3q 1575 i bam3 8 —.4, (71)
/de)0 22 q3 $ 3 52 7

(les gcP) '
2 P2

(4/e'ag/9)' +-(bgmg)'

Q2

X 1 — b (1+ii) (78)
150

to a sufficient degree of approximation. To find
the frequency of resonance we must equate to
zero the derivative of this with respect to e, or,
more conveniently, with respect to e'. This
leads to the formula

2 1
ma

—= 1 ——/+ e'f+
3 235 (73)

1 —0.005603
b, =O.1475OP, 6

(1—0.438371)'
(79)

As the term in the fifth harmonic is quite
negligible we shall not trouble to write it down.

The second term in (71) is negligible compared
with the first, and we need retain only the first
term in the series for b3 and c3 and the first two
terms in the series for m3. Let us put

sg
—= 1 — &4+ )6+. . .

547 3 5'7
= 1 —0.000,457&4+0.000,024c'+ (74)

s3= 1 — e2+
3.52

(75)

In the series s3 we need retain only the first
term. Thus we obtain for the current Io at the
center of the antenna

The third harmonic contributes only a very
small term to the imaginary part of the current.

The series a&, b&, m& and s& are specified by
(29), (30), (48) and (74), respectively. The
series for cP, obtained by squaring (69), is

cP = 1+0.040,000&' —0.000,327c'
—0.000,007 e'+ ('77)

The square of the current amplitude Ioo at
the center is

(lesgcP) (4le'ag/9)
Io= k

(4le'ag/9)'+ (bgmg)'

(leslcl ) (b1m 1) l6
(1+-,'l) e-'"'. (76)

(4le'a~/9)'+(b&m&)' 300

TABLE III. TVave-lengths and currents at resonance.

b/a X/4a

0.000 0.00 1.0000
0.020 1.02 (10) " 1.0004
0.050 3.34 {10) ' 1.0027
0.080 1.42 (10) ' 1.007
0.100 4.96 (10) ' 1.011
0.125 1.35 (10) ' 1.017

pa/kg- &~ &

1.045
1.045 —0.028i
1.045 —0.071i
1.045 —0.113i
1.045 —0.141i
1.046 —0.175i

I00/k

1.045 0'.0
1.045 1'.5
1.047 3 '.9
1.050 6'.2
1.055 7'.7
1.061 9'.5

where, in the very small right-hand member,
we have replaced e by ~/2 in the numerator and
denominator of the fractional factor. The justi-
fication for this lies in the fact that the values
of e computed from (79) are found to differ very
little from x/2 in the range under consideration.

We have computed the wave-length ) and
the current Io at resonance, and also the current
amplitude Ioo and the angle @ by which the
current leads the electromotive force, for six
values of l. These are contained in Table III
and are plotted in Fig. 4. In the second column
of the table is given the ratio of the minor to
the major axis of the spheroid corresponding to
the assumed value of /.

It will be noted that the real part of the
current is substantially the same for all values
of / considered, and that the current leads the
electromotive force at resonance for all values
of l greater than zero by an angle qb which
increases with increasing /. For I,=0 the half-
wave-length is exactly equal to the major axis of
the spheroid as in the case of free oscillation,
but for values of l greater than zero the resonant
wave-length is slightly shorter than the wave-
length of free oscillation. Experiments on an-
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0
0

0.050
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005'0
(b)

0.050
(cj

O.I00

O.I 00

O.I 00

b
a

depicted in Fi'g. 6. It will be noted that the
resonance is sharper and that the phase shift
toward &~/2 as we depart from resonance is
more rapid the smaller l.

The distribution of current along the length
of a thin antenna at resonance has been meas-
ured. Since P=x/frto x/a——, the quantity It/Io
represents the ratio of the current, at a point
whose distance from' the center of the antenna
is ga, to the current at the center. The experi-
mental measurements indicate that, at resonance,

It/Io cos -', ~P——

within the experimental error.
In developing an expression for this ratio from

our theory, we obtain sufficient accuracy if we
neglect the third and higher harmonics. Then
we get the formula

It e' ( 4 8—=(1—P) 1 —
{ 1 — e'+ e4 }P

Io 255 5'7 3547 )
FIG. 4. (a) Wave-length X, (b} current amplitude I00 and

(c) lead g of current at resonance.
e4 /' 8

+2'5 7 0 3'5' ) 8+ (81)
24 3'5 7

tennas in the form of right circular cylinders
indicate that the half-wave-length at resonance
is from five to six percent longer than the
antenna. 4 This is in satisfactory qualitative
agreement with our calculated ratios of X/2 to
2a for the prolate spheroid, for the diameter of
a prolate spheroid falls to half of its maximum
value at a distance x=0.866a from the center
whatever the eccentricity may be, and conse-
quently the prolate spheroid which best fits a
right circular cylinder is one which is slightly
wider at the center and somewhat longer, ' as
illustrated in Fig. 5. We may call this prolate
spheroid the eguivatent spheroid for the given
cylinder. Nevertheless it is very desirable that
experimental measurements of the ratio X/4a
should be made for actual spheroids in order to
corroborate the theory.

We have computed resonance curves for l =0.02,
0.05 and 0.10. The data for these are given in
Tables IV to VI, where e„represents the value of
E. at resonance. The current amplitude Ipp at the
center of the antenna and the phase p by which
the current leads the electromotive force are

4 C. R. Englund, Bell System Tech. J. 7, 404 (1928).' Rayleigh, Phil. Mag. 8, 105 (1904).

FIG. 5. Prolate spheroid equivalent to cylinder.

for resonance with 1=0. Then

p = e/1. 5708, (82)

and (81) becomes

I~/Io (1—p) [1—0.246——74p' {1 —0.05640p'

+0.00371p4}@+0.02174p'{ 1 —0.08773p'}$4

—0.00099p'p'+ .]. (83)

TABLE IV. Current for 1=0.0Z, b/a=1. 0Z (10) ",
e„=1.5701.

0.875
0.950
0.975
0.990
1.000
1.010
1.025
1.050
1.125

0.011—0.120i
0.081 —.0.292i
0.275 —0.474i
0.726 —0.495i
1.045 —0.028i
0.757+0;453i
0.313+0.464i
0.107+0.302i
0.022+0.137i

Iop/k

0.120
0.303
0.548
0.879
1.045
0.882
0.560
0.320
0.139

84'.8
74 .6
59'.9
34'.3
1'.5—30'.9—56'.0—70 .5—80 .7

Let p be the ratio of the frequency for which
it is desired to evaluate (81) to the frequency
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When p = 1 this reduces to

I~/'Io = (1 —P) $1 —0.2337@+0.0198/4

—0.0010/+ ] (84)

which is exactly cos ~g/2 to the fourth decimal
place. When l=o it should be remembered that
the term in the third harmonic disappears from
(76) and therefore, in that case, we make no
error in neglecting it.

In Table VII are listed the values of Ig/Ip
over the range of $ for various values of p near
to resonance.

Next we shall calculate the rate of absorption
of energy and the radiation resistance of the
antenna. Since the element of distance ds at the
surface of the spheroid in the direction of
increasing $ is

'

I

0.85 0.90 0.95

I,.
,

k

l.05

l.05

I.IO

l.l0 I.I5 g
&r

(b)
(85)

dV (l6$1cl ) (4lE Q 1/9) a
= 2kEp

(86) ( dt )„(4)'a, /9)'+(b, m.,)' c,d8=Eoe '"' cos yds=Eoe '"'ad&

FIG. 6. (a) Current amplitude I00 and (b) lead @ of
current plotted against ratio e/e„of frequency to frequency
at resonance.

the electromotive force dg corresponding to the
increment d f is

from (55).
At any $ the ratio of the part I~' of the

current in phase with the electromotive force to
the part Ip' in phase with the electromotive force
at the center of the antenna is

Now

(1—P) iu)(P)d(. (88)

Ip ug(0)
(87)

TABLE V. Current for 1=0.05, b/a =3.34 (10)
~,= 1.5666.

from (58).
Hence we obtain from (76) for the mean rate

of absorption of energy.

from (14). Consequently, from the relation
a)cq ——1 and from (62),

d U 64 (~) i a'f' a)'
=—~'f —

/
can

27 (p) X' s,
(les)c)2)'

X (90)
(4le'ag/9)'+ (b)m))'

10/ke ' I00/k

TABLE VI. Current for 1=0.10, b/a = 4.96 (10)
e„=1.5539.

0.850
0.900
0.950
0.975
1.000
1.025
1.050
1.100
1.150

0.042 —0.238i
0.104—0.347i
0.352 —0.529i
0.707 —0.525i
1.045 —0.071i
0.783+0.418i
0.450+0.482i
0.182+0.360i
0.100+0.270i

0.242
0.363
0.635
0.880
1.047
0.888
0.660
0.403
0.288

80'.0
73'.3
56'.4
36'.6
3 9—28'.1—46 .9—63 .2—69'.7

0.850
0.900
0.950
1.000
1.050
1.100
1.150

ID/ke '~&

0.144—0.428i
0.306—0.546i
0.669—0.575i
1.045 —0.141i
0.822+0.360i .
0.504+0.450i
0.326+0.410i

I00/k

0.451
0.625
0.882
1.055
0.897
0.676
0.524

71 5
60'.8
40'.7
7'.7—23'.6—41'.8—51'.5
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in terms of the amplitude Eo of the exciting of C& by the relation
field, or

Ca = —(2b)/3' 5' 7) c4Cg (94)

(
dU 16 (p)

'
Ipp' f' a)'

7r

A~ 27 ( K) c )P S)

to a quite sufficient degree of accuracy, we find
that

ik 4lc'a)/9 —ib)m)
1+- b)(1+-,'I) (91) A = — le's)

150 3)rc (4/e'a)/9)'+ (b)m))'

32 fy') 'f , /)) e

R =—m.
}

—
}
——1+ b&(1+-',I)

27 E~) cX' s) 150
(92)

In practical units, the radiation resistance R„
in ohms is

in terms of the amplitude Ioo of the current at
the center of the antenna.

The radiation resistance R, defined as the
quotient of the mean rate of absorption of
energy by 2Ioo', is

2b1
~)(l) I')(~) — "»(5) I'3(~) (1—P):s-'"'

3'54 7 (95)

At a distance from the nearest point on the
antenna not less than the semi-interfocal distance
f the field components are specified to better
than one percent by using the functions (21)
and (22) for F&())) and Y'3())), respectively,
although very close to the antenna it is necessary
to use (27) and (33).

The components of the radiation field are
2 4

R„=87.670} "}
}

&K) 07) s,

Q2

(p, p ~ /e's1 1

3~c 0 w) f (vP —P)*

1+ b)(1+-',I), (93)
150

provided we replace f by a. In Table VIII is

given the radiation resistance at resonance for
the six values of / considered before.

In Table IX we give the quantity (a///) ~R„ for
various fractions e/e, of the frequency at reso-
nance, both for /=0. 050 and for /=0. 100. The
results are plotted in Fig. 7.

Finally we turn our attention to the electro-
magnetic field of the oscillating antenna. The
three nonvanishing field components E~, E„and
H~ are given in terms of A and its derivatives
by (4), (5) and (6), respectively. Since the
coefficient C3 in (58) may be expressed in terms

X
{(4lc'//)/9)'+ (b)m)) '

}l

2bie4
($) gg (P) c4(eq —a/+w/2 y) (96)—

3'54 7

/e2s1

X
{(4/e'/))/9)'+ (b)m))'} i

2b)e'
t~)(])— ~3(p) c'(~~ ~/+~/2 v) (97)—

3'54 7

b]52]
TABLE VII. Current distribution Ip/Io. where tan y-=

4lc'a, /9
(98)

0.90 0.95 1.00 1.05 1.10 TABLE VIII. Radiation resistance at resonance.

~0.1
~0.2
&0.3
~0.4
&0.5
&0.6
&0.7
&0.8
&0.9

0.988
0.953
0.894
0.815
0.715
0,597
0.464
0.318
0.162

0.988
0.952
0.893
0.812
0.711
0,592
0.459
0.313
0.159

0.9877
0.9511
0.8910
0.8090
0.'?071
0.5878
0.4540
0.3090
0.1564

0.987
0,950
0.889
0.806
0.703
0.583
0.449
0.304
0.153

0.987
0.949
0.887
0.803
0.699
0.578
0.443
0.300
0.150

0.000
0.020
0.050
0.080
0.100
0.125

(/c/y) &R&(ohms)

73.1
73.0
72.8
72.3
71.8
71.1
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For small I, it follows that y is nearly zero at
resonance, nearly ~/2 below resonance, and
nearly —m/2 above resonance.

As the Poynting Aux is —cE~II~ in the
direction of increasing q and the element of area
of a spheroidal surface is 27rf'I (g' —P) (q' —1) I id/,
the mean rate of radiation of energy is

(
dR 16 )~i: a'f'

=—~'I —
i c+o

dt Av 9 (p) X'

(losgcP)' 1

X (~)3'«, (99)
(4lo'ai/9)'+ (birn&)'

I

085
I

0.90 0.95 l.00
I

l.05
I

l.l0

C

I.I5 ~r

FIG. 7. Radiation resistance R„ in ohms plotted against
ratio

ajar„of

frequency to frequency at resonance.

(
dR 64 (~i a'f' ai'

=—~'i —
)

cEo'
dt A~ 27 (p) X sy1

Jl L~ ($)j'4
—1

(losgcP)'
X (101)

(4lo'ag/9)'+ (b,mg)'4 2 8
1+ o4- o'+ =, (100)

3 547 3567 3S1 in agreement with (90).
In a future communication we hope to discuss

the field in more detail.
TABLE IX. Radiation resistance (ff/IJ) I.„ in ohms for

frequencies near resonance.

provided we make use of the relation a&c& ——1 where s& is the series defined by (74). Therefore
and neglect, as heretofore, the square of the
third harmonic. From (14) we find

0.050 55.3 61.0 66.9 72.8
0.100 54.5 60.2 66.0 71.8

78.7 84.6 90.6
77.7 83.6 89.4

0.850 0.900 0.950 1.000 1.050 1.100 1.150
¹teadded in proof. Since submitting this article for

publication there has come to the attention of the authors
a recent paper by L. V. King /Trans. Roy. Soc. London,
236, 381 (1937)j in which the radiation from a cylindrical
antenna is investigated by a very diferent method from
that pursued here.


