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The forces between heavy elementary particles, i.e., neutrons and protons, are investigated
‘on the hypothesis that they emit electron-positron pairs. It is also assumed that the interaction
of the heavy particles with the field of light particles is large compared with the kinetic energy
of the light particles. It is shown that potentials result which are of the same order of mag-
nitude as the kinetic energy of the light particles. When many heavy particles interact the
total potential energy is found to be proportional to the number of heavy particles.

INTRODUCTION

HE mass defect of most atomic nuclei is
roughly proportional to the number of
heavy elementary particles contained in the
nucleus. This shows that the binding energy per
elementary particle is, in first approximation,
independent of the number of particles consti-
tuting the nucleus.

Since the heavy particles obey the Fermi-Dirac
statistics the average kinetic energy of a heavy
particle will vary with the two-thirds power of
the density whenever the density is sufficiently
high and the velocities of the heavy particles are
small compared with the velocity of light. Thus,
under these conditions, the kinetic energy in a
given volume element of a heavy nucleus will be
proportional to the five-thirds power of the
density. If, on the other hand, the total potential
energy is a sum of potential energies acting
between pairs of heavy particles and if the range
of the potential energy is small compared with
the nuclear radius the total potential energy in a
given volume within the nucleus will be pro-
portional to the square of the density. If attrac-
tion is assumed between all heavy particles, the
binding energy would then increase with in-
creasing density and stability could not be
reached before the nuclear radius becomes as
small as the range of the attractive forces. In this
case, however, the mass defect for heavy nuclei
would increase more rapidly than the number of
heavy particles contained in the nucleus.?

In order to escape this difficulty Heisenberg?
and Majorana have assumed an interaction

1 These arguments were first put forward by Heisenberg
at the Solvay Congress, 1933.
2 W. Heisenberg, “Rapports de Congres Solvay, 1933.”

between heavy particles which is of the exchange
type. For such interactions it follows that a
neutron or proton can only interact with a
limited number of other neutrons or protons.
The following mechanism for this exchange
interaction has been proposed # a neutron emits
an electron and a neutrino and turns into a
proton; a proton absorbs the emitted pair and
becomes a neutron. Thus an exchange of charge
between a neutron and proton takes place.

This picture, however, cannot explain in a
simple way why the forces between two protons
(between which no such simple exchange of
charge can take place) is of the same order of
magnitude as the force between a neutron and
proton.*  Moreover, the probability of electron-
neutrino pair emission can be estimated by
extrapolating the probabilities of beta-decay
processes. Performing this extrapolation either in
accordance with the theory proposed by Fermi®
or with that proposed by Uhlenbeck and
Konopinski” one obtains a too small value for the
interaction between heavy particles.

Gamow and Teller® and Wentzel® have there-
fore suggested that an emission and reabsorption
of electron-positron pairs should be responsible
for the nuclear forces. The equality of proton-
proton and proton-neutron forces is then more
easily understood and also sufficient freedom is
obtained to explain the magnitude of the nuclear

3 D. Iwanenko and I. Tamm, Nature 133, 981 (1934).

¢ M. A. Tuve, L. R. Hafstad and N. P. Heydenburg,
Phys. Rev. 50, 806 (1936).

5 G. Breit, E. Condon and R. Present, Phys. Rev. 50,
825 (1936).

6 E. Fermi, Zeits. {. Physik 88, 161 (1934).

(1;31§)._ Konopinski and G. Uhlenbeck, Phys. Rev. 48, 7

8 G. Gamow and E. Teller, Phys. Rev. 51, 289 (1937).
9 G. Wentzel, Helv. Phys. Acta 10, 107 (1936).
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forces. Since, however, according to this hy-
pothesis the charge is not exchanged and since a
study of the neutron-proton interaction forces
has eliminated the possibility that the. major
part of the neutron-proton interaction!® is due
to spin exchange we must conclude that if
nuclear forces are due to electron-positron pair
emission the main part of the forces between
heavy elementary particles is not of the exchange
type.'* The purpose of the present paper is to
show that the interaction between heavy parti-
cles resulting from the pair-emission hypothesis
is compatible with the proportionality between
mass defect and number. of heavy particles.

In order to do this it will be necessary to drop
the assumption that the total potential energy
within the nucleus can be represented as a sum of
interactions between pairs of heavy particles and
that the potential energy is proportional to the
square of their number. Indeed, this is correct
‘only if the virtual states into which the light
particles may be emitted are occupied only with a
very small probability. If, however, the term in
the Hamiltonian, H’, which gives rise to the
creation and annihilation of the light particles is
large compared with the kinetic energy, FEiyin, of
the light particles in the virtual state a saturation
phenomenon may result and the potential energy
may increase less strongly than with the square
of the number of particles. It then follows from
the argument given in the beginning of the
introduction that if the potential energy increase
less strongly than the five-thirds power of the
density the density of heavy nuclei will not
depend strongly on the number of particles
within the nucleus, and the mass defect divided
by the number of particles in the nucleus will
remain roughly constant.

We shall assume therefore, in the following

10 If the neutron-proton interaction be due to pure spin
exchange there could not be an attraction between a
neutron and a proton for both parallel and anti-parallel
spins.

1 Jf the probabilities of electron-positron, electron-
neutrino and positron-neutrino emissions are of the same
order of magnitude, an exchange of charge would remain
possible and there would be no necessity for abandoning

exchange forces. This suggestion is implied in Feenberg’s

discussion (Phys. Rev, 51, 777 (1937)) of heavy particle
interactions. The order of magnitude of nuclear forces
would then still require an explanation (see Kemmer, Phys.
Rev. 52, 906 (1937)) which can, perhaps, be given in terms
of heavy electrons and neutrinos (see Bhabha, Nature 141,
117 (1938) and Kemmer, Nature 141, 116 (1938)).
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discussion, that H">>Fy;,. This assumption is
just the opposite of the one usually made,
namely H'<Eyi,, which served to justify the
treatment of the emission and absorption of
light particles by a perturbation method.

In order to simplify the treatment we assume
that not only the charge but also the spin of a
heavy particle remains unchanged if light parti-
cles are emitted. Furthermore, the Coulomb
interactions will be neglected. Thus, finer features
such as spin dependence of nuclear potentials and
the difference between proton and neutron
mass will not be obtained from the present
development.

Part I. ONE HEAVY PARTICLE

We consider at first one heavy particle and
discuss the effect of the operator H’ giving rise to
emission and absorption of electron-positron
pairs. The kinetic energy of the light particles,
Exin, will be neglected in accordance with the

hypothesis Eyi,<KH’. The effect of Eyin will be

taken into consideration as a.perturbation in
Part III.

It is convenient to adopt the ‘‘hole theory’ of
positrons in developing the formalism for the
emission and absorption of pairs. Thus, emission
of a pair will correspond to the transition from a
state of negative to a state of positive energy, and
an annihilation of a pair, a transition from a
positive to a negative state.

Since we assume that a heavy particle after
emission is in the same state in which it was
before emission of a pair there is a possibility that
a second pair be emitted before the first is re-
absorbed. In general, a single heavy particle
might emit successively in this way any number
of pairs without reabsorbing them. If, however,
pairs can be emitted only into a limited number
of states, the exclusion principle will limit the
number of pairs which can be emitted.

In particular we shall suppose the interaction
H' to be such that emission (or absorption) can
take place only into four states 44, 4y, B¢, BJ.
A% and A} are two spherically symmetrical
electron states with positive kinetic energy,
differing only in spin direction. B¢ and B} on the
other hand, are states of negative kinetic energy.
The absence of an electron from B¢ is equivalent
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to the existence of a positron in a corresponding
state with its spin pointing downward. We shall
assume that the dependence on space coordinates
of the 4’s and B’s is the same. In general all
negative states orthogonal to the B’s shall be
assumed as filled. B% or B}J, however, shall be
filled only if the factor B¢ or B} explicitly appears
in the proper function.

The formalism used in quantizing the wave
equation will be adopted. Associated with the
electron wave function 44 is the operator a4
which acts on the functional ¢, i.e., on the wave
function of all electrons. afy is zero if the state
A% is represented in ¢ as filled and ety = (¢, 49)
if A% is empty. (¢, 4%9) is the properly antisym-
metrized product wave function of ¢ and A44.
This means that af gives rise to the appearance
of an electron in the state A4 if 44 be empty and
is equivalent to zero if 44 be full. In accordance
with the formalism, a4* acting on (¥, 4%) gives ¢
and acting on ¢ gives zero, so that a4* causes the
disappearance of an electron from A4 if A4 be

full and is equivalent to zero if 44 be empty. In-

the same way ay, a}* are connected with A4};
b4, b4* with B4; and b}, by* with BJ. For nor-
malized functions the commutation laws hold :

xx*+x*x=1, xy+yx=0,
xy*+y*e=0 (x#y), a*y*+y*a*=0, (1)
x, y=a#t, ay, b1, bi.

The term giving rise to pair emission and
absorption in the Hamiltonian will then be

H' =00, (2)

where ¢ is a positive constant and the operator O
may be written'?

O=atbt*+brar*+abl*+-blal*. ©)

The first and third terms represent the produc-
tion, the second and fourth terms the absorption
of an electron-positron pair.

If we write the pair emission operator, O, as the
sum of two commuting operators, 0% and O} :

Or=atbt*+-brat*, 0=01+0\,
OV=a}bl*+bla}*, 010}—0}Ot=zero,  (4)

iteration of 0% gives, because of (1),

12 A somewhat more general form for H’ may be obtained
by adding A(afet*+ala*+bPop*+0b)by*) where \ is a
new constant, However, as long as ¢ —X3>Ekin our main
argument remains unchanged.
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0101 =atbt*btat*+brat*atbr*,
(04)3=0% and similarly
(O4)?*=0jJ.

The proper values of Of and O} are therefore +1
and zero.

It is readily seen that the proper functionals of
O% belonging to the proper value —1 will be
those for which the state (44— B%)/V2 is full and
the state (44+B¢)/V2 is empty. For the func-
tionals belonging to the proper value +1 the
state (44—B1)/V2 is empty and (44+B4)/V2 is
full; for the proper value zero both states
(A4—B%)/V2 and (A1+B%)/V2 have to be tull
(i.e. there is an electron in A4 but there is no
corresponding positron present) or both have to
be empty (i.e., we have a positron but no
electron).. All these proper functionals are de-
generate since the presence of electrons in any
state orthogonal to A4 and B4 will have no effect
on the proper value. Similar statements are
obtained for O} if 4} and BJ are used instead of
A4 and B

Since 0% and O} commute the proper values of
O0=0%+0{ will be the sums of the proper values
of 0% and O{. Thus we obtain 42, 1, and zero.
The corresponding proper functionals will be
products of the proper functionals of O% and 0.
The proper functionals for the lowest proper
value, —2, will be characterized by the states’
(A+—B1)/V2 and (4} —B})/V2 being filled and
the states’ (A4+B1)/V2 and (4}+B})/V2 being
empty. We again have degeneracy since any state
orthogonal to 4%, A}, B4, B} may be filled or
empty. This degeneracy means merely that the
state of the nucleus will not depend upon
extranuclear electrons or positrons. The lowest
proper value of H’ is therefore —2¢. Since ¢ is
assumed to be large all other states lie high and
therefore will not be excited. We shall be con-
cerned only with the lowest state.!®

We propose to consider the energy — 2¢ as part
of the proper energy (or mass) of the proton or
neutron. Because of its negative value it cannot
represent, of course, the complete proper energy.

13 The exclusion of the proper value zero means that the
wave functions of atomic electrons must be orthogonal to
[A4] and [4{]. This amounts to a boundary condition
which all atomic wave functions must satisfy near the
nucleus. If the spatial extension of [44] and [4}] is very
small compared with that of an atom the influence of this
boundary condition will be small. It might account for an
essential part of the isotope effects in atomic spectra.
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This energy, — 20, can be, however, incorporated
into the proper energy only if it can be shown
that the corresponding part of the energy for N
particles (neutrons or protons) will be —2N¢
independently of their configuration. This proof
is given in the next section.

ParT II. SEVERAL HEAVY PARTICLES

The operator H'(N) corresponding to the
emission and absorption of pairs by N heavy
particles will be the sum of operators I’

N N
H(N)=>H,’=0¢> 0,
k=1

k=1

©)

where H,' corresponds to the emission and
absorption of pairs by the kth particle. We may
thus write:

Or=artbit* +brtart* +ardbrd* +brdard™,

where axt and axt* are operators associated with
the electron state At which is the same spherical
function as 44 with its center being located at the
kth particle. Similar statements hold for az{, arl*,
bit, brt* and bgd, brd*. The proper functions of (5)
are not, in general, simple because A;f is not
orthogonal to 4,4, and so on for 4} and the B’s.
However, two particular cases can be in-
vestigated at once: the first is that in which the N
particles are far enough apart so that all 4’s and
all B’s can be considered orthogonal. Then the
lowest proper value of H'(N) is the sum of the
-lowest values of H)’ or just —2Ng. The proper
functionals belonging to this value are those
functionals in which all (4x$—Bxt)/vV2 and
(A —Brl)/V2 are filled and all (Axt+Bit)/V2
and (4wl +Bi)/V2 are empty.
The second simple case is obtained when the
positions of all heavy particles coincide and all
Oi's become identical with O;. Then (5) becomes

H'(N)=NoO,

(3k)

and the lowest proper value is again —2No. In the
corresponding proper functionals (44 —B1})/V2
and (4 —Bu)/V2 are filled and (414+B1t)/V2
and (41}+B1l) are empty.

14 The fact that the Pauli principle would prohibit more
than four heavy particles’ occupying the same point is
important in the determination of the behavior of particles
in nuclei but not of essential interest in this consideration
of the potential in which they move,
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To show that the lowest proper value of H'(N)
is always —2No we define the quantities

€rm = fA kT*A deﬂ = fA k¢*A m&dv

- f BA*B.dv= f Bu*Buidy (6)
with e=1.
The commutation relations may be written :
X1%m* 4 2m ¥ 2% = €y
Xk, Ve=axt, ard, Ok, or by, (7)
XiYm* - ym*xr=2z€r0, XxFEY etc.

It is possible to choose a set of 4N orthogonal
states 4z, A, Bat and By} related to 4xt, 414,
Bt and Byl respectively by the linear relations:

chzsz)\X)\r X=ATY Alh BT) or B¢!
A

Xh= Z T X (8)
k

Operators x\ and x\* associated with X, are
defined by :
=2 D%, we =2 Tran,
P 1y /
x=at, al, b1, or b,

a¥= Z(T)\k'—l) *o¥, at= Z N
k A

©)

It will be convenient to take for Ty an

orthogonal transformation,’® so that
T*=Tw" (10)

In fact, under such a transformation, H'(N)
retains the simple form that it has in (5).

H'(N)=03 ZTuT:*(axtbt*

kX p
Foatat*+aadd 4+ 0ala, 4 *)

= 0’25)\" (d)\'l‘bp‘[‘* (1 1)
Np

+ b)\TapT* + a)\lrbprk + b)\w;nl'*)
=0y 0,
A

where Or= (et +0atant* +andbnl*+hdaad®).

15 Jt will be seen that Ty is the transformation which
brings the Hermitian matrix {em:} to principal axes.
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On the other hand, if the transformation T is
orthogonal it follows that the orthogonal set of
functions X, cannot be normalized. This is so
because, if we assume the set X, both orthogonal
and normalized, then any orthogonal transfor-
mation (8) would yield a set X; which would be
both orthogonal and normalized which is in
contradiction to the above statements. We there-
fore define the scalars ¢y by the relations'¢

fX)\*X“deC)\B)\”, XZAT, A‘lh B’T‘y or Bl’v (12)

leading to the commutation relations

v, ¥ ¥ o= 20 Tin* T uerm = OO,
kym (13)

oyt yfo=zero, x=at, al, b, or b}

(x#y)

The operator O, may be again considered as the
sum of the commuting operators O\t and O\ :

Ot =t +0tant*, Ov=0+00,

O\ =anbd*Hhdand™,
OO\, — O\pON) = zero.

etc.

(14)

The proper values of O, will then be the sums of
those for O\t and Oy} and the proper functionals
will be product functions of. those for Oy¢ and
Oy. From (13), iteration of O\f shows that

(O\)3= N0z,
(O =0,

so that the lowest proper value of each is —cy-and
the lowest proper value of O, is —2¢,; this value
belongs to those functionals in which the states
(A—Ba)/(2c)? and (AN —Ba)/(2c0)F are
filled and the states (Axt+Bx1)/(2c0)? and
(AN +Ba)/(2c\)? are empty.

According to the commutation relations (13)
the operators O\ commute and

060, —0,0r=zero

(15)

and therefore the proper values of H'(V) will be
given by o times the sums of the proper values of
the Oy. In particular, the lowest proper value will
be —2¢Y cn and the corresponding functionals

Iy
will be those in which all (4xt—B})/(2c))* and

16 }The numbers c¢) are the proper values of the matrix
{emk .
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(A —B\)/2c)? are filled and all (Axp+Bat)/
(2c\)? and (A +Ba)/(260)? are empty. From
(13)

ZC)\ = Z ZTk)\Tm)\*ekmz ZEkk =N.
A

N k,m k

(16)

The lowest proper value of H'(N) is then —2N¢
and independent of the relative position of the
heavy particles.

Parr III. KiNETIC ENERGY OF LIGHT
PArTICLE FIELD

We now introduce the kinetic energy of the
light particles, K, as a perturbation in the
calculation of the proper values of

H=I'+K. (17)

We are interested in the lowest value of H. The
lowest level of H' has been seen to be an infinitely
degenerate one of energy —2¢. The introduction
of K as a perturbation splits these levels and the
problem of interest is to find the lowest of the
resulting states.

We shall adopt the usual convention of putting
the kinetic energy of the state in which no

- electrons or positrons are present equal to zero.

The average value of K in the state ¢ is therefore
calculated by finding S¢*Kydv and subtracting
from this value the average value of K in all
negative energy levels. The average value for the
lowest proper functions of H’ is then

f (44— BN)*K (A4 —B)do
+1 f (44— By)*K(Ay—By)dv-+

—fB¢*KB¢dv—fB¢*KB¢dv—fco, (18)

where & is the average value of K in all states
orthogonal to A’s and B’s and & is the average
value of K in all negative states orthogonal to
the B’s.

According to the perturbation theory the
lowest energy value into which a degenerate state
will split is given by the minimum average value
of the perturbation for the set of degenerate
proper functions under consideration. It is evi-
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dent that the matrix of K, calculated in ac-
cordance with the preceding paragraph, is posi-
tive definite. Also the matrix of k— kg is positive
definite with the minimum value zero for that
state in which no positive levels are occupied and
all negative levels are full. Therefore the lowest
proper value of H will be, in first approximation,
the lowest value of H’, i.e., —2q, plus (18) with
&= k. Since the space dependence of 44, 4y, B,
and B is taken to be the same

fA?*KATd’u=fA¢.*KA¢dv

—-fB‘r*KBTdv——— —fBL*KBJ,dzJ
and the integrals in (18) may be expressed by

Fan=2 f AVEK AN, (19)

and we obtain

Emin= —20+Ekin~ (20)

In a representation including the A’s and B’s,
K also has nondiagonal elements. The order of
magnitude of these elements is the same as that of
Eiin. For example, the element in K coupling the
state in which (44—B1)/V2, (A}—B{)/V2 are
full and (4¢+B%1)/V2, (A}4+B{)/V2 as well as all
other positive energy states are empty with the
state in which (44—B1%)/V2, (A}+B})/V2 are
full and (A¢+B1%)/V2, (A{—BY{)/V2 as well as all

other positive states are empty is readily calcu-

lated to be $Exin. However, the diagonal elements -

for the two states differ by 2¢. According to
second order perturbation formulae the correc-
tion to the calculation of the minimum energy
associated with this transition will be E%;,/80.
Similar transitions to electron states orthogonal
to the A’s and B’s involve an energy difference
approximately equal to . We may then say that
expression (20) is correct if contributions of the
order of (E%in/c) and higher orders may be
neglected.

The order of magnitude of the additional
energy, FEiin, can be estimated if the spatial
extent of 44 is known. If the characteristic linear
dimension of 414 (its effective radius for example)
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be “d” then for sufficiently small values of d:
Exin~cp~ch/d. The significance of this energy is
seen in considering many heavy particles.

For N heavy particles the total Hamiltonian is

H(N)=Z[H/]+ZK,-, (21)

where K; is the operator K for the ith heavy
particle alone. If contributions of the order
E2n/o are neglected the lowest proper value of
(21) is, by the same reasoning which led to (20),

Epin=— QNG‘[—fIPo*ZKi%dﬂ

~ [k, ()

where ¥ is that functional belonging to —2 N in
which all negative levels orthogonal to the B’s are
filled and all positive levels orthogonal to the 4’s
are empty. x is the functional of negative states
including the B’s. The average value of K
indicated in (22) cannot be calculated in general
without a specific knowledge of the dependence
of A\1, etc., on space coordinates. Since the form
of this dependence is not known and since we
make no hypothesis regarding it, we are limited
to the evaluation of (22) for those special cases
which are independent of the shape of the
electron functions.

If the N heavy particles are sufficiently widely
separated the electron functions (A4xt, etc.)
pertaining to each heavy particle may be con-
sidered orthogonal. Then the average value of K
will be found lowest in that state in which all
positive levels orthogonal to the 4;’s as well as all
(Axt+Bit)/V2, (Ard+Bil) are empty and all
negative levels orthogonal to the B;'s as well as
all (4wt —Bit)/V2, (Al —Bil)/V2 are filled. The
average value of 3_K; will be NEy;,"

Emin(oo)= —2N0'+NEkin. (23)

The other simple case occurs when the N heavy
particles may be considered to occupy the same
point in space. The proper function of mini-
mum energy in this instance is that in which
(A11—B11)/V2, (A1l —B1l)/V2 and all negative
levels orthogonal to Bit and By} are filled and
(A1 +B11)/V2, (Ay+B1l)/V2 and all positive
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levels orthogonal to 414 and 4.} are empty. As
before these A’s and B’s are chosen arbitrarily
from the N identical possibilities. Then

Emin(O) = — 2N0’+Ekin. (24)

CONCLUSION

The difference between Epnin(®) in (23) and
Ewnin(O) in (24) is the binding energy obtained if
the N particles are brought from infinite dis-
tances to the same point. Even if the positions of
all heavy particles do not coincide the value of
ELin(O) will remain essentially unchanged as
long as the mutual distances remain small com-
pared with the linear dimension, d, of the wave
functions 4 and B.

The interaction which we have obtained differs
essentially from the ordinary interaction between
pairs; if the interaction is the sum of interactions
between pairs, then by bringing the heavy
particles close together the potential energy will
be proportional to the number of pairs, that is, to
IN(N—1); for the type of nonexchange forces
which we have discussed, however, the interac-
tion at close contact will be Enpin( %) —Emnin(0)
= (N—1)Eyin Since, for finite separation, no
lower potential is to be expected than for
coinciding heavy particles, it follows from the
discussion given in the introduction that the
densities of heavy nuclei will remain essentially
constant and that their binding energies will be
roughly proportional to the number of heavy
particles which they contain. The maximum
potential energy per heavy particle will be Eyin.

Itis evident that the range of the nuclear forces
is of the same order of magnitude as the linear
dimension, d, of the wave function 4 or-B. From
a study of nuclear radii it follows that this range
is of the same order of magnitude as the electron
radius e?/mc?. This means that the wave function
A or B will have dimensions comparable to the
electron radius and that in the pair emission
theory of nuclear binding electron and positron
wave-lengths which are small compared with the
electron radius do not play an important role.
Putting d=e?/mc? we obtain Exin~137mc? This
energy is of the same order of magnitude as the
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minimum of the potential energy per particle
usually assumed in nuclei.

The formalism as given in this paper does not
explain the spin dependence of the nuclear forces
and does not give the magnetic moments of
proton and neutron. An explanation of these
phenomena might be forthcoming if it is assumed
that the spin of the heavy particle may change
during the emission of a pair. A dependence of
the spin of the emitted light particles on the spin
of the heavy particle has to be introduced. If,
moreover, a heavy particle can emit electrons
into several orthogonal states simultaneously,
sufficient freedom may be gained to describe our
empirical knowledge of nuclei.

The form of the wave functions into which
emissions can take place remains, in the present
state, arbitrary and thus the detailed dependence
of the potential on the configuration of heavy
particles cannot be calculated. It seems, however,
that under rather general assumptions about the
functions 4 and B, the first interaction between
two heavy particles approaching each other will
be a repulsion. At small distances it has been
shown that attraction is obtained. The low
binding energies obtained for nuclei like Li® or
B2 in which, owing to the Pauli principle, the
average distance between particles will be greater
than in Be® or C!* may be due to this repulsive
potential at greater distances.”

It is felt that the most serious objection to the
theory proposed in this paper is the introduction
of the finite distance operator O in Eq. (2). Such
an operator may cause creation and annihilation
of electrons or positrons at points different from
the position of the heavy particle and no way is
known for reconciling such processes with the
principle of relativity. This means that the
present theory will meet with difficulties if one
tries to extend it to relativistic velocities of the
heavy particles.

In conclusion the authors wish to express their
thanks to Professors Bethe, Fermi, Gamow and
Oppenheimer for helpful discussions.

17 The questions mentioned in the two previous para-
graphs will be discussed in detail elsewhere.



