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On the Rotation of the Atomic Nucleus
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The spacing of the levels in the fine structure of alpha- and beta-ray processes and the
existence of metastable nuclear states (isomers, isobars) are in contradiction with the existence
of low lying levels corresponding to the rotation of the nucleus as a whole. The exchange of
the nuclear constituents e6ected through rotation, together with the fact that the particles are
not rigidly bound to equilibrium positions in the nucleus, will in some cases forbid, in other
cases perturb the lowest levels, and cause the first state of excitation to lie considerably higher.
Simple models illustrating these effects are discussed in II. In III an estimate is made for the
position of the lowest excited level for heavy nuclei. It is found to vary inversely with the mass.

I. IxTRoDUcnoN

A CCORDING to Bohr and Kalckar' the
lower levels of the heavier nuclei can be

systematized if the nucleus is compared to a
droplet. The low lying levels which are of
importance in nuclear reactions will then be the
vibrations of this droplet. Still lower levels are
obtained, however, if the rotations of the droplet
are taken into consideration. If we take as an
example the nucleus Pb"', assume a uniform
distribution of mass throughout the nucleus apd
take its radius to be 12 X10 " cm, the moment
of inertia 2.00X10 ' g cm' will be obtained.
If we furthermore assume that the lowest
rotational state of this nucleus corresponds to
J=0, then the pure rotational energies corre-
sponding to J=1, 2, 3, will be 3.3, 10, 20,

~ kilovolts, approximately.
According to a proposition first put forward

by Thibaud' the rotations of the nucleus might
be used to explain fine structure observed in the
emission of alpha-particles. The energy differ-
ences of rotation, however, are smaller than those
observed in the fine structure. It is indeed
reasonable to assume that, in general, nuclei
will not have excited states which lie only a few
thousand volts above the ground level.

Such extremely low levels would give rise to
difficulties in the following ways:

(1) If in the process of alpha-particle emission
the fundamental states of both the emitting and

' N. Bohr and F. Kalckar, Kgl. Danske Videnskab.
Selskab. 14, No. 10 (1937).' J. Thibaud, Comptes rendus 191, 656 (1930).

TABLE I. Relative probabilities of transitions calculated from
Gamom's formula for a nuclear charge Z=8Z.

TRANSITION RELATIVE PROBABILITY ENERGY CHANGE

J=O
J=O
J=O
J=O

J=O
J=1
J=2
J=3

1.00
0.84
0.60
0.36

0
3.3 Kev

10 Kev
20 Kev

' G. Gamow, Structure of Atomic Nuclei (Clarendon
Press, 1937), Eq. (56), p. 103.

4 Reference 3, p. 108.

the resulting nuclei have J=0, it should be
possible to observe not only the process J=O to
J=O but also the processes J=O to J=1, J=O
to J=2, J=O to J=3. In the latter processes
the alpha-particle would carry away the angular
momentum 5, 25, and 35, respectively. According
to Gamow's' formula the relative probabilities
of these processes for a nuclear charge Z=82
would be approximately as given in Table I.
Instead of finding such closely spaced levels as
given in Table I no fine structure has been
observed in transformations in which there is
reason to assume that the fundamental states of
initial and final nuclei have J=O.

(2) The explanation for the 6ne structure in

the cases in which it is observed4 is based on the
idea that fine structure occurs if a transition to
the fundamental state of the final nucleus would
require the alpha-particle to carry away a very
high angular momentum. Since such a process is
improbable, the disintegration will lead in most
cases to excited states which possess angular
momenta differing from that of the original
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nucleus by fewer units. These excited states
frequently lie several hundred thousand volts,
or even more than a million volts, above the
fundamental state of the final nucleus. If the
final nucleus had rotational states lying close to
its fundamental level there would be no reason
why the alpha-process should not lead to these
low lying levels rather than to those observed.

(3) The strong gamma-radiation accompany-
ing some beta-disintegrations has been given an
explanation similar to that of the fine structure
of the alpha-rays. ' Also in this case the hard
gamma-rays would be difficult to understand if
low lying energy levels were available.

(4) Metastable states of nuclei which do not
emit gamma-rays but rather eject electrons from
the atomic shell (coeRicient of internal con-
version equal to unity) are found to be lying
more than a million volts over the fundamental
state. If low lying rotational levels exist these
strong, discrete beta-rays should always be
accompanied by at least equally strong gamma-
rays of only slightly smaller energy leading from

; the metastable state to the low lying rotational
states.

(5) Metastable states of much longer life have
been postulated by Weizsacker' in order to
explain isomeric nuclei. These long lives he
explained by assuming that all transitions from
the metastable state to states of lower energy
would be connected with a great change of
angular momentum. Evidently if Weizsacker's
hypothesis is to be upheld, one must assume the
existence of a special level with a high angular
momentUm lying lower than all but a few of the
rotational states of the droplet.

(6) The existence of the low lying levels of the
droplet would not be consistent with the explana-
tion given for the long periods of the potassium
and rubidium radioactivities. According to
Klemperer" a large change in the angular
momentum should account for the small transi-
tion probability. Klemperer's suggestion has been
confirmed for the case of rubidium by Kopfer-
mann and Konopinski. ' Low rotational levels of
the product nucleus would make possible less

' Reference. 3, p. 150.' C. F. v. Weizsacker, Naturwiss. 24, 813 (1936).' O. Klemperer, Proc. Roy. Soc. A148, 638 (1935).
Kopfermann, Physik. Zeits. 38, 960 (1937); Konopin-

ski, N. Y. Meeting Am. Phys. Soc., Feb. 25, 1938.

strongly forbidden transitions. Still smaller tran-
sition probabilities have been assumed to account
for the stability of the neighboring isobars. The
low lying levels would invalidate this explanation
too.

We conclude therefore that no such low lying
levels are present in the nucleus.

It is our purpose to show that the application
of the exclusion principle to the constituents of
nuclei gives the possibility of reconciling the
droplet model with the absence of low lying
levels such as would follow from the rotation of
the droplet. As the simplest model we consider
N alpha-particles on a circle and spaced at equal
distances. The rotation of the ring into itself
(i.e. , around an axis passing through the center
of the circle and perpendicular to the plane of
the circle) will interchange the alpha-particles.
Since the first exchange takes place after a
rotation by the angle 2~/X, the Bose statistics
of the alpha-particles will exclude all rotational
states except those having the angular mo-
mentum J=O, J=E, J=2E,

If we now permit rotations of a group of
alpha-particles around any axis in space such
simple exclusions of rotational states will be
obtained only for nuclei for which particularly
symmetrical configurations can be assumed.
Thus, Wheeler' has found that for four alpha-
particles arranged in a tetrahedron the first
rotational excitation has J=3. If we arrange six
alpha-particles on the vertices of an octahedron
(this structure has been proposed by Wefelmeier"
for Mg'4) the lowest excitation will lie at J=4.
For twelve alpha-particles at the vertices of an
icosahedron the lowest rotational excitation will
be at 7=6 (this icosahedron was assumed by
Wefelmeier for Fe" .with the thirteenth alpha-
particle in the center of the icosahedron and
with two additional neutrons about the localiza-
tion of which no definite statements are made).
Apart from such symmetrical cases, J= 1 or
J=2 should be expected as the lowest allowed
rotational state since, in most cases, there will
be either no rotation which effects an interchange
of the constituents of the nucleus, or else only a
few rotations, mostly through the angle x, will
effect such an interchange.

J. A. Wheeler, Phys. Rev. 52, 1089 (1937).
"W. Wefelmeier, Naturwiss. 25, 525 (1937).
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We must remember, however, ' that the con-
stituents of a nucleus cannot be represented as
firmly bound to equilibrium positions. Indeed,
the dimensions of the nucleus alone show that
the kinetic energies of the nuclear constituents
are larger than the nuclear binding energies,
that is, the'kinetic arid potential energy in the
nucleus are comparable and the binding energy
is obtained as a relatively small difference
between the two. Therefore it will be important
to consider the following exchange between the
constituents of the nucleus: we first perform a
rotation which, although it does not actually
produce an interchange of the particles, does
bring them into positions which are close to
positions obtainable by simple exchange; then
we have to move the constituents of the nucleus
only through comparatively short distances in
order to complete the exchange. It will be
necessary to investigate which of these two
motions will correspond to a higher frequency:
the rotation through a finite angle or the dis-
placement through short distances. The 6rst will

be the case if the constituents are bound to
equilibrium distances with potentials large com-
pared with their kinetic energies and, if thus, no
appreciable displacements can be obtained with-
out passing over potential barriers. Then the
nucleus may possess all rotational states which
are allowed according to the symmetry of the
equilibrium position. If, however, the rotation
through a finite angle takes a longer time and
corresponds to a smaller frequency than the
subsequent displacements through short dis-
tances, then the process of rotation and the
rotational levels will be strongly disturbed and
we may expect the nucleus to act like a body of
higher symmetry than would correspond to any
"equilibrium position" of the constituent par-
ticles. The eRect may be that the predicted low
rotational levels are absent.

In the next section we shall consider the effect
of exchanging the particles for simple models
consisting of constituents satisfying Bose sta-
tistics (alpha-particles). In the last section we
shall discuss the angular momentum and the
excitation energy which we may expect for the
lowest levels in heavy nuclei according to this
modi6ed droplet model.

II. EXAMPLES

In the following we select a few simple
examples which illustrate how the possibility of
small displacements from equilibrium increases
the effective symmetry of a system and how this
increase in symmetry reacts on the structure of
the allowed rotational energy levels.

Two particles on a circIe

Let us picture two identical particles, obeying
Einstein-Bose statistics, free to rotate in a plane
about the same 6xed point to which both are
coupled by inextensible rods of the same length.
Between the two particles acts a potential which
depends upon the angle 0 between their two radii
vectors. The potential has the same value for 0

and 2x-0. The minimum occurs for a value of
0=00 close to, but de6nitely less than, 180'. In
the extreme case where the potential valley is
very deep and very narrow (rigid coupling) the
energy levels of the system are simply those of
a rotator with one degree of freedom and a
moment of inertia I:

All values of m are allowed because the system
has no symmetry with respect to its rotational
axis. If, now, the rigidity of the binding is
decreased, it must be remembered that the
system actually possesses two equilibrium posi-
tions, at 00 and 2x —0(), and that the potential
barrier between them, while high, allows the
possibility of resonance between the two equi-
librium positions. Thus each of the levels con-
sidered in the case of rigid coupling is really a
double level with a separation 2kB proportional
to the frequency with which penetration through
the barrier occurs. One easily finds from the
W—K—B approximation that

X exp —
I 2ILU(8) —E;b(n) ]I ld9/S. (2)

v,&„,(n) represents the classical frequency of
vibration in the nth vibrational level, and the
integral in the exponent depends upon the area
under the potential barrier. The positive or
negative sign in the equation has to be applied



ROTATION OF THE ATOM I C NUCI. EUS

6,2
6;2

for the total energy

E=E;b(n)+fPm /2I (—1—) Q

6,0

3.2
3I-2

0,2

3,0

0,0
a b

se s

As the rigidity of the binding is decreased, Q in
general increases. When 2Q becomes as great as
(5'/2I) Im02 —(mo —1)'I, already the odd level
m =mo —1 is raised higher than the even level
m=mo. This corresponds to the frequency of
interchange 2Q/h becoming greater than the
frequency of rotation Amo/2~I. Finally we shall
find that a number of even m levels will lie
below even the lowest odd level (m =1).

This approximates then the result we 6nd for
the case of equilibrium position of alpha-
particles opposite each other (model for Be'),
where only even values of J occur.

4
se

2
I

0
, Qase d

FIG. 1. The diagram in the lower right corner represents
the triangle-dumbbell model. The curves represent the
energy levels for diA'erent cases of coupling. In case (d)
the coupling is rigid and the levels correspond to different
values of the rotational quantum number m. In case (c}
the coupling is loosened and we see the eA'ect of the dumb-
bell penetrating the potential barrier to turn into another
symmetrical position. In case (a} the dumbbell and tri-
angle are allowed to rotate freely with the angular mo-
menta bk and ak. The total angular momentum mk= ak+M.
In case (b) a small coupling is introduced causing repulsion
between levels of the same m value. (See levels for m =4.)

according as the vibrational functions in the
two minima are superposed with the opposite
sign or with the same sign. If rotations of the
system are taken in' account, the symmetry of
the wave function with regard to the exchange
of two alpha-particles requires that it should
remain unchanged if a rotation through 180' is
performed and the oscillator is moved from one
minimum to the other. Since a half-revolution
multiplies by (—1) (m is the rotational quan-
tum number), only the energy shift which
corresponds to superposition of the vibrational
functions with the same sign is allowed for
m =0, 2, . . . , and with the opposite sign for
m=1, 3, . Thus putting ~DE} =Q, we obtain

Triangle-dumbbell model

A second instructive example is provided by
what we may call the triangle-dumbbell model,
illustrated in the lower right-hand portion of
Fig. 1. The two rigidly coupled particles in the
dumbbell are identical, obey Einstein-Bose sta-
tistics, and have only a single degree of freedom,
that of rotation about their common center of
gravity, which is also the center of rotation for
the triangle. The latter is composed of three
identical particles, again rigidly coupled and
following the symmetric statistics. As extreme
cases we may consider (a) no interaction between
the two rotational degrees of freedom and (d)
rigid coupling. In the first case the energy levels
are determined by the sum of the quantum
expressions for two free rotators of moments of
inertia A and B:

E=h'a'/2A +5'b'/28.

Here the rotational quantum number b may take
on only the values 0, +2, ~4 . and a the
values 0, ~3, ~6, because of the symmetry
of the system. In case (d) the coupling is so
strong that we obtain effectively the problem of
a single rotator having no symmetry against
rotation, and possessing a moment of inertia
equal to the sum A+B of the two separate
moments. The energy of the system is now

E=ED+5'm'/2(A+B),

where m may take on all integral values.
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FIG. 2. (a) Bipyramid alpha-particle model for the
nucleus Ne". (b, c), a distortion separating alpha-particles
2,4 and bringing particles 5, 1 into contact. The result is an
exchange plus rotation through 90 degrees.

The question as to how the transition occurs
between the two preceding cases now presents
itself in an interesting form, for it is clear that
the order of the various rotational levels must
go through some sort of mixing process.

First, let us commence with the case of a very weak field,
say

V{P—) = —icos 6(P —),
which possesses a sixfold periodicity because of the
symmetry of the two parts of the system. It is easy to
calculate from the unperturbed wave functions

condition. From the picture in the lower right-hand portion
of Fig. 1, one sees that a rigid rotation of the whole system
by an angle 0=(2~A/3+2~8/2)/(A+8) followed by a
rotation of the triangle relative to the dumbbell by an
angle q =2m/6 will carry the system from its original
position to one where the rod has been given a half'-turn,
the triangle a third of a revolution. The requirement that
the wave function have the same value for the two equiva-
lent configurations tells us at once {see Eq. (9)) that

f(@+2m/6) =f{q)exp —im(2+A/3+2~8/2)/(A+8). (11)
The solutions of Eqs. (10)and (8), subject to this condition,
may be obtained with the help of the W-K-8 approxi-
mation and give us the energy values

E=E&ib(n) —{—1)"2hvciass(n)
X Icos 2xm(A/3+8/2)/{A+8) }

Xexp i
—J'

~ P(q ) ~

d q /h i +5'm'/2 (2+8), (12)

where n is the quantum number of the torsional vibration.

The figure shows the influence of the possi-
bility of displacements of the triangle and
dumbbell with respect to each other. In the case
(d) of the rigid coupling the low symmetry of
our model caused the level of the total angular
momentum m=1 to be the first excited state.
In the intermediate cases (c) and (b) the level
m= 1 moves up strongly whereas the energy of
the levels I=2 and m =3 are not raised to an

+= (2 ) ' exp z (a +bP), (6)

that the first-order perturbation energy vanishes. In the
second order we have

E=k'a'/2A+ 5'b'/28
Ba—Ab—(8'/36k')(A '+8 ') ' 1—,(7)3A+38

which represents a repulsion between energy levels pos-
sessing the same values of m =a+b. (See case (b) in Fig. 1.)
On the other hand, proceeding from the side of strong
interactions toward the intermediate case, we find it
simplest to separate the wave equation

(Pi'/2A)g'p/d~'+ (PP/28) g'p/d p'+ I E—V(p —a) }P =0 (8)

0.0
, J K

0

by writing the wave function as the product

p= f(q) exp (im8) (9)
of a part representing rotation of the system as a whole by
the angle 8 = (Aa+Bp)/(A+8) times a part which depends
only upon the relative orientation q =p —cx of the triangle
and dumbbell. The wave function of the internal torsional
vibration, f(p), must satisfy the equation

{Pi~/2)(A i+8 ')d2f/d p'+ I E~—V(p) }f=0, (10)

and it is also clear that it must obey a certain periodicity

0.0 02 0.4

FIG. 3. The energy levels at the left represent the low
rotational states allowed for the bipyramid neon model
of Fig. 2. Jk stands for total angular momentum and EA
is the component of this along the axis of figure of the rigid
model. The possibility of exchange between different
configurations of the same energy (see Fig. 2) perturbs the
levels. The shift is shown as a function of the value of the
exchange integral Q for which a reasonable estimate is
0.17 mMU. Additional excited levels are found if the
vibrations of the model are taken into consideration.
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equal extent. Eventually, as we approach case
(a), both the energy of the lowest excitation and
also its angular momentum (nz = 3) become
considerably greater than in the case of rigid
coupling.
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Bipyramid model

A further example of the qualitative consider-
ations discussed above is furnished by a problem
which can be considered as a model for the
nucleus Ne". We may picture the stable state
of the system as that in which five alpha-
particles are situated at the vertices of a double
pyramid (see Fig. 2). If we assume that the
"bond distances" are the same between all pairs
of alpha-particles, then this configuration gives
the maximum possible number of bonds (9).
Diagrams (b) and (c) show that a distortion of
the nucleus in which the 2—4 bond is stretched
and the distance between 1 and 5 is shortened
will carry the system over into an equivalent
position of the same energy but different orienta-
tion. For purposes of identification we may
symbolize the original configuration by the
expression 15 and the equivalent one by 42.
By 15 we indicate that the alpha-particles 1 and
5 are located at the two opposite poles of the
bipyramid and the three alpha-particles at the
base are numbered clockwise when viewed from
1 towards 5. Thus 51 and 15 differ in the order
of the alpha-particles in the base. Corresponding
to the 20 ordered pairs, we have 20 different
configurations of equal energy. Transitions simi-
lar to the change 15 to 42 pictured in the figure
are 15 to 23, and 15 to 34. One can see quali-
tatively that other changes from 15, such as from
15 to 51, will encounter higher potential barriers.

A simple criterion for the most important
"channels of intercommunication" is the value,
r', of the sum of the squares of the displacements
of the individual alpha-particles which occur
during the distortion. In terms of the distance,
c, between neighboring alpha-particles, r' is
easily computed to be 0.74c' for the change
from 15 to 42, 2c' for the change to 51, 1.75c' for
the change to 13, 2c' for the change to 31, and
2.07c' for the change to 24. As the penetration
factor goes down exponentially with r', it is
clear that the most important type of exchange
is the one represented in the figure.

FrG. 4. The lower portion is a schematic diagram for the
variation of potential energy which occurs when the system
is subjected to a distortion carrying it from one equilibrium
position P to an equivalent one P'. The order of magnitude
of the potential barrier between P and P' is estimated to be
1.5 mMU for the change from 15 to 24. The 6ctitious poten-
tial barrier 8 has been introduced in such a way as to
obtain a simple form for the zero-order wave function. The
contour lines of this wave function are pictured above.

Neglecting at first these exchange phenomena,
we may divide the energy of the nucleus into
the kinetic energy of rotation of a symmetric
top and the zero-point energy of the 3&5—3 —3
=9 vibrational degrees of freedom. In terms of
the moments of inertia C and A along and at
right angles to the figure axis, and the total
angular rnomenturn Jk and its component Xk
along the figure axis, we have

E=Eo+J(7+1)A'/2A

+(Z%'/2)(C ' —A '). (13)

We shall not be interested in states of the
system in which the vibrational degrees of
freedom, g~, g2, ~ ~ ~, are excited, and shall
therefore treat the system as a rigid rotator.

Only for certain values of J and E is it possible
to obtain a rotational wave function whose value
is unaltered by those rigid rotations of the model
which effect an interchange of the alpha-
particles, namely,

E=0; even J:O' Pg(cos 8)f~jb(g);

X=3n/0; any J:4 Pz&x&(cos 0)

& Iexp (~&X)+(—1)'exp (—~~X) If..b(a) (14)
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Here g measures rotation about the axis of
figure of the double pyramid, and 8 is the angle
between this axis and some fixed direction in

space. The left-hand portion of Fig. 3 shows the
position of the low rotational levels allowed
according to our analysis. The absolute values
of the rotational energies have been obtained by
using A =4.7)&10 ' g crn', C=3.0X10 ' g cm'.

The occurrence of exchange processes by
penetration through potential barriers means
now that the total wave function will be a
superposition of functions of the type (14):

rotational transformation matrix" for A=90',
whose values are given by

D&~'xx(0, 90', 0)

= (—1) D' '-x, x(0, 90', 0) =&zx,'

After the integration over angles, we have left

(20) Q f (J) (0 )f ( ) ( l 5)
the vibrational part of the exchange integral,

c=l ene y

Here the summation goes over all 20 stable
configurations of the five alpha-particles. The
Eulerian angles 0, and y, and the vibrational
coordinates q, are defined in the same way for
the various configurations, so that 0 is sym-.
rnetric with respect to all interchanges of the
alpha-particles. If we write U, for the potential
for which the cth term in 4 would represent an
accurate solution of the wave equation, and V
for the actual potential, then by making a first-
order perturbation calculation for the change in

energy due to leakage through the barriers, we
obtain

+3 fK (042& X42)fv ib (f42) ( 1 l 15)

&&/ '"(0 X )f-b(a )d (16)
'I

In the derivation we have made use of the
symmetry of + and the fact that from a given
configuration, 15, the most important exchange
processes lead only to the three equivalent
equilibrium positions 42, 23, and 34.

To carry out the integration over angles, we
note from Fig. 2 that the orientation of the
configuration 15 differs from that of 42 by a
rotation, R, of 90'. Hence according to group
theorv, the integral off&i '*(842x42)fx& '(ei'„x,:)
over all space orientations may be expressed in
a simple manner in terms of the elements
D' 'x, x(R) and Di ' x, x(R) of the standard

E=O; even JCJZ
+3 Q

2cJ& X=3n&0; any J (19)

The energy values are shown in Fig. 3 as a
function of the magnitude of the vibrational
exchange integral, Q. A reasonable estimate gives

Q = —0.17 mMU, so that the first excited
rotational level, J=2, is raised up 0.75 mMU
with respect to the ground state. However,
already if Q be as great as —0.38 mMU, the
effect is so pronounced that the levels J=3 and
J=2 become interchanged, with the level of
greater angular momentum lying lower. The
example shows in a striking manner the dis-
turbance of the normal order of rotational levels
caused by the existence of resonance between
geometrically similar configurations of a system
of five identical particles.

To obtain the estimate we have just used for the value of
the vibrational exchange integral Q, we express the poten-
tial and kinetic energies for small oscillations from equi-
librium in terms of suitable normal coordinates q1, q&, ~ ~, q» .

(20)

(21)

' E. Wigner, Gruppentkeorie und Quantenmechanik
(Braunschweig, 1931), p. 180.

Our result for the position of the low rotational
levels, taking account of exchange, is expressed
in the equation

E=Zo+E.oi(J, E)
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Here co;/2~ is the classical frequency of vibration of the
.corresponding normal coordinate. The wave function for
the normal state (zero-point vibration) has the value

e = (m~/Ãk)" '(co/GD2 ~ ~ ~ M„)' exp I
—Zm~N;g$/2A' (22)

if we suppose the vibration to occur in the neighborhood
of one equilibrium position P. Actually the representative
point of the system can penetrate through the potential
barrier represented schematically in the lower portion of
Fig. 4 and vibrate about the second minimum P'. If, as
shown in the figure, we join together in the center of the
barrier the unperturbed wave functions for the two
minima, we obtain a solution of the wave equation

($2/2~„)gy@/()g '+ (g —V])@=0 (23)

for the unperturbed value of E.Here the potential Vl is not
the same as the actual potential V, however, but has been
obtained from it by superposing a fictitious potential wall,
very narrow and extremely high, in such a way as to bring
about continuity in the normal derivatives of the wave
functions on the two sides. Using g„„ to denote the
coordinate measured parallel to the direction PP', and
cailing the height and width of the barrier 8 and Bg, we
easily obtain in fact the relation

(& /~a) (~+left/~gnorm) =&~g+ ( 4)

by integrating (23).
To obtain the correct energy value, we must remove the

above-mentioned fictitious potential. Treating this alter-
ation as a small change, we obtain by a first-order pertur-
bation calculation

AZ=Q= J'+'(V —Vl)dr = —fJjbq+'dS
(&!ttta)j+lett(&+left/a/norm)d&q (25)

where the integration goes over the n —1 dimensional
surface normal to PP'. It would appear at first sight that
the result should be divided by 2 because both parts of the
total wave function are normalized to 1; but in the one-
dimensional case one can readily prove that a compensating
factor of 2 enters, just because of the fact that the pertur-
bation is not small. It seems reasonable to expect this
result in general, so we use (25) as it stands, without
rigorous analysis. The integration may be carried out
directly, from (22), and gives

Q = —Ao)(m co,!mk) &(r/2) exp I
—(m co/h) (r/2)'I. (26)

Here r is the distance from P to P' and co/2~ is that
frequency with which the system would oscillate if con-
strained to move along the straight line PP' with a
potential energy which at every point P& on its path (see
upper part of Fig. 4) is given by the value of V, not at Pj,
but at that point P2, equally distant from the surface of
join-, where the wave function has its maximum value.
The contour representation of the wave function in the
figure is drawn in such a way as to emphasize that in
general no normal mode of vibration will iie in the direc-
tion PP'.

Following the methods used in reference 9, we find for the
normal vibrations of neon characteristic energies ranging
from A~~ ——0.8 mMU to Acing =2.2 mMU. An estimate for the
value of the vibrational exchange integral is obtained from

Eq. (26) by substituting for co a harmonic mean of the 9
characteristic frequencies, and for r' the value 0.74c'
mentioned earlier. Kith ken = 1.2 mMU and r = 7.8&(10
cm we find Q = —0.17 mMU, v hich is the value used above
in discussing the energy level perturbations shown in
Fig. 3. It is of interest to note that the value of the vibra-
tional exchange integral given by (26) will for no value of co

ever exceed in magnitude the limit Q= —0.925k'/m r'.

III. FIRST EXCITED STATES OF HEAVY NVCI.EI

The actual behavior of nuclei cannot be repre-
sented in any mathematically rigorous form;
we must be conte'nt to estimate the order of
magnitude of the excitation energies as they
~ould follow from the simplest possible assump-
tions. We must investigate in particular in

what way the excitation energies will change if
the number of the nuclear constituents increases.

The reason why the first excited rotational
levels will be strongly disturbed is that the
phase of the wave function will be changed by
a rotation. If a further small displacement of
the alpha-particles suffices to complete an ex-
change of the constituents (and restore the sign
of the wave function) then it follows that the
phase of the wave function must change on a
comparatively short path. Such change of phase,
however, requires an increase of kinetic energy
unless a potential barrier forces the amplitude
of the wave function to approach zero irrespec-
tive of its phase.

Alpha-particle model

We shall first assume that no potential
barriers are present. Let a nucleus composed of

alpha-particles" be pictured in the 3N„-
dimensional configuration space. A phase change

y over a distance r will cause the momentum to
increase by the amount Sto/r, where r' is the sum
of the squares of the displacements of the
alpha-particles. If originally the momentum and
kinetic energy were zero, the result would be to
increase the energy by Ii'y'/2mr' Even if in .the
original case a considerable zero-point energy
and corresponding momenta po are present, the

'2The 'nucleus is assumed to be composed of alpha-
particles rather than of protons and neutrons in order to
simplify the argument. A detailed consideration of particles
which possess spin and obey the Fermi statistics would
lead in a more complicated way to results similar to those
obtained in the text.
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average increase of the kinetic energy is still

{po+I'ip/r }i '/2m —p '/2m = Ii'q '/2mr' (27)

given by
I= 10 "(18/ir') &X.'"m.P. (31)

r'~ N. (8/2) ', (28)

where N again is the number of alpha-particles
and b is their average distance. We thus obtain
for the probable increase in excitation energy"

since the expression {poky/r }i, vanishes, because
of the random direction of Po in the unperturbed
state.

In order to obtain the perturbation of the
rotational levels, the expression Ii'p'/zmr' should
be averaged over all orientations. For an order
of magnitude estimate, it will be sufficient to
substitute both for y and for r their maximum
possible values. Thus, we set

Thus we obtain

(32)

which for heavy nuclei gives an angular quantum
number J, ,=8.

Another characteristic J value is the one
above which the order of rotational levels will

become normal. We shall call this J value the
quantum number of collective rotation, J„i,
since for higher angular momenta the rotational
energies approach those of a rigid body. We
obtain for J„ithe relation

(&'/2I) {(I..i+1)(I..1+2)—&col(&col+1) }

4m'Ii'/2% m P, (33)

AE~4ir'5'/21' m 8' (29) which leads to

It will be seen that this quantity decreases with
the —1 power of the mass and reaches for heavy
nuclei a value of about 100 kilovolts. Thus,
according to this picture, we shall not expect in
general an excitation energy of less than this
order of magnitude for nuclei of any atomic
number. Exceptions may occur if the nucleus
has a spin due to the spin of protons or neutrons;
then the lowest excitation energies might be
determined by spin-orbit interaction rather than
by the factors considered above.

In the model just described, no definite
statement can be made about the angular
momenta of the levels. Of course, if the nucleus
is composed of alpha-particles obeying Bose
statistics, the wave function for the lowest level
must not have any nodes and must thus belong
to the quantum number J=O. The first excited
level, then, may have any J value for which the
rotational energy does not considerably exceed
the AE given in (29). Therefore we have for the
probable upper value for the rotational quantum
number J. , of the first excited state the relation

Ii'I.„.(I.„,+1)/2I 4i'r'I'i'/2% m 8'. (30)

Here I is the moment of inertia of the nucleus,

"This estimate of the first excitation assumes that of all
the low lying levels that for J=o is the only, one which,
due to the favorable phase relations, is not raised.

(34)

5J..i/zirI AE/zmfi, (35)

which is equivalent to Eq. (33).
To obtain an interpretation of J,„„we shall

compare the time necessary to rotate an alpha-
particle on the surface of the nucleus through
half the distance between two alpha-particles,
with the time 5/AE required for an essential
disturbance of the phase of the wave function
by the displacement of the alpha-particles. We
then have

(36)

which leads to a value for J,„, differing from

For heavy nuclei J, & is about 36, and the
corresponding energy of rotation is E„& 2 Mev.
Therefore one cannot expect to determine the
moment of inertia of a nucleus described by our
present model from a study of energy levels and
their angular momenta, since in the region where
the rotational levels assume their proper order
there will be present a great number of vibra-
tional excitations.

Another interpretation for J„i is obtained by
comparing the classical frequency of rotation
with the frequency of the small displacements
which complete the rotational exchange of alpha-
particles. This comparison gives
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For the maximum angular momentum of a
particle we obtain

P r/5=2. 4(X/4)&=2. 4N &. (38)

The close resemblance between this value and
J,„, may be explained in the following way: if
the neutrons and protons are supposed to move
in spherically symmetrical fields and if their
angular moments are composed according to the
rules of vector addition, the lowest state will

become an S level in consequence of the attrac-
tion between constituent particles. If, then, one
neutron or proton is lifted to a level of the same
or a neighboring shell a group of excited levels
will result the average angular momenta of
which will be comparable with the value given
in (38). Thus the J values for the lowest excited
states will be similar for the e-particle picture
and the Thomas-Fermi model.

An estimate of the energy of the first excited
state in the Thomas-Fermi model reveals no
immediate agreement with the alpha-particle
picture. If the excitation energy AE is due to

"Similarity of results may be expected in view of the
comparison carried out by Euler, Zeits. f. Physik 105, 553
(1937).

that given in (32) only by the factor (m'/10)'*.
For J values smaller than J, , it is impossible

. to follow the rotation of the nucleus, even if we
restrict ourselves to an angle 8/2r and if we use
the best possible method of folIowing the rota-
tion, that is, a coordinate system fixed by a
statistical study of all alpha-particles.

Thomas-Fermi model

In the above estimates, we used a model in
which alpha-particles could exchange without
crossing potential barriers. It is of interest to
see how these results compare with estimates
which one can obtain from the Thomas-Fermi
model of the nucleus. ' We consider a nucleus
which consists of X particles (protons and
neutrons). The number of protons and neutrons
shall be even and equal, so that each cell in

phase space will be occupied by four particles.
If the radius of the nucleus is r and the maximum
momentum P, we have for the volume in phase
space

(4m/3)P '(4~/3)r'=(X/4)(2~5)'. (37)

the transition from one shell into the next one
we may write

AP=P AP /m~, (39)

where AP, the change of momentum of the
excited neutron or proton, is given by

(4vr/3)3P 'dP (4m. /3)r'=g(2mk)'. (40)

g is the degree of degeneracy in the shell into
which the neutron or proton is lifted. Dividing
(40) by (37) we obtain

36P /P„, =4g/X. (41)

Since the density of nuclei is roughly constant
P will not vary with N in a systematic way.
However, g 2P r/5 will be proportional (ac-
cording to (38)) to Ã~. Thus we get

8P 'r 8 10'ev

3m~NS
(42)

This equation differs from (29) both in its
dependence on N and in the high values of
AE 2 10' ev which are obtained from it for
heavy nuclei.

The Thomas-Fermi model leads, however, to
closer agreement with the alpha-particle picture
if one carries out the discussion in greater detail.
We shal1 discuss two such improved pictures.

First we shall assume that we deal with an
incomplete shell and that the fir'st excited state
corresponds to the transition of a neutron or
proton from one degenerate state of this shell to
another. Then the excitation energy will corre-
spond to the diminished coupling of the particles
in the incomplete shell. Its order of magnitude
will be given by the change of interaction
between two particles in the same orbit. For
short range exchange forces this interaction will
be proportional to N '." Since for the lightest
nuclei the interaction is" of the order of 10' ev
to 4 10' ev for the heaviest nuclei excitation
energies of 10' ev are obtained. This, as well as
the dependence on K is in agreement with (29).

The above estimate was based on a model in
which the nuclear proper function is not simply

'~ W'igner has found this dependence from the application
of the symmetry properties of nuclear wave functions to
the kinks in the mass defect curve. See Phys. Rev. 51, 954
(1937).

"Breit, Condon and Present, Phys. Rev. 50, 825 (1936).
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a product function of the individual particles
but rather a linear combination of those products
which would have the same energy if each
particle is assumed to move in a spherically
symmetrical field. A second kind of improvement
on the individual particle approximation would
be to retain the product form of the proper
function but to drop the assumption that the
particles move in a field of spherical symmetry.
Then in estimating the excitation energy hB the
equations (39), (40) and (41) remain valid.
Only g must be set equal to one since the absence
of symmetry in the field will remove the de-
generacy of the individual particle proper func-
tion. Thus we obtain

3AP /P =4/N (41a)

and QB=4P /3nzlrN= (2.7 107/N) ev, (43)

which has the same dependence on N and the
same order of magnitude as (29).

Comparison with experience

Unfortunately there is no direct experimental
procedure to determine the position of the first
excited level of a heavy nucleus. The arguments
adduced in the introduction against low lying
rotational levels might be used however to test
the orders of magnitude we have obtained in

Eqs. (29) and (43) for the excitation energy.
We shall discuss here, only our last argument (6)
concerning: the stability of isobars and the
radioactivity of potassium and rubidium.

The upper limits of the beta-ray spectra of
potassium and rubidium are 7 10' ev and
2.5 10' ev, respectively. The explanation of the
long periods require that there should be no
levels in the product nuclei lying much lower
than the beta-limit (unless beta-transitions into
these levels are strongly forbidden). Thus we see
that the lowest excitation energy of suitable
angular momentum must be a few hundred
thousand volts in both cases; the limit is more
strict for the heavier element, rubidium.

The number of neighboring pairs of isobars
c~ be explained statistically if one postulates a
mechanism whereby sich a pair will be stable
whenever the energy difference between initial
and final atoms is less than 50,000 ev." Now

"Bethe and Bacher, Rev. Mod. Phys. 8, 199 {1936).

with a neutrino of zero mass a beta-disintegration
of this energy will yield too short a period of
decay if the transition is an allowed one. A
satisfactory explanation of the isobars can be
obtained, however, by assuming that the angular
momenta of the two isobars differ by three or
more units. If the difference in angular momenta
is great enough the energy difference might be
10' ev or even more. This explanation will only

.hold, however, if in general there exist in the
product nucleus no excited levels below 10' ev
with suitable angular momenta to which transi-
tions may occur. We see therefore that general
experience points towards a value of 10' ev
for the lowest excitation energy. The calculations
on the "thermal properties" of nuclei indicate"
that the lowest excited states cannot be much
higher than this quantity.

'

The eBect of potential barriers

In conclusion we shall discuss on the basis of
the alpha-particle model how the dependence of
the lowest nuclear excitation on N will change
if potential barriers must be crossed when the
alpha-particles are displaced. For the lightest
nuclei the transition from freely moving alpha-
particles to strongly bound alpha-particles is a
gradual one. As has been shown in the examples
discussed in the second section the low lying
energy levels approximate gradually the levels
of a rigid top as the potential barriers become
higher.

For heavy nuclei, however, even low potential
barriers which for light nuclei had no strong
effect will become important. The reason is that
in heavy nuclei many alpha-particles have to
cross the barriers which causes an increase both
in the effective width and height of the barrier.
Thus for heavy nuclei low lying rotational levels
can be avoided only if the displacement of the
alpha-particles can be performed on such a path
in configuration space on which the "kinetic
energy" of the system' never becomes negative.
It is sufficient to have low potential barriers to
effect a sudden change to the rotational spectrum
of a rigid body. This change may be called a
change of phase (or state) since it occurs suddenly
for a system of many particles.

Keisskopf, Phys. Rev. 52, 295 (1937); Landau,
Physik. Zeits. Sowjetunion 11, 556 (1937).
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It is interesting to note in this connection that
the low temperature modification of liquid
helium" has an unmeasurably small viscosity. '
Since helium does not solidify unless it is com-
pressed it is reasonable to assume that it is kept
in the liquid state because of the zero-point
vibrations of the atoms" which, for helium, are

» K. H. Keesom and M. Kolfke, "Comm. Phys. Lab.
Leyden, " No. 190b."P. Kapitza, Nature 141, 74 (1938); J. F. Allen and
A. D. Misener, Nature 141, 75 (1938).

"Simon, Nature 133, 460 and 529 (1934); F. London,
Proc. Roy. Soc. 153, 576 (1935).

comparable with the heat of evaporation. The
experiments on the viscosity of helium indicate
that in a "quantum liquid" the particles may
rearrange without crossing potential barriers.

The absence of low lying rotational levels in

heavy nuclei de6nitely indicates therefore that
if nuclei are to be compared with a phase of
matter in macroscopic experiments the correct
analog to use is not a crystallite but a droplet
of a "quantum liquid" such as the low tempera-
ture modi6cation of liquid helium.
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New Experimental Evidence for the Existence of a Neutrino

H. R. CRANE AND J. HALPERN

University of 3IIichigun, Ann Arbor, Michigan
(Received March 24, 1938)

A new method is used for determining the energy of recoil of the nucleus in the individual
beta-disintegration process. A gaseous compound of radiochlorine is placed in a cloud chamber.
The clearing field is removed long enough before the expansion to allow the ions to spread out
so that the resulting droplets can be seen individually. A cluster of droplets appears at the
beginning of the. track, and this is believed to be produced by the recoil nucleus. From the
number of droplets an estimate is made of the kinetic energy of the nucleus, and this is com-
pared with that calculated from the observed curvature of the beta-ray track, It is found that
the laws of momentum as well as those of energy indicate that a third particle participates in
the disintegration.

INTRQDUcTIQN

""N. the experiment to be described' the mo-
-- menta of both the electron and the recoil
nucleus have been simultaneously measured for
the elementary beta-disintegration process. This
is the 6rst experiment which has given any
information at all regarding the momentum
relations in the indhvidlal disintegration event.
Although the results are of limited accuracy,
they strongly indicate that momentum is not
conserved between the electron and the nucleus
alone. Hence the laws of momentum, as well as
those of energy, indicate that a third particle
participates in the disintegration.

The idea of observing the disintegration of a
substance in the form of a gas in a cloud chamber
has been suggested many times as a possible
way of measuring the momentum or energy of

' Halpern and Crane, Abstract 5, New York Meeting
of the American Physical Society, Feb. 25—26, 1938.

recoil and the direction of,recoil of the nucleus
emitting the beta-ray. The dif6culty with such
a scheme is that the length of track made by
the nucleus is far too short for observation, even
in a cloud chamber operated at the lowest
possible pressure. The nucleus will, however,
produce a number of ion pairs concentrated in
a very small region of space, and the number of
ion pairs will be a function of the kinetic energy
of the nucleus. It occurred to the authors that
if these ions could be allowed to diRuse into a
cluster several millimeters in diameter before
the condensation were brought about, the indi-
vidual droplets could be counted, and hence the
kinetic energy of the nucleus could be estimated.
It was found that this could be accomplished,
and by applying a magnetic 6eld to the chamber
it was possible to know the momentum of the
electron in each case, so that the estimated
momentum of the nucleus could be compared
with that of the electron.


