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from the back of the last slit seems to be definitely
outlawed. The effect could at best be only of the
second order of small quantities.

Just what mechanisms are involved in the
space charge detector containing gas and used for
fast ions is still diAicult to conclude. Scattering
from the walls and from gas atoms has already
been advanced. I am indebted however to
Professor L. B. Loeb' for an additional and
important suggestion concerning the operation of
the detector. If the filament of the detector is
run at a very high temperature and the applied
voltage is small, the space charge may be so
heavy that an actual positive ion trap or potential
trough of appreciable size exists between the
filament and cylinder. If as the result of collisions
or any other process, a positive ion finds itself in
this trough with insufficient energy to escape, it
may be extremely effective in neutralizing
electron space charges. That this does occur is
indicated by the frequent observations of the
writer of an apparent increase in sensitivity of
considerable magnitude with increase of filament
temperature. Neither the space charge limited
current nor the applied voltage was allowed to
vary as the temperature was raised. The filament
was already far into the space charge controlled
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region of emission at the start. The slight
increase in potential drop down the filament was
readily shown to be inadequate explanation of
the sensitivity increase, for the plain variation of
the applied potential gave no such effect.

Rostagni' has challenged the writer's negative
results in some cases on the grounds that such
results are surprising after all the positive ones
with other noble gases. Without attempting to
discuss what should or should not be expected,
the writer feels obliged to point out that his
statement that ionization efficiency in helium
must be less than 5 percent of that in argon is
hardly a denial of all ionization of helium by
helium atoms. Rostagni's challenge could possibly
be directed at the smallness of the result but not
at its absence.

It has been pointed out previously, further-
more, that Beeck's data on the onset of ionization
by positive ions fail to be even self-consistent in
the cases (and only in those) where the writer has
found no ionization by the balanced space charge
method. Rostagni's' brilliant work on ionization
by neutral atoms is clouded by a similar difficulty;
the onset potential has been observed in every
case to rise as the atomic weight decreases and as
the ionization e%ciency decreases. His result on
He —He is the only one incompatible with this law. .
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Atoms the normal states of which are not S states ex-
perience quadrupole-quadrupole repulsive and attractive
forces which vary as the inverse fifth power of the separa-
tion distance. At large distances, exchange being negligible,
the expression for the interaction energy contains as factors
two atomic coefficients and a root of a secular equation
determined by the molecular state of the system. For a
given atom the coefficient is determined by the nature of
its lowest level. If one uses the Hartree-Fock approxinia-
tion, it is proportional to the average of the square of the
radial atomic distance for those electrons with orbital

angular momentum not in complete shells. Atomic coeffi-

cients have been calculated for most of the atoms of the
periodic table having incomplete p and d shells and the
secular equations have been solved for a number of cases.
At distances of twice the sum of the atomic radii, diatomic
molecules resulting from the combination of such atoms of
the first row of the periodic table have quadrupole-quadru-
pole energies of a few tenths of a volt, such energies be-

corning rapidly larger for smaller distances because of the
inverse fifth power dependence.

w HEN two atoms are far enough apart
that overlapping and consequent exchange

effects are negligible, the interaction can be con-
sidered as being composed of mixed terms of
different pole strengths. The terms are obtained
from the expansion of the potential in a Taylor's
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series in inverse powers of the interatomic dis-
tance. If the atoms are different, the dipole-dipole
and dipole-quadrupole first-order interaction
energies are zero because of the odd parity of the
dipole portions of their potential terms. That is
to say the expression for the energy is the sum of
pairs of integrals, each referring to one atom
alone. The integrand of each contains the product
of two atomic functions, which product is even
under inversion since the functions belong to the
same atomic configuration. In addition each
integrand contains a linear or quadratic function
of the electron coordinates, referred to the nu-
cleus of the atom in question. For first-order
dipole-dipole or dipole-quadrupole interactions
at least one of the any pair of such integrals
contains a linear factor in its integrand, which
being odd under inversion causes the integral to
vanish. Moreover if either atom has spherical
symmetry (S state), the first-order quadrupole-
quadrupole energy is zero. Nonvanishing first-
order dipole energies are obtained only if the
atoms are the same and are in states with dif-
ferent parity. Second-order interaction energies
do not in general vanish. They are sometimes
referred to as polarization or induced energies.
Since for two neutral atoms the expanded poten-
tial begins with the inverse third power of the
interatomic distance, second-order energies vary
with the inverse sixth and higher inverse powers
of the distance. These interactions are those
which produce van der Waals forces. They were
first discussed extensively on the basis of quan-
turn mechanics by London. ' The most careful
studies have been made for hydrogen and
helium '

Many atoms are not spherically symmetrical
in the ground state; for these the quadrupole
moment does not vanish. If we have two such
atoms, there will be, in general, a nonvanishing
first-order interaction. The quadrupole-quadru-
pole potential term varies with the inverse fifth
power of the distance. London has noted in this
connection that for two rotating molecules the

' F. London, Zeits. f. Physik 63, 245 (1930).
2 Slater and Kirkwood, Phys. Rev. 37, 682 (1931);H. R.

Hasse, Proc. Camb. Phil. Soc. 27, 66 (1931);H. Margenau,
Phys. Rev. 38, 747 (1931);Pauling and Beach, Phys. Rev.
47, 686 (1935).

quadrupole-quadrupole interaction energy will
depend on the relative orientation of the two
angular momenta. ' The diagonal terms of the
energy of interaction of two rotating neutral
systems have in fact their dependence on orien-
tation given by

(1/R') I J(J+1) 33P—I I J*(J*+1)—3M*'I

where J, 3II; J*, M* are the angular momentum
and magnetic quantum numbers describing in

part the states of the two systems and R is the
separation distance. As London has pointed out,
the interaction vanishes oo the average over all
orientations. However nondiagonal terms must
be considered in an accurate treatment of the
problem.

, 2

Let us introduce for .the two atoms parallel
sets of Cartesian axes, one with its origin in each
nucleus, and let each have the s axis along the
internuclear line. We shall use an asterisk to
distinguish quantities referring specifically to
the second atom. Thus coordinates, quantum
numbers, wave functions (or states) are written,
for example, x, 3II, 4' when they refer to the first
atom and x*, M~, +* when they refer to the
second. If we have but two electrons, one near
each nucleus, the expression for the quadrupole-
quadrupole potential energy is

(3e'/4R') I
r'r*' —5r's*' —5r*'s' —15s's*'

+2(xx*+yy* —4ss*)'I . (1)

It is convenient to write this in terms of the fol-
lowing functions,

These functions have the property that they are
partners belonging to the rows of the five-
dimensional irreducible representation of the
three-dimensional rotation group, which property

' F. London„Zeits. f. physik Chemic B11, 222 (1931),
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e' W/R' =—(e'/R') Pa(m) F(m) F*(—nz),
tn

a( —2) =a(2) =1,

a( —1) =a(1) =4, a(0) = 6.

(3)

The calculation of the energy of interaction of
atoms at large separation distances is com-

. plicated by the fact that the atomic spin-orbit
energy differences may be of the same order of
magnitude. The doublet separation is only
0.0018 ev in the lowest term of boron but in the
lowest term of thallium it is 0.94 ev. The limiting
cases in which the energy differences are very
small or very large compared to the interaction
energy are most easily treated. For some atoms
the atomic splitting is so small that it is negligible
over a rather wide range of R. For other atoms
it is at large distances much larger than the
interaction; then at smaller distances the inter-
action becomes comparable to the splitting; at
still smaller distances the molecular interaction
is the dominant portion of the energy. We dis-
tinguish therefore the cases that the splitting in

both of the atoms is negligible, the splitting in
the first atom is large and in the second is
negligible, and the splitting in both is large.
Whether one of these cases is applicable to a
pair of atoms depends of course on the value of
R. Transition cases involve very complicated
treatment except in the very simplest cases.

Let us suppose that Russell-Saunders coupling
to exist in the states of the atoms. We restrict our
attention to the states of an atom belonging to a

is helpful in evaluating matrix elements. Ex-
pression (1) becomes

(&'/&') I f(—2)f*(2)+4f( —1)f*(1)
+6f(0)f*(0)+4f(1)f*(—1)+f(2)f*(—2) I . (1a)

We define for a given atom the functions

F(m) =Pf(m), (2a)

where the summation is over all the electrons
N of the atom. These atomic functions have

the same rotational properties as the one electron
functions. Summing (1a) over the electrons
1. N of the first atom and N+1 .N* of the
second atom, we obtain for the quadrupole-
quadrupole interaction potential energy

definite term, distinguished by a symbol
indicating the configuration of which it is a part
and definite L and S indicating the total orbital
and spin angular momenta. ' Even or odd parity
we distinguish by co = ~1. If the spin-orbit
splitting is neglected, all the levels of a term fall
together and the atomic states are best described
in the SLiV~2tf1, coupling scheme. On the other
hand if the levels of a term are widely separated,
we need consider only states of a given level,
indicating the total angular momentum by J;
under such circumstances the SLY coupling
scheme is most suitable.

Let us now consider the case in which the
atomic spin-orbit splitting is negligible. The
characteristic values of the observables of the
widely separated system are pcsSIM,&3fI, ,

y*co*S*I*M*sM*q.Let 4(Msgr', ) be the Schro-
dinger representation of the state of the first
atom and 4'*(M*sM*I,) be that of the second.
We choose the relative phases so that the func-
tions are partners belonging to the rows of the
direct product of the Sth and Lth irreducible
represeritations of the three-dimensional rotation-
reflection group. ' In neglecting exchange we
we could very well use as our functions for the
system simple products of the atomic functions.
It is however almost as easy to use functions
antisymmetrical in all the electrons. Such a
presentation has the advantage that the cor-
relation between atomic and molecular states is
more apparent.

We first note that the original interaction
energy was symmetrical in all N+N* electrons
of the system while (3) is not. An unsymmetrical
expression has been obtained from a symmetrical
interaction by assuming particular electrons to
belong to a given atom; a specific assignment is
necessary if we are to expand the potential at
this point of the treatment. If we use completely
antisyrnmetrical wave functions, the expansion
cannot be made until the functions have been
substituted in the matrix integral and the latter
reduced to expressions in which there are specific
assignments of the electrons in each function.
Those terms in which electrons are assigned to

4 We use for the most part the atomic terminology of
Condon and Shortley, Theory of Atomic Spectra.' More accurately of the "unitary group" or the group
of the two-dimensional unitary matrices of determinant 1;
see. for instance, Wigner, Grlppentheorie.



QUADRUPOLE-QUADRUPOLE INTERATOMIC FORCES 737

different atoms will be small under the assump-
tion of small overlapping. We therefore retain
only terms in which the assignment is the same
for each atom. It is then possible at this final
stage to substitute. expressions like (3) for the
in teraction.

It is simpler, however, to define from the
start a function similar to (3) but having the
desired property of symmetry and giving the
same result for the energy as obtained by the
process outlined above. We add to the definition
of TV the restriction that it vanish when the
electrons 1 N are not associated with the first
atom and t.hen sum over all exchanges Q, that
is all permutations which lead to an ordered
assignment in each atom. We obtain the sym-
metrical in teraction

which have been built up out of simple products
by use of the vector model and belong to the Sth
irreducible representation of the three-dimen-
sional rotation group. The coefficients on the
right are the elements of the usual transformation
matrices for angular momenta.

Take first unlike atoms and A &0. Let
c= coco*(—)~+z . The two antisymmetrized func-
tions

P(SZAcVg) =A'q (SZcVg, A —kg),

c(—)~P(SZ, —A, —kg)
are partners belonging to the two rows of the
Ath representation of the two-dimensional rota-
tion-reflection group. The operator A' is defined
as

A' = (E!N*!/(N+N*)!)&P(—) 'Q,(3a)

where Q, as before, is a permutation which leads
to an ordered assignment of electrons in each
atom and q is the parity of Q. For a given h. ,

M~ takes on the following values (L &~I.*)

L+L*&~ A ~& L L~+1, —
3IIg ——L„L—1, , A. —I*;

L, —L,+&X&O,

IV z=A+L*, A+L* 1, . , A —L,*. —

This can be seen either by constructing a diagram
or by calculating the character of the reducible
representation. In addition we have for A=0

Mr, I.*, I."—1, . & 0,——(Sa)
'I.

P(SZ b0) =A'p(SZ 00).

The functions g(a) are positive (Z+) if c= —.1,
negative (Z ) if c=1. On the other hand the
functions P(b) are positive if c=1, negative if
c= —1. For a given c these functions belong to
different irreducible representations. The matrix
T is diagonal in S, Z, and A (also a and b) and
moreover elements in which both states are
replaced by partners will have the same values.
The diagonality in S results from the fact that
T is independent of the spin and therefore is

' Condon and Shortley, reference 4, p. 215.

(e'/R') T= (e'/R') QQ W
Q

As before, in computing energy matrices we
finally obtain elements in which the electrons
are assigned to specific atoms; we retain only
those parts in which the assignment is the same
for both functions for each atom. On introducing
T there is only one term in the sum over Q
which does not give zero, namely that which has
the same assignment.

The symmetries of the system are those of
rotations around the internuclear line, reflections
in planes through this line, and in the case of
like nuclei of inversion, that is reflections in the
midpoint between the nuclei holding the nuclei
fixed. The states of the system will, correspond-
ingly, have quantum numbers A and Z for the
total orbital angular momentum and spin along
the axis, be positive or negative (of importance
only in Z states), and for like nuclei be g or u.
The possible molecular states and their relation
to the states of the atoms when widely separated
have been considered in detail by Wigner and
Witmer. '

Let S be the total spin of the system.
Its possible values are S+S~, S+S*—1, ~

~S—S*~. We define the functions

q (8Z3IIzM*r, ) = Q%'(3IIsMz)
MB

&& +*(Z—MsM*r) (SS*MsZ 3IIs
~
SS*SZ), (4)—

' Rigner and Witmer, Zeits. f. Physik Sl, 859 1928; also
R. S. Mulliken, Phys. Rev. 36, 1440 (1930); F. Hund,
Zeits. f. Physik 63, 723 (1930). For a good discussion see
H. Sponer; 3IIolekNlspektrum, II pp. 132—137.
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symmetrical under all rotations of the spin axes
alone.

Let us compute the matrix of W using the
functions (4). It is no longer necessary to carry
the quantum numbers SZ. We find, because of the
unitary nature of the transformation coefficients
and the fact that the spin is not contained in 8',

(Mr. 'M*L'~ W~ ML, M*r.)

= pa(m) (I.ML'
~
F(m) I LDLL)

m

X (L*M*L'
~

F*(—m) ~ L*M*L). (7)

Now the functions J'belong to the representation
2 of the three-dimensional rotation group. The
product F(m)%'(ML) occurring in the erst of
the elements on the right can be resolved by the
vector model into a sum of functions y belonging
to representations L' according to the relation

e(M )F(m) = ZX(L2I.'ML+m)
X (L2L'Mr. +m

~

L2MLm), (8)

where again we have as coeAicients the trans-
formation functions for angular momenta. The
summation is over the values I.'=L+2,
~L 2~.—Except for the case L=0 (Sstate), there
is a x in the sum belonging to the I.th repre-
sentation. We have

(LML'~ F(m) ~LML) =A(I)5(ML', ML+m)
X (I 2Mrm

t
L2LMr. '), (9)

using the orthogonality theorems for the scalar
product. A(L) is the scalar product of +(ML)
and y(ML) and is therefore independent of 3II

and m. In this way we obtain for (7)

(ML'M*L'I W~ MLM*L) =A(I)A*(I*)
X &(ML'+M*r. ', Mr. +M*r)rr(ML' Mr)—
X (L2MLML' —ML

~

L2LMr ')
X (L*2M*LM"L' —M*L

~

L*2L*M*L'). (7a)

The non-zero elements of T for the states of
(5) and (Sa) (unlike atoms) are found to be

(A.ML
~
T~AML) (ML A ML j~ W(ML) A ML)y

(a a —Mr. )~ (ML', ™L'
I Wj —ML ML),

&fr b i
(trML' T~b0) =&2(3IIL',. —ML'~ W~00),

(botT-ufo) =(Ooi WioO).

(10)

On the other hand P(f) is g if S is even, u if S
is odd. Moreover the states p(e03IIL) are negative
and the states $(f03IIL) are positive. We have
then the correlation (A =0) that negative states
are g if S is odd and u if S is even, while positive
states are g if S is even and u if S is odd. These
functions belong to different representations of
the group of inversions in the midpoint between
the atoms. When A. / 0, they belong to the
second row of the A.th representation of the two-
dimensional rotation-reHection group, their part-
ners being the functions obtained by changing
the signs of A and ML and multiplying by (—) ~.

The non-zero elements of T for the states of (11)
and (11a) are

Take next like atoms. The additional sym-
metry gives a reduction of the energy deter-
minant, for g and u states do not mix. We define
the functions

and in addition if A. is even

P(SZfA ,'A) =A'q (SZ2A-', A). -(11a)
P(e) is g if S is odd (molecular triplets, etc.),
u if S is even (molecular singlets, quintets, etc.).

e $ 1
p} SZ AML }

=—A'Iq(SZML, A —Mr)

WP(SZ, A 3IIL, ML) I, (11)—
Mi —I., I.—1,

(e e
AML

}
= (ML' A —ML'I WI ML A —ML) ~ (ML', A ML'I Wl A —ML M')—

&f f i (12)
(fAML'( TifA ', A) =&2(ML', A ——ML'(W(-,'A-', A),

(fA ', A[ T]fA ', A) = ( ',-A ,'A I W( ', A-,'A). --—-
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Let us next consider brieHy the case of two
different atoms in one of which the atomic spin-
orbit 'splitting is large and in the other it is
negligible. We describe the states of the first
atom in the SIJM coupling scheme, keeping the
second in the SI.3f~3III, scheme, and consider
only molecular states arising from a given
J level. Introducing the new function

y(JS*M*sMM*r) =+(JM) +*(3II*sM~i) (13)

we have at large distances the molecular states
represented by the functions

depend on whether I.* is larger or equal to or
less than J.We shall not write down the detailed
expressions, for they are quite similar to the
corresponding restrictions of the last section in

any given case. There is one peculiarity which
we note. The simultaneous rotation of spin and
position axes does not give us a transformation
group that is particularly useful. Instead we
might introduce an artificial type of spin trans-
formation depending on the space state of the
particle in question. This is not necessary how-
ever, for one readily sees that T is diagonal in
I' and 3SI*~. Ke define the expression

f(JS*M* FM) =A'y( JS* M* M, I' —M), (14) (JM'M* 'i W~ JMM*I)

for F/0. If. J is an integer, I' can in addition
have the value zero, for which value we define
the functions

a
P} JS*M,, M }=—A'I, (JS*M*,M, —M)

b ) K2

wq (JS*M*s, M, M) I,—M AO; (14a)

= Pa(nz) (JM'
j F(m)

~

JM)

X (L*M*.'
~

Z*(—~)
~

L*M*.)
= C(J)A*(I.*)h(M'+ M*I,', M +M*I )

Xa(M' M) (J2MM—' M}J2JM'—)
X (L*2M*~M*~' M"~ l L*2—L*M*~'). (15)

P(JS"M*s b 0) = A'p( JS* M* s00). C(J) is a scalar product independent of M and is
zero if J is zero or one-half. In terms of this

The possible values of M in these expressions expression the non-zero elements of T are

(Jf M'
~
T

~
J1 M) = (JM', r —M'

~
W~ JM, r —M),

a c
I
J M'ITIJ M }=(JM' —M'I~I JM, —M)~(JM' —M'I~I J —M M)

(JbM'~ T~ Jb0) =&2(JM M
I
Wl JOO)

(Jb0
i
T i Jb0) = (JOO

i Wi J00).

Ke come finally to the case in which the spin-
orbit splitting of the atomic term energies is
large in both atoms. A11 atomic states are repre-
sented in the SIJM scheme. The molecule has
a quantum number 0 for the total angular
momentum along the internuclear line. The
components of the orbital angular momentum
and spin are not defined separately. We introduce
the function

q (JJ*MM*)=e(JM)g*(J*M*).
Consider unlike atoms and 0/0. Let

The two antisyrnrnetrized functions

P(JJ*DM) =A'p(JJ*3I, D 3'), —
d( —)"P(JJ", —0, M), —

J+JQ) g) J JQ+g

(19)
3II J, J 1, , Q J-

J—J*)O&0,
M=n+J*, ~+J*—1, , 0—J*.

are partners belonging to the two rows of the 0th
representation of the two-dimensional rotation-
reHection group in which the rotation of the spin
as well as the position axes is carried out. For a
given 0, M takes on the values (J&~ J*. )

d = (vcr*( —)~+~ . If J and J* are integers or are half-integers, 0
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can in addition have the value zero. We define
in case 0=0 the two sets of functions

matrix T is diagonal in n (and a and b) We can
express the results in terms of the expression

( 6 i 1

b ) } ( )

(18a)
wp(JJ', —M, M) },

(JJ*M'M*'I WI JJ*MM*)

= Qa(m) (J3II'I F(ns) I JM)

X(J*M 'I F*(—m) I
J*M*)

= C(J)C*(J*)8(M'+M*', M'+M")

Xa(M' —M') (J2MM' —M
I
J2JM')

3f=J*,J*—1, &0,

including if J and J* are integers,

$(JJ*bo) =A'P(JJ*00). (18b)
X(J2MM M IJ2JM ). (20)

The functions P(e) are positive (0+) if d= —1,
negative (0 ) if 8=1 while the functions P(b) The non-zero elements of T for unlike atoms are
are positive if d = 1, negative if d = —1. The found to be

(JJ*nM'
I
T

I
JJ~MII) = (JJ*M', n 3II'

I wI JJ*—M, n —M),

M
I
=(JJ*M', .—M'I WI JJ"M, —M)+(JJ M', —M'I wI JJ*, —M, M),

b b )
(JJ*bM'I TI JJ"bo) =&2(JJ*M', —M'I WI JJ*00),

(JJ*boI TI JJ*bo) = (JJ*ooI wI JJ*oo).

(21)

f(JJfn-,' n) =A'q (JJ-', n-,' n).For like atoms in states of the same configura-
tion and term (y*=y, S*=S,I.*=I., a&*=a&) and
the same J values, we define the functions

(22a)

P(e) is u if J is an integer, g if J is a half-integer.

P(f) is g if J is an integer, u if J is a half-integer.
When 0/0, these functions belong to the second
row of the 0th representation of the two-
dimensional rotation-reAection group, their part-
ners being the functions obtained by changing
the signs of 0 and M and multiplying by
(—)'~+". For n = 0, g functions are positive and u
functions are negative. The non-zero elements of
T for like atoms with J*=J are found to be

3SI=J, J—1, . ~ )pQ.

If J is an integer and 0 is even or if J is an half-
integer and 0 is odd, we have in addition the
function

( e $ 1

yI JJ nM }= A},(JJM, n-M—)) vZ
~ p(JJn M, M) }, (22)—

e e
nM I=(JJM', n —M'IWI JJM, n —M)~(JJM', n —M'! Wl JJn —M, M),

E f f )
(JJfnM'I Tl JJfnkn) =&~(JJM' n —M'I WI JJ2n2n)

(JJfn-,'nITI JJfn-', n) =(JJ-;n-,'n! w!JJ,'n ,ni. --
(23)

The remaining possibility of like atoms in
states belonging to the same configuration and
term but with diferent J values leads to ex-
pressions which are somewhat more complicated
than those considered because the coefficients
involve both J and J*. Since we are primarily

interested in the lowest states of the atoms, we
shall not discuss this case.

The elements of the matrix T in the cases
discussed have as a common factor the product of
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0 ea —1.014 a —1.225 a —1.305 a

1.5
1.5

2.4 ea
0 ea

2
2

2.774 ea—1.060 ea

3.6fb
0 fb

2.324 b 2.096 b 2.013 b—0.295 b —0.382 b —0.418 b
3.2 fb-0.8 fb

3.261fb
1.508fb—0.484fb

1 0 e

—2.4f

2.456 2.061 1.972 —1.6 e
0.047 —0.170 —0.289—1.489 —1.401 —1.392

1.2 f—0.8 f

1.202 e—0.917 e

1.127f—1.413f
0.356—2.891

2.199
0.230—1.939

1.367
0.347—1.424

0.4 e —2.000 e

TABLE I, ) (hh*b) for integral b. If 0 is not sero there are
two states for each number listed. If the atomic term splitting
is negligible in both atoms (h=I., h*=L~, 5=4), the letters
mean tke following: Iet c=coco*(—}~+~*.If the atoms are
diferent, an a after a number means that the state is Positive
(Z+) if c= —1, negative {Z ) if c=1, while b means that tke
stateis positivei f c=1,negative if c = —1.If the atoms are the
same, an e means the state is g if the molecular spin is odd,
u if itis even. An f ryeans that the stateis g if the spinis
even, u if it is odd. Also for 4=0 states mitk e are negative
and states with f are positive. For other cases see the text.

formally the same as for like atoms. It can be
shown that T has no cross terms between these
two groups and that the determinant is the same
as obtained from the expressions for like atoms,
that is from (12) or (23) on dividing out the
coeAicients. Thus we have the simplifying result
that the dimensionless determinant depends only
on the numerical values of the pair of numbers

h, h*. We shall designate the roots of a sub-
determinant by X(&&*5). How many roots there
are for a given 8 depends in general on how many
times the 8th representation is contained in the
reducible representation obtained from. the
transformation under two-dimensional rotations
and reflections of all the possible simple product
functions of the atomic states.

Roots of the dimensionless determinant for
some values of k and h* are given in Tables I
and II.

0.&f —2.8f 0.857f—1.857f
1.014 0.646 2.032—3.096 —0.032—1.7 10

0.857 e

1.2 —2.571f

The atomic coefficients A(L) and C(J) are
defined by the relations

1.225 0.853
3.222

1.354

1.714f

2 (I ) (L2MI, O
i
L2I Mr.)

=(LMl,
i F(0) iLMg), (24)

C(J)(J2MO~ J2JM) =(JM~ F(0)
~
JM).

two atomic coe%cients. Dividing by this common
factor we obtain the elements of a dimensionless
determinant the roots of which are needed to
describe the quadrupole-quadrupole interaction
between atoms.

In general let h, h* be a pair of numbers,
integers or half-integers, corresponding to I., L,*;
J, I*;or J, J*.Let 8 stand for A, I', or 0 as the
case may be. The range of the remaining
parameter (Mz or M) is essentially the same in

all three cases. A comparison of (7a), (15) and

(20) shows that for the same numerical values

k, k* the elements of W are the, same aside from
the atomic coefficients. If 0* is numerically
different from h, we see from (10), (16) and (21)
that on dividing out the atomic coefficients the
dimensionless determinants are the same. For
unlike atoms with h*=h there is one further
simple reduction of the determinant possible. In
this case (I.*=I,I.*=J, or J*=J) we can form
linear combinations P(e) and P(f) which are

h =1.5
h* =1

0.5 2.746
0—1.049

2
1.5

2.864
1.551—0.377—1.168

4.5
1

1.977—0.399—1.345

1.5

2.5

0.176
-2.722

0.848

0.916—1.195—1.872

0.619—2.770

1.916—0.206—1.476

1.883
0.125—1.774

3.5

4.5

1.434 2.054
0.518—2.339

0.934—3.270

5.5 1.401

To obtain explicit expressions, we transform to
the zero-order representation scheme charac-
terized by the one-electron quantum numbers
u =nine, m~. If we let A stand for the collection of

TABLE II. X(hk*b) for half-integral B.
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such quantum numbers in a zero-order state of an electron in an nl state. We note that since the
the atom, we have for A(L) the relation coefficient

A (L) (L2IrIz.0
l
L2LM r) = p (ysLIrIsIrIr,

l A)

X(A lFlB)(BlysLcVsMr) (25)

But only A =B terms occur or are diferent from
zero. For (A l FlB) vanishes if A differs from B
by more than one individual electron quantum
number set and has the value & (a lf l

0) if all sets
but a4b are the same. But even this term is
ruled out since if all but one of the mg are the
same, they must all be the same because of the
condition Znz~ ——M~ for both A and B. We have
therefore for (25) the expression

3m P —l(l+ 1)
(12mi0

l
12lmi) = (29)

L(21—1)l(l+1) (2l+3) 7l

when summed over the electrons in complete
shells gives zero, contributions to A (I.) will come
only from incomplete shells. All atoms whose
normal states are not S states have one incom-
plete shell having angular momentum. We can
write

A(L) =B(L)(r')" C(J) =D(J)(r')" (30)

The second factor, in each case is the average
value of r' for electrons in that shell. We have

2 I (vsL~s~~ I
A)'Z(ii If ln) I (26) l(l+1)

B(L)=(—)—
(21—1)(2l+ 3)

But (»mi0I»imi)
(31)l(l+ 1) g (&SLm,~.lA)'p ——

(nlfl&) =(—)— ~, (L2311 1,0 l
L2LIrII.)

(2l —1)(2l+ 3)
Likewise if we start in the SLJM scheme we

X (l2m i0
l
121m i) (r')«, (27) obtain

where

(r')A, drr'R(nl)'&-—
a p

(28)

R(nl) 1'r is the radial part of the wave function for

( )
D(J) =(—)

(2l —1)(2l+ 3)

(»m, o
l
l»m, )

P (&SLJmlA)~g . (32)
, (J2MOl J2J1V)

TABLE III. Atoms with incomplete p-shells. A star after an element means the spin-orbit splitting of the lowest energy term
i s less than 0.036 ev. Abbreviations (s.c) and (s.c.f) are used to distinguish numbers obtained using shielding constant and self-
consistent field vllave functions, resPectively.

GROUND LEVEL rrI1, IN BoHR RADII (r2) „(np) IN (BOHR RADII)~

ELEMENT

Al*
Ga
In
Tl

Si*
Ge
Sn
Pb
0g
S
Se
Te
F
Cl
Br
I

np

2P
3p
4p
5p
6p
2p'
3p'
4p2
5p2
6p2
2p4
)p4
4p4
5p4
2p'
3p5
4p5
5p5

3jP

3g

2P O

—0.6325

+0.6325

—0.6325

+0.6325

D(J)

—0.3743

+0.4472

(s.c)

1.54
2.57
2.74
3.20
3.53
1.23
2.17
2.42
2.83
3.12
0.88
1.65
1.97
2.30
0.77
1.48
1.80
2.11

(s.c.f)

1.80

1.26

0.85

0.73

(s.c)

10
11

. 14
17
2.8
7.3
8.5

11
14
1.4
4.2
5.6
7.5
1.1
3.4
4.7
6.2

(s.c.f)

9.12

4.882

2.440

1.82
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The transformation coefficients to the zero-order
scheme are usually simplest for extreme values
of 3II~MJ. or M. They can often be obtained for
extreme values by inspection. Otherwise they are
readily obtainable with the help of the angular
momentum operators as used by Gray and
Wills. '

We come now to the problem of obtaining the
numerical values of (r')A„. In Tables III and IV
we have listed most of the elements for which
these considerations are of interest. The second
column in the tables gives the nature of the
lowest level of the atoms. We restr ict our
discussion to the lowest term or level.

The average value of r' has been estimated for
each atomic valence l electron by using the
shielding constants and effective principal quan-
tum numbers of Slater. ' Such a method gives
unreliable values, however, especially for light
atoms. This is because the major contribution to
the average value comes in the expression (28)
from values of r out beyond the maximum of the
density function. In this range it is well known
that simple functions with shielding constants
are poor approximations. The error is presumably
less for an electron with a large principal quantum
number, n, since the peak of the density function
is sharper and the value obtained more nearly
the square of the radius at the maximum, r . The
magnitude of the error for small n is shown by
the values which we have calculated for 8, C, 0
and F using wave functions obtained from the
self-consistent field. "The numbers so obtained
are approximately twice those calculated from
shielding constants.

The self-consistent field probably gives wave
functions which are too large at large distances.
Electrons are kept away from the neighborhood
of the nucleus because of the static nature of
the electron field which the method uses. This
tendency to favor a more diffuse distribution is

TABLE IV. Atoms with incomplete d shells. Numbers in
parentheses are positions of maximum radial density of the
two electrons in the s shell lying outside the incomplete d shell,
which electrons are most effective in determining the radius
of the atoms.

ELE&-
MENT

s(ip
Y
La
Tl
Zl
Hf
V
W
Fe
Co
Ni

GROUND LEVEL

3d4s2
4d5s&
5d6s&
3d24s2
4d~5s2
Sd~6s2
3d34s~
5d45s&
3d44s~
3d 74s2
3d 84s2
5d9

'D3i g
44

«F2

- 4F3y~
4D0
4D4
4F9(~
3F4

? D5/2

B(L) D(J)
—0.5345 —0.4472

44 44

44 44

—0.22 13 —0.1833
44 44

44 4 ~

+0.2213 +0.1533
+0.5345 0—0.5345 —0.4006—0.2213 —0.1935
+0.2213 +0.2003
+0.5345 +0.4782

rm IN
BQHR
RADII
(~ ~)

3.00(4.55)
4.55 (5.33)
5.33(5.88)
2.47 (4.35)
3.75 (5.08)
4.38(5.60)
2.09(4.15)
3.23(5.11)
1.44 (3.65)
1.32(3.5 1)
1.2 1(3.38)
2.58

(r~)Az(nd) IN
(BoHR
RADII) 2

(~ ~)

14
30
40

9 5
20
27
6.8

15
3.2
2.7
2.3
9.4

more clearly the case when no account is taken of
exchange. The value of (r')A„ is a very sensitive
function of such effects. For the chlorine negative
ion the value of (r')A, (3p) has been calculated with
exchange to be" 5.137@0' (go ——Bohr radius). The
closely related dia:magnetic susceptibility is
calculated to be —30.4 10 '. Without exchange
the diamagnetic susceptibility is calculated to be
—4j..3 10 ' which corresponds to a value of
(r')A„(3P) of about 7.4a02. The self-consistent field

functions for oxygen and carbon were obtained
without exchange and hence the values for
(r')A„obtained for these atoms are probably
much too large, judging from the effect of
exchange on Cl . The importance of exchange in
neutral atoms may be slightly less however. The
function for F (also Ne and F, Table V) was
calculated with exchange between the 2p elec-
trons. Boron has but one 2p electron. The values
for these atoms are probably quite good."

Additional information is obtainable from the
diamagnetic susceptibility of closely related
atoms. The diamagnetic susceptibility of a gas of
atoms in singlet states is given by Van Vleck's
expression, —0.79 10 'Z(r')A„, where the sum is
over all the electrons of an atom. In Table V we
have some experimental values for Ne and A
obtained by Havens and in addition some values

Gray and Kills, Phys. Rev. 38, 248 (1931).' J. C. Slater, Phys. Rev. 36, 57 (1930).
"Self-consistent field data have been calculated from

functions given by the following: B, Brown, Bartlett and
Dunn, Phys. Rev. 44, 296 (1933); C, C. C. Torrance,
Phys. Rev. 46, 388 (1934); 0, Hartree and Black, Proc.
Roy. Soc. 139, 311 (1933); F, F, and Ne, with exchange
between p electrons, F. K. Brown, Phys. Rev. 44, 214
(1933).

' Hartree and Hartree, Proc. Roy. Soc. 156, 60 (1936);
Cl with exchange. The value of 7.4 for (r')A„(3p) without
exchange is only approximate since the numbers for inner
electrons without exchange are not given.

» Unfortunately some doubt as to the accuracy of the
functions is cast by Brown's result for the electron affinity
of fluorine. He. obtained a negative number for the electron
affinity when effects due to the change in the function on

'

removal of the electron were included.
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for the negative halogen ions obtained by
Brindley and Hoare from salt crystals using the
assumption of additivity of the susceptibilities of
the two ions of the salts. " The magnetic sus-
ceptibility of Ne obtained from the self-con-
sistent field with exchange between the 2p
electrons is only five percent greater than the
experimental value. If we calculate back from the
experimental values using Slater values for the
inner electrons, which contribute only a small
fraction of the sum, we obtain the numbers for
(r')A, listed in the fifth column (the numbers in

parentheses have been obtained from self-con-
sistent field values for the inner electrons). We
see that for Ne the difference is about ten
percent. However with ions the agreement is not
so good. The experimental values are much
smaller than the values from the self-consistent
field. This result is not surprising since each ion
is in the disturbing field of its neighbors. The
crystals are not completely ionic; Ewing and
Seitz have shown by the application of the
Hartree approximation to LiH and LiF crystals
that there is considerable charge in the neighbor-
hood of the metallic ion. '4 The picture of the
valence electrons localized in a region about the
electron-negative atoms is not a very accurate
one.

We have a lower bound for (r')A„ for chlorine in
the number 2.88 for argon and an upper bound in
the number 5, 137 for the chlorine negative ion.

MAGNETIC SUSCEPTIBILITY 106 (r2)Ay(nP) IN (BOHR
RADII) 2

EXPT. (s c)
FROM

(s.c.f) ExPT. (s.c) (s.c.f)
Ne
A

F
C1
Br
I

—7.65 1 &0.008—19.23 &0.20

—9.4—24.2—34.5—50.6

—5.58—18.5

—8.13—25.2—39.3—58.6

—8.08 1.20(1.23)
2,88

—17.1 1.48(1.50)—30.4 3.64(3.82)
4.38
5.58

0.88 1.32
2.77

1.28 3.12
3.81 5, 137
5.14
6.84

"G. G. Havens, Phys. Rev. 43, 992 (1933).Brindley and
Hoare, Proc. Roy. Soc. 152, 342 (1935).' Ewing and Seitz, Phys. Rev. 50, 760 (1936).

If one of the three cases discussed in Sections
3, 4, and 5 is applicable, the quadrupole-
quadrupole interaction energy between two

TABLE V. Data for some closely related atoms.

atoms is given by one of the expressions

(e'/R') A (I,)A*(L')X(I.I*A),
(e'/R') C(J)A *(I.') X(JI.*I'),
(e'/R') C(J)C*(J*)k(JJ*Q).

(33)

"Y. Sugiura, Zeits. f. Physik 45, 484 (1927); see H.
Bethe, JIandbuch der Physik, Vol. 24, p. 537.

"In hydrogen the van der Waals energies are more im-
portant than exchange energies for R greater than about
7ap. For R= 7ap the three van der Waals terms are in the
proportion 1, 1/2, 1/8. The approximations made in cal-
culating the coeScients are poor for smaller distances.

' J. C. Slater, Phys. Rev. 32, 349 (1928).

The results would be of more significance if
we knew at what distances other forces begin
to be of equal strength. It is not easy to say
however. At large distances the Heitler-London
method gives the repulsive forces to a good
approximation. From Sugiura's formula" we
obtain for hydrogen at a separation distance of
4ap for the lowest singlet and triplet states
—0.27 ev and 0.20 ev, respectively. The induced
polarization or van der Waals attraction is
slightly smaller at this distance. Using the
coefficients of Pauling and Beach, ' we obtain for
the first three terms (terms in the inverse sixth,
eighth and tenth powers of R) the numbers
of the expression —(0.0429+0.0513+0.0293) ev
= —0.124 ev."For purposes of comparison let us
find the distance at which the Heitler-London
repulsion between two helium atoms is 0.2 ev.
Slater has calculated this energy" and has
obtained the expression 484 exp (—'2.43R/ao) ev.
For 0.2 ev we find R=3.2cp. At R=4r —2.2cp
the repulsive energy is 2.3 ev (r is the position of
the maximum of the radial density function).
Using Margenau's coefficients we find for the
van der Waals energy of two helium atoms
—(0.039+0.030+0.011) ev = —0.080 ev at
R =3.2ap. The Heitler-London energy, being
essentially a penetration energy, builds up and
falls off faster than an inverse power energy. As
pointed out in the preceding section, for heavy
atoms the electron distribution function dies oB
more rapidly beyond the last maximum than for
light atoms. If for comparison we use a distance
of twice the sum of the atomic radii, that is twice
the sum of r, the exchange forces should be
relatively smaller at such distances for heavy
atoms than for light. For atoms with incomplete
d shells the situation is complicated by the
presence of an outside s shell.
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TABLE VI. Energies of attraction at distances of twice the
sum of the atomic radii. The atomic radius is defined as the
position of the last maximum in the electron densify functicn.
The spin-orbit coupling has been neglected and the values for
(r')q& taken from the last column of Table III. The last four
molecules have in addition attractive 6 states at this distance
with energies one-sixth the energies of the Z states and the
same multi plicities {neglecting other forces). The known states
listed are those which have been observed and which on dis-
sociation go into normal states of the atoms. 2r, , is for the
equilibrium position of the lowest observed state.

KNowN STATEs 2r& 103 cm R 103 cm E'Ev STATES

B2
BO &Z+, &II
C2 3II„P
CF

. '&g+, 3&u+
F3 1II.

BC
BF
CO 1@+,3II, 1II
OF

2.4
2.62

2.26

3.80
2.80
2.66
2.10
1.80
1.54

3.23
2.67
2.23
1,67

—0.112—0.139—0.190—0.231
—. 0.341—0.406

—0.202—0.195—0.347—0.549

11I 3II
&II, 4II
1IIg, 3II, 5IIg
21I", 41I

"'
1IIg, 3II, &IIg
II",, 3II"„'

2g- 4g-
lg+ 3g+
lg+ 3g+ 5++
3Z, 4Z

If we have two atoms in I' states and neglect
the atomic multiplet splitting, we see from the
first column of Table I that the states of the
system. fall into four energy levels due to the
quadrupole-quadrupole interaction of the two
atoms. In Table VI are given the energies for the
lowest (attractive) levels at distances of twice
the sum of the atomic radii for the molecular
pairs obtainable from 8, C, 0 and F. Consider 82
and F~. The atoms have spin ~, which give

, S=O, 1. Also c=1.From Table I we see that the
lowest states (X= —2.4) are f states. This means
that 'II and 'Il are g and u, respectively. Similarly
we find that for the next level, which has zero
energy, the states are 'Z„-, 'Z, -, '5,+, 'Z„+, 'II„,
'II, . The third level has the states '6„'A„and an
energy —

4 that given in Table VI, that is it is
repulsive. The, fourth level has the states 'Z, +,
'2 + and an energy —1.5 that of the lowest level.

For C~ and 02 since the spins are both 1,
S=O, 1. , 2. The lowest level has the states 'Il„

'II„, 'II, for which the energy is given in Table
VI. The states 'Z '5 '~ '5+ 'Z + 5Z+
'II„, 'II„'II„have zero energy. The states '6„
'6, '6, are repulsive, the energy being —~I that
of the lowest level, and the st:ates 'Z, +, 'Z„+, 'Z,+

are also repulsive, having energy —1.5 that of
the lowest level. For BO and CF since the
atomic spins are —,', 1, S=—'„-', . Also c= —1. AA*
is positive. The lowest level has the states 'Il, . 4II.
The states 'Z+ 'Z+ '2 4Z — 'II 'II have zero
energy; the states '3, 4d have energy —4' that of
the lowest level; the states 'Z —,'Z have energy
—1.5 that of the lowest level.

For BC and OF the atomic spins are -'„1 and
therefore S= -'„~. We see that c= —1 and that
AA* is negative. The lowest level is therefore
given by) =3.6. Its states are'z —,4z . The next
energy is also attractive, 6 that of the lowest
level, and has the states '6, 4A. The states
'Z+ Z+, 'Z-, 4Z —,'II, 'II have zero energy; the
states 'II, 'II are repulsive and have an energy
—

3 that of the lowest energy. For CO the spins
are 1 and 8=0, 1, 2. C= 1 and AA* is negative.
The lowest level has the states 'Z+, 'Z+, 'Z+. The
next has 6th the energy and the states '6, '5, '5.
The states 'g 'g 'g 'g+ 'g+ 'g+ 'II 'II
have zero energy. The states 'II, 'II, 'II are
repulsive with an energy ——', that of the lowest
level. The level scheme of BF is the same as CO
except that both spins are ~ and therefore there
are no molecular quintets.
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