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Magnetic Field Corrections in the Cyclotron
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It is pointed out that in order to obtain magnetic fields which will allow the ions in the cyclo-
tron to attain high energies it is first necessary to render the field homogeneous within an ac-
curacy of about one part in a thousand. The correction (insertion of "shims") for the most
important source of inhomogeneity, namely the decrease in the field near the edge of the pole
pieces, is considered. A general method is given for determining the dimensions for any shape
of these shims. Results are given for the dimensions of shims in the form of a ring of rectangular
cross section placed at the edge of the cyclotron chamber. The magnetic field resulting from the
use of such shims is determined and compared with .he field of plane parallel pole faces. For the
special case of a ring whose thickness is 1/16 the magnetic gap, the field is homogeneous within
the required accuracy up to a distance from the edge of the poles of 0.4 of the magnetic gap.
The uncorrected field is homogeneous only up to a distance from the edge equal to 0.9 of the
magnetic gap.

I. INTRQDUcTIQN

"T has been realized from the beginning of
- - cyclotron technique that great homogeneity
of the magnetic field is absolutely essential for
the maintenance of resonance between the
Larmor rotation of the ions and the oscillation
of the accelerating electric 6eld. ' A deviation of
one percent, e.g. , will throw the ions completely
out of resonance after $00 accelerations so that
they will actually be decelerated instead of
accelerated. Now the field produced by plane
parallel magnetic poles is always inhomogeneous
near the pole edges (cf. Fig. 4 below). Unless a
great part of the area of the pole faces is to be
sacrificed it is necessary to introduce "shims"
near the edge which will have the effect of in-

creasing the field in their neighborhood and thus
render the 6eld more homogeneous.

This shimming must be done rather accurately
because over-correction must definitely be
avoided. An over-correction, i.e. , a magnetic
field increasing with the distance r from the
center of the cyclotron chamber, leads to strong
magnetic defocusing of the ions, as was shown in
a previous paper, ' and therefore to enormous
losses of intensity. The magnetic 6eld must not
increase radially at any point except possibly
near the center where the electric 6eld provides
some focusing.

Even more exact design of the field is necessary
' Of course, this is apart from the considerations of ob-

taining very high energies.' M. E. Rose, Phys. Rev. 53, 392 {1938);hereafter re-
ferred to as I.

if very high energy ions are to be obtained from
the cyclotron. It was shown in I that the impos-
sibility of simultaneously maintaining exact
resonance and focusing of the ions imposes a
limit on the energy obtainable. At the same time
it was shown that magnetic fields can be devised
which make this energy limit rather large. ' In
order to attain the highest energies, a fieM such
as is given in Fig. 5 of I should be used. However,
all such 6elds are somewhat critical in the sense
that they necessarily do not differ by very much
from a defocusing field. Hence the deviations
from the prescribed 6eld of the field finally ob-
tained must be kept very small, of the order or
less than one part in a thousand.

The success in attaining high energies will
depend very much on the elimination of unde-
sirable inhomogeneities in the field. The most
important source of such inhomogeneity is the
decreasing field due to the finite size of the pole
pieces. In fact, since the desired 6eld has been
defined only inside the cyclotron chamber, the
shims required to produce this field can be deter-
mined only if the effect of the pole edges is made
negligible in the region where the ions move.
The following section contains the calculation of
the size of shims required to compensate for this
edge effect as far out from the center of the
chamber as is possible. '

' In the best case, field given in Fig. 5 of I, the energy
is B=2.12 (U+Z)& Mev where Uo is the accelerating dee
voltage in kilovolts, A and Z the atomic weight and
atomic number of the ion.

4 Of course, there will in general be some inhomogeneity
due to the nonuniformity usually present in the large iron
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II. SHIMs FoR HQMQGENEQUs FIELD

In the following we shall make two assump-
tions: The first is that the reluctance of the iron
can be neglected so that the faces of the magnets
(or lids of the cyclotron chamber) form equipo-
tential surfaces. ' The second assumption is that
the shims may be placed on the inner surfaces
of the lids of the cyclotron chamber rather than
in the air-gap below and above the lids.

Since the magnets are supposed to be axially
symmetrical we should introduce cylindrical
coordinates with the origin at the center of the
cyclotron chamber. Then the magnetic potential
U is a solution of the Laplace equation written
thus:

a'V/ar'+ (1/r) a V/ar+a' V/as' = 0 (1)

where s is the vertical coordinate. However for
our present purpose, only the field near the edge
where r is large is of importance. In this case the
second term in (1) will be smaller than the other
terms by a factor of order magnetic gap divided
by diameter of magnetic poles' and hence may
be neglected.

In this case we have a two-dimensional Car-
tesian problem to which we may apply the
Schwarz transformation method. 7 We introduce
a Cartesian coordinate system in a plane through
the s axis, with origin at the edge and in the
median plane. Denoting (radial) distances meas-
ured inward by x we have

a' V/ ax'+ a' V/as' = 0. (2)

Hence the general solution of (2) is the imaginary
part of the complex function W defined by

W(l-) = U(x, s)+i V(x, s). (5)

The procedure now consists in the establish-
ment of a connection by conformal mapping
between an auxiliary variable t and W (poten-
tials) on the one hand and between t and l
(coordinates) on the other. By elimination of t

the potentials or magnetic field can be obtained
in terms of the coordinates. The variable t is to
assume real values on the equipotential surfaces
and particular values are to be assigned at all
places where the slope of these surfaces changes
i.e. , at all the corners of the pole faces. Only
three of these particular values (say 0, 1 and m)
are independent, the remaining values being
completely determined by the special geometry.
If we regard the pole faces as forming the bound-
ary of a polygon and if the particular value t„
is assigned to the nth corner where the internal
angle of the polygon is n„, then the connection
between i and t is'

df/dt = C,u(t —t.)"t.-',

where Ci is a constant to be determined from the
boundary conditions.

As an example we may consider the case of plane parallel
poles. In the finite part of the f plane there is, of course,
one corner on each pole to which the values t = &1 may be
assigned. At this corner the internal angle a„. =37i-/2. At
x =0, r = & ~ we can set I„=+ oo and at x = ~, t„=0, and
n„=0. Then we have

We introduce the complex variable
dg/dt = C1(t' —1)&/t. (6a)

f=x+is (3)

and the potential U conjugate to V (U=con-
stant giving the magnetic lines of force). For our
Cartesian problem we have the Cauchy-Riemann
relations between the potentials:

a U/ax= —a V/a sa U/as=a V/ax (4).
magnets, and possibly to irregularities arising from machin-
ing or assembling the magnets, etc. Obviously corrections
for these inhomogeneities must be carried out empirically
and it will be assumed that this can be done to the re-
quired degree of accuracy.

~ No currents in the cyclotron chamber.' Cf. the result (27) for the field obtained below and the
remark preceding (15). The ratio of the second and first
term of (1) is 1/2x times gap/diameter which for the usual
dimensions is of the order of one percent.

'Cf. e.g., F. Kottler, IIcndbuch der Phys~A, Vol. 12,
p. 480.

Since in all cases there are only two equipoten-
tial surfaces we have, regardless of geometry, for
the connection between W and t (cf. Fig. 1, also
Fig. 73 reference 7).

d W/dt = Cg/t,

where again C2 is a constant to be determined
from the boundary conditions.

It is convenient to introduce as unit of poten-
tial the magnetic potential on the (lower) pole
face so that we have as boundary conditions

W(t=1) = —i, W(t= —1)=+i
The index n can assume a series of discrete or a con-

tinuous range of values. The latter case is pertinent when
the slope .of the shims varies continuously.
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F»o. 1. Conformal mapping of the t plane on the W'

plane. The real t axis coincides with the equipotentials
V= ~1.
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Then we find from (7) and (8)

W= —(2/7r) log te '",
or by the use of (5)

(9)

where the index n runs over the values on one
pole face only.

Introducing the components of the magnetic
field

H, = BV/Bx—, H, = —8 V/Bs

we find from (4) and (10)

H, iH. = (2/~. —)(tdi. /Ch)—

(12)

(13)

t =exp —~/2[V+i(1+ V)j. (10)

From the symmetry with respect to the median
plane, the values t„at corresponding corners of
upper and lower pole faces are opposite in sign.
At these corresponding corners the angles n„
will be the same. In addition, taking t„=0
between the poles at x= ~ at which point 0.„=0
we may write (6) in the form

di. /dr = (C,/t) II(P t.')"i. —

From this result we see that the inhomogeneity
of the field can be expressed as a power series in
P. Further, since the field is in any case almost
homogeneous inside the cyclotron chamber, U
will be proportional to x within very small cor-
rection terms (cf. 24, 25 below). Hence from
(10) the inhomogeneity is

1 H. =—k~e *cosa.s+k~e '"*cos2~s+ (17)

where k», k2 are coefficients depending on the
parameters t„and hence on the geometry. In
general the coefficient k» will not vanish and for
plane parallel pole face k» 4 so that the in-
homogeneity at x = 1 in this case is about one
percent. To make the field more homogeneous
the dimensions of the. shims may be made such
that k» vanishes. In this. case the inhomogeneity
k2e ' cos 2xs+ decreases very rapidly and
will be negligible for x larger than unity.

Application to ring shims

A great variety of shapes of shims would be
equally suitable for accomplishing our purpose.
In many cases it would be possible to make the
main term in the inhomogeneity ( e ) vanish.
Of course, in the various cases, the size of the
remaining inhomogeneity, i.e., the coefficient of
e ' * would depend on the geometry in different
ways. However, since nothing is gained by com-
plication, we consider here only the simplest case
of a single ring shim of rectangular cross section
on each pole face. The outer diameter of the ring
is to be equal to the pole radius, the width of the
ring u and its thickness b, cf. Fig. 2. The parame-
ters t„and internal angles o. are:

or from (11)

H. iH = —(2/7rC )II(t—' —t ')' "' . (14)
ai(1 b)—

aai(1 b)—
c&z

3~/2
3x/2

~/2.
We use as unit of length half the magnetic gap

so that for x= ~, t=0 the magnetic field becomes
In addition at f= &i ~, t= & ~ and at I = ~
+is, t„=0.From (16) we find

H, =1, H, =O. (15) H, iH, = (1—t'/t2') l—(1—t') 4(1 —t'/tp) '. (19)

H, —iH, = rr(1 —P/t. ')'-.-~.. (16)

We may then determine the constant C» and
obtain

The coe%cient of t' in the expansion of this
expression. vanishes if

Thus it is seen that the magnetic field may be
obtained as a function of t or from (10) as a
function of the potentials without integration.

~'=t '/(1+~ ')

and with this result we have

H, iH, = 1—t4/2$P—+ ~ ~ ~ .

(20)

(21)
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To obtain the field in terms of x we have

x= U —Uo — [f(U') —1jd U',
t

(24)

«00

l
«t

2

where f(U) is the reciprocal of the expression
given on the right-hand side of (23).The constant
Uo is given by

Uo ———a+2/z log I/t2

t2

+ (2/ir+tdf/dt)dt/t, (25)
FrG. 2. Conformal mapping of the t plane on the g plane.
The real $ axis coincides with the surfaces of the magnets.

To make the inhomogeneity smail, it is desirable
that fj be not too small. This will mean as may
be seen below that a should be small; e.g. a =0.1
would be quite satisfactory.

For dg/dt we have from (13)

Upon integrating (22) from t = 1 to t = ti we

obtain a as a function of t~. Again integrating
(22) from t =ti to t = t2 we obtain b as a function
of ti, using (20). Eliminating ti we have the
thickness 5 in terms of the width a. This final
result is given in Fig. 3.

The magnetic field on the median plane is
obtained from (22), (13) and (10) with V=O.

(1+s—mU/) 2)1(1+s—
m U)

—g'

X (1+e ~/ti2) '. (23)

(cf. (24)) and V= —s.

(26)

(26a)

the integration being taken along the surface of
the magnet where t is real. This constant is only
slightly geometry dependent and its value is in

general about 0;2.
The field obtained in this way is given in Fig. 4

(upper curve) fora special case. In the same figure
the field on the median plane for the case of plane
parallel pole faces is given. It is seen that the
homogeneity of the field is indeed very much
improved. The curves also show that the ap-
proach to the asymptotic behavior (cf. (17), (24))
of the field is rather rapid. By retention of only
the first term in the inhomogeneity ( e ' ~) the
error made at x = 1.0 is only 3 percent of the total
inhomogeneity. Thus for larger x we may write

0,6
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FIG. 3. Dimensions of ring shim for homogeneous
magnetic field. Thickness of ring b, width u. The unit of
length is half the magnetic gap.
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FiG. 4. Magnetic field on the median plane near the
edge of the magnets. The unit of field strength is the
difference of potential between the magnets divided by the
magnetic gap. The field labeled "with shims" applies in the
case of a ring shim of width @=0.095 and thickness
b=0.125 in terms of half the magnetic gap as the unit of
length. The field labeled "without shims" pertains to the
case of plane parallel pole faces. Note the change in scale
at H= 0.90 and at x'= 0.
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Then we obtain for the magnetic field in this
region

II =1——,'] 'e—'~(g+~0) cos 27t-s

II = —'If1'e 2~~~+» sin 2~a.

For the uncorrected field of plane parallel pole
faces the field inhomogeneity is one-tenth percent
at x=1.8. For the field with ring shims in the
case b =0.125, a=0.095 we find from Fig. 4 that
this same inhomogeneity occurs at x =0.80. Thus
if the exit slit is placed at this distance (0.4 the
magnetic gap) from the edge, the magnetic field
over the entire region of motion of the ions will
be homogeneous within the required degree of
accuracy.

Finally, we may return to a consideration of
the assumptions made at the beginning of this
section. First of all the assumption of low re-
luctance of the iron will in general be fulfilled
rather well. Of course, it is sufficient if only the
cyclotron lids and not the large magnets them-
selves be of low reluctance, high permeability
iron. Secondly, the assumption that the shims be
placed inside the chamber against the lids
rather than in the air gap need not impose any
restriction on the applicability of the results
obtained here. Since the shims used to make the
field homogeneous may be inserted at the time-
of construction it should perhaps be not incon-
venient actually to place them inside the
chamber.
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Some Experiments on the Magnetic Proyerties of Free Neutrons
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The behavior of partly polarized beams of slow neutrons as regards their precession on passing
through homogeneous magnetic fields has been investigated. From the experiments it is con-
cluded that the neutron has a magnetic moment not far from 2 &&1 j1840 Bohr magneton and
that the sign is negative. Further, the precession of neutrons inside magnetized iron was
investigated; it was found that the field accounting for the observed rate of precession is
more than 100 times the actual field strength II and actually of the order of magnitude of
the magnetic induction B.

1. INTRoDUcTIQN

' 'HAT a neutron should have a magnetic
moment at all, seems somewhat surprising,

on account of its being electrically neutral. On
the other hand, from the magnetic moments of
the proton' ' (2.5 to 2.8 n.m. , 1 n.rn. = 1 nuclear
magneton = 1/1840 Bohr magneton); and the
deuteron' ' (0.85 n, m. ), a magnetic moment y
of the neutron, of about 2 n.m. , can be deduced

* Now at the Institut de Chimie Nucleaire, College de
France, Paris.

'O. R. Frisch, O. Stern, Zeits. f. Physik 85, 4 (1933);
I. Estermann, O. Stern, Zeits. f. Physik 85, 17 (1933);
I. Estermann, O. C. Simpson, O. Stern, Phys. Rev. 52,
535 (1937)~' I. I. Rabi, J. M. B. Kellogg, J. R. Zacharias, Phys. Rev.
46, 157, 163 (1934); 50, 472 (1936).' I. Estermann, O. Stern, Phys. Rev. 45, 761 (1934).

4 H. A. Bethe, R. F. Bacher, Rev. Mod. Phys. 8, 91, 205
(1936).

the sign of p„should be negative, that is, the
relative position of spin and magnetic moment
should be the same as in the (negative) electron.
A tentative explanation of this moment, based on
the Fermi theory of beta-decay, has been offered
by Wick. '

A way of measuring, at least roughly, the mag-
netic moment of free neutrons has been pointed
out by Bloch. ' He showed that the magnetic
interaction between neutrons and electrons must
have a measurable inHuence on the scattering of
slovv neutrons by magnetic atoms or ions (pro-
vided the. neutron has a magnetic moment of the
order of 2 n.m. ).Of special interest is the scatter-
ing of neutrons from a ferromagnetic substance in

' G. C. Wick, Att. Acad. Lincei 21, 170 (1935); see also
reference 4.' F. Bloch, Phys. Rev. 50, 259 (1936).


