
F I NE STRUCTURE OF NU CLEAR LEVEL 459

over, it is in such a direction as to increase rather
than to decrease, the discrepancy between the
value of k/e obtained from this experiment and
the other fundamental constants.

In conclusion it should be emphasized that the
present theory can explain only the newly dis-
covered knee in the isochromat in the immediate
vicinity of the threshold —the well-known knee
that appears at a hundred volts or so from the

threshold must find another explanation; and
that the theory is not sufficiently accurate to
enable one to predict the presence or absence of
this knee in . the isochromat obtained from an
x-ray tube with a target of a given material.

The au thor wishes to express his sincere
appreciation to Professor W. V. Houston and
Professor J. R. Oppenheimer for suggesting this
work and for their helpful interest in its progress.
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Calculations of the fine structure of the ground level of
the Li~ nucleus are made with the object of throwing light
on the form of the interaction energy between pairs of
nuclear particles. The requirements of relativistic covari-
ance do not determine the spin-orbit interactions uniquely.
Adjustable parameters, which are essentially coefficients
of invariant additions to the Hamiltonian, are not fixed by
considerations of covariance. The calculations reported
show how, with approximate assumptions about the wave
function, these parameters should be chosen in order to
obtain agreement with the observed fine structure. A
general rule simplifying the calculation of the spin-orbit
interaction with a closed shell'is developed for interactions
between pairs of particles. The results are sensitive to the
wave function used. The assumption of approximate sym-
metry of the nuclear Hamiltonian leads to an approxi-

mately symmetric coordinate function which is a linear
combination of '5 and 'D states of the two neutrons in the
p shell. For this function relatively large values of the
adjustable parameters (~3) are needed. If, however, the
'S state is supposed to be the predominant one, values of
the parameters ~1 suffice. Present evidence favors the
symmetric function and, therefore, the larger values of
the parameters. These values do not correspond, even
approximately, to the picture of a nuclear particle moving
in a scalar field. An additional interaction having the
transformation properties of an electromagnetic. field is
needed to obtain them. The sensitivity of the fine structure
to perturbations suggests caution regarding the quanti-
tative side of the calculations. Only qualitative significance
can be attached to them.

INTRoDUcTIQN

CCORDING to Rumbaugh and Hafstad'
there is an excited state of Li" about 400 kv

above the normal level. Schuler, ' Granath, ' and
Rabi' find the spin of this nucleus to be 2. The
normal state of Li is expected to be 'P according
to the calculations of Feenberg and signer. '
It is, therefore, logical to interpret the level found

' L. H. Rumbaugh and L. R. Hafstad, Phys. Rev. SO,
681 (1936).' H. Schuler, Zeits. f. Physik 42, 487 (1927).

3 L. P. Granath, Phys. Rev. 42, 44 (1932).' M. Fox and I. I. Rabi, Phys. Rev. 48, 746 (1935).
'-E. Feenberg and E. %igner, Phys. Rev. Sl, 95 (1937).

by Rumbaugh and Hafstad as the 'P&~2 part of
the 'P state and the normal level of Li' as the

condition of the same state. On this
hypothesis an estimate was given by Inglis' for
the magnitude of the expected energy difference
between the two levels of the 'P state, and it
was pointed out by him that the spin-orbit
coupling arising from the Thomas precession can
be expected to be of special importance for
nuclei. A similar estimate has been made by
Rose and Bethe. ' In both of these considerations

"D. R. Inglis, Phys. Rev. SO, 783 (1936).' M. E. Rose and H. A. Bethe, Phys. Rev. 51, 205
(1936).
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the valence particles in the p shell are pictured
as moving in an attractive central field which
has the transformation properties of a four-
dimensional scalar. It is perhaps possible that in
nuclei the elementary particles merge together
in such a way as to lose their identity and to
provide a scalar field of this character. Such a
point of view would, however, be rather difficult
to apply in a quantitative manner, at the present
time, because of its extreme vagueness. Nuclear
theories at present are developed using inter-
actions between pairs of particles. Although
they are not as yet completely quantitative, the
success which they have met makes it unneces-
sary at present to abandon the simple point of
view of interactions between pairs of particles.
The possibility of a fundamental change in the
description involving a merging of elementary
particles is open, of course, but will not be
investigated in the present note.

For forces between pairs of elementary par-
ticles one cannot make direct use of the Thomas
precession or the scalar equation discussed in
this connection by Furry. A consideration of
possible forms of wave equations for particles
with spin determines' the interaction energies
that may be used in these equations as

H = QAg)La Og+(u —1)0(]—Q'Jg(Pg(, (3)

Ak( ——(i/4M'c')Lp~X JI,d'~i pa]. (3')

The letters W, H, M, here, refer to Wigner,
Heisenberg, and Majorana forces. The particles
in the nucleus are referred to by subscripts tt', l;
the potential energy between two particles is

J(ri, &) for an ordinary force, —J(ri, ~)PI, ~ for —an
exchange force, with rA, ~ standing for the distance
between particles k and l; the momentum
operators p~ ——(k/i)Vq P' refer. s to sums over
pairs of particles (k)l); g indicates sums over
all values of k and l except k= l (in other words,

W. H. Furry, Phys. Rev. SO, 784 (1936).' G. Breit, Phys. Rev. 51, 248 (-1936).

Ifw=ZBaiL& sI+(~ —1)oi]—Z'Ai,

BI,&
———(k/43Pc')Ppg, XV ~Jki],

II QB kl [G ~k+ (G 1)rrl]PkP

—2' JI;O'I,P, (2)

k~~l). The interaction energies as written above
do not include all the' terms necessary" for
invariance to order v'/c'. The parts omitted do
not give rise to spin-orbit interactions and are
of no interest for the present paper. The con-
stants uw, aH, aM are arbitrary and from con-
siderations of invariance it is impossible to
determine their value. For particles interacting
through the electromagnetic field the value of
a is —1.The picture of each particle producing
a scalar field defined in the reference system
moving instantaneously with it corresponds on
the other hand to u~= i. By comparing calcula-
tion with experience one may hope to determine
the constants aw, aH, aM and to learn in this way
a restricting condition for the interaction energy
of the electron-neutrino field. Thus if it were
found that a~= —1 the inference would be that
the electron-neutrino field interacts with the
heavy particles in a manner similar to the field
of photons interacting with a charge.

A preliminary calculation of the energy
splitting of the ground state of Li7 has already
been made' from Eq. (3) with aM=1. This
calculation is incomplete because the two neu-
trons in the p shell were supposed to be coupled
into a 'S state, and because the influence of
H~, HH as well as values of aM/1 were not
taken into account. In the present note the
calculation will be made directly for a state
having complete symmetry in the space coordi-
nate wave function for the three particles in the

p shell. On account of the approximate symmetry
of the nuclear Hamiltonian, which appears
probable in view of the scattering experiments of
protons and neutrons in hydrogen, " this is
expected" to be approximately the condition of
the two neutrons and the one proton outside the
alpha-particle shell in Li'. On account of the
Heisenberg force the symmetry of the space
wave function is somewhat spoiled; this effect
will be estimated as well.

"G.Breit, Phys. Rev. 53, 153 (1938).
» M. A, Tuve, N. P. Heydenburg and L. R. Hafstad,

Phys. Rev. 50, 806 (1936); G. Breit, E. U. Condon and
R. D. Present, Phys. Rev. 50, 825 (1936); C. Cassen and
E. U. Condon, Phys. Rev. SO, 846 (1936); G. Breit and .

E. Feenberg, Phys. Rev. 50, 850 (1936).
'~ E. Wigner, Phys. Rev. 51, 947 (1937); E. Feenberg

and M. Phillips, Phys. Rev. 51, 597 (1937); F. Hund,
Zeits. f. Physik 105, 202 (1937).
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GENERAL RELATIONS

The interaction energies considered in Eqs.
(1), (2), (3) consist of sums referring to pairs of
particles. The evaluation of their expectation
values is slightly more complicated than that of
the expectation values of sums of single particle
energies, such as are commonly used in approxi-
mate theories of spin-orbit interactions in atomic
spectra. Nevertheless in these two cases there is
a considerable similarity between the behaviors
of that part of the energy which arises through
interactions of the valence particles with a closed
shell. The way in which this energy depends on
the number of particles in the valence shell and
on their coupling is the same for all kinds of
interactions of the symmetric orbit-vector, spin-
vector type and it is, furthermore, the same as
for an interaction of the type QA(f)e, Thi.s is a
consequence of the spherical symmetry of a
closed shell. Thus consider a closed shell with
wave functions ul, n2, ~ . ~, I and a set of three
valence particles. Let I, be the wave function
corresponding to definite values of the orbital and
spin magnetic quantum numbers of the states in
the shell. Similarly let v& stand for a wave
function with definite orbital and spin magnetic
quantum numbers in the incomplete shell. The
states under consideration are then represented
by the normalized determinants

taining the functions with the coordinates of one
of the particles. These determinants describe the
"strong field" states of the system. The states
b&, bm, ba may, in general, be any of the 2(2I +1)
strong field states in the incomplete shell. Be-
cause of the exclusion principle only the. possi-
bilities bl/ b2, bi& b3, b2& b3 need be con-
sidered. The interaction energy is of the form
H'= P;»H(ik) with H;z symmetric in the
particles i and k. The matrix elements of II',
(@', H'+), are different from zero only if at
most two of the states b are different for + and
0". If + and 0" differ by two b's the matrix
element contains only the functions v and will be
said to contribute only to the interaction of the
incomplete shell with itself. If + and 0' differ by
one b, or if they are identical, the matrix element
(O', H'4') is a sum containing matrix elements
either with two v's or with one u and two v's

(which may be identical). For %=%' there is in
addition a sum involving only u's. The latter
vanishes in the present application since it is
equal to the spin-orbit interaction of a closed
shell with itself. The terms with one u and one v

form the interaction of the valence particles with
the closed shell. The terms with two v's give the
interactions between the valence particles, which
are readily seen to be the same as would be found
if one worked with the normalized determinants

~sÃs2&s3

~
u1) u2y ' ' '

t ue i vbll vMI 'v&8

so that the closed shell can be disregarded in this
having n+3 rows and columns, each row con- connection.

The interaction of the valence particles with the closed shell gives rise to matrix elements

n

(O', H'4') =Q Q(u, (1)vg(2), H(12)Lu, (1)vg(2) —u, (2)vg(1))),
e=l 5

n

(O', H'@) = Q(u, (1)vg(2), H(12) Lu (1)vg(2) —u (2)vy(1) ]).
a=1

In the latter case the order of the functions v is supposed to be arranged in such a way as to have the
last v different 4' in and 0".Let

H12 A120 1+A2 1&2

with A», A» independent of the o's. For ordinary and Majorana interactions H(12) is of this type.
The typical matrix element (O', H'@) is a sum of two parts obtained by inserting A»a& and A»om,
respectively, for H(12). Each of these is again a. sum of two parts, one due to u, (1)vq(2) and the other
due to —u (2)v~(1). There are thus four parts in all. Since the wave functions u and v are products of
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orbital and spin wave functions the matrix of Ao for each of the terms in the sum over a is the direct
product of the vector matrix A by the vector matrix o. Let

(u, (1)vp(2), An, (1)vb(2)) =(M,Mp A 3II,Mb)8(m, mp, m, mb),
(u, (1)vp(2), Au (2)vb(1)) = [M,Mp A M,Mb]5(m, mp' , mbm, ),

with M and m standing, respectively, for orbital and spin magnetic quantum numbers. Similarly let

(u, (1)vp(2), on, (1)vb(2)) =(m, mp (r m, mb)8(M, Mp, M, Mb),
(u, (1)vp(2), eu, (2)vb(1)) = [m,mp v m, mb]5(M, Mp, MbM, ).

Then
P, (u, (1)Vp(2), Avu, (1)Vb(2)) = +br, (M, Mp A

~
M,Mb) P, (m, m p~e

~

m, mb),

P,(u, (1)vp(2), A~n, (2)vb(1)) = P~,[M,Mp A
~

M Mb]gm [m mp ~(r
~
m mb].

Consider +br, (M,Mp ~A "'~ M,Mb), wherei= 1, 2, 3
denotes a component of A. Under rotation of the
coordinate system, the orbital wave fun'ctions

corresponding to 3II„ transform among them-
selves by linear formulas which form an irre-
ducible representation of the group of rotations.
Similarly the functions of the incomplete shell
transform among themselves and the components
of A ' do so as well, both according to irreducible
representations. The orthogonality relations be-
tween the coe%cients of the representations of
the shell functions introduce 8(M,M ) in the
summation over M, and do not enter the result
for the transformation of p~, (M, Mp

~
A '

~
M, Mb).

This quantity thus transforms itself as though
the 3I, mere not present. Since the representa-
tions for the A ' and 3IIb are irreducible, the sum of
matrix elements of an A' is determined as a
function of P, b to within a constant factor. " It
is seen that only the transformation properties of
the sums of matrix elements are essential for the
above and therefore, the discussion applies
equally well to [M.Mp ~A~ M,Mb], the depend-
ence on p, b being the same as before. The linear
formulas determining the ratios of the sums of the
matrix elements as functions of P, b are the same
as for the matrix elements of a one-particle
vector operator taken with respect to wave
functions corresponding to 3fb. Since all these
functions correspond to the same operator L, one
can simply use the operator L to determine these
ratios since its matrix elements do not vanish.
In the same way pm (m, mp

~
v

~
m, mb) and

p~~(m, mp~e~m, mb) are determined to within a
constant factor, the dependence on p and b being

» E. Wigner, GruPPentheorie (Braunschweig, 1931).

again the same in both cases. Hence also the
combined dependence of the p, of Ao on M'p, Mb,
mp, mb is the same for all A. The matrix (+', II'+)
is, therefore, also determined to within a constant
factor and the ratios of the matrix elements
corresponding to different strong field states are
thus seen to depend only on the azimuthal
quantum number of the incomplete shell as well

as the functions vb entering +, 4 . They are the
same as though one were calculating the spin
orbit interaction of the particles in the incomplete
shell in a central field.

The above discussion applies only to those
cases in which A is an operator diagonal in the
spin. For the Heisenberg operator an additional
consideration is necessary. For identical particles
the operator PH= —1. According to Eq. (2) it
thus reduces to an ordinary interaction. If the
particles are not identical, as in the interaction
of an incomplete skell of protons with a complete
shell of neutrons, the relations are still true
because they are true for the. four parts corre-
sponding to combinations of AI~cr~, A~lo2 with
direct and exchange terms, the proportionality
also holds for the Heisenberg operator of Eq. (2).

It thus suKces, in the calculation of an inter-
action with a complete shell, to determine the
diagonal matrix elements of the operator QL,o;
taken over the incomplete shell for the states of
coupling that correspond to fixed total angular
momenta. The product of these elements and the
ratio of the diagonal element of ,'QH(ik) for a--
single particle outside a complete shell to the
value of L~o~ for a single particle in the same
state gives the change in energy due to the spin
orbit interaction.
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where

0= U5(+ —+)—(—++)],
U= c Us+s UD, c'+s'=1. (4 1)

Here the symbols (+—+) etc. denote the spin

INTERACTION WITH s SHELL (ALPHA-PARTICLE)

The state of the p shell can be conveniently
described as a linear combination of the state in
which the two neutrons are coupled into a 'S
state with the state in which they are in a 'D
condition. Thus

function of the three particles, indicating in

order, the sign of the projection along. the s axis
of the spins of the particles 1, 2, 3. Particles 1, 2

are the neutrons while 3 is the proton. The
function U contains the space coordinates of
1, 2, 3 and is subject to the normalizing condition

8 4) =2(» U) =1 (4 2)

The functions Ug, U are the orbital functions
with the above normalization for S and D states
respectively. For the maximum orbital magnetic
quantum number one may take

with

Us = (3/2) (42r) 'Q1Q2Q3(r1r2) hi

L D (81/80) *(4&) 'Q1Q2Q3[(1(r2r3) + $2(r3rl) 3 (3(r1r2)]

(=x+iy

(4.3)

(4 4)

(4 5)

Here Q;= Q(r;) is the radial function of the 2th particle normalized so that

~ Q2(r)r4dr=1.
0

(4 6)

The values of p corresponding to Us 1 UD will be written as fs , QD. One ha. s

(4s, EL'42As) =2(Us, L3'Us) =2(Us, Us) =1,

L(L+ 1)+L3(I3+1)—(L1+L2)L(L1+L2)+1]
(pD, QL;4r, pD) = 2

2I.(L+1)
QD, QL„43;Ils) =0.

The last equation is true because L3 Vq ——Vq and Dq is orthogonal to VD. Thus for the general
equation (4)

(4 7)

For c=5'/3, s= —,
' one obtains a state symmetric in the Cartesian coordinates of the three particles

with

U' = 3(20) I(42r):Q1Q2Q3@

& (rlr2) f3+ (r2r3) $1+(r3r1) (2.

(4.8)

It is this state that should be close to the actual one according to the considerations of signer, Hund,
Feenberg and Phillips. "' It will be noted that according to Eq. (4.7) the splitting of the level due to
interaction of the p shell with the alpha-particle is in the ratios of 1:(1/3): ( —1/2) for the states
Uq, U, UD, respectively. According to the previous estimate the interaction corresponding to
aM = 1 was su%cient, for the state Uq, to account for the observed splitting and the principal
contribution came from the interaction of the p shell with the alpha-particle. Since for U this energy
is decreased to 3 of its previous value it becomes necessary to consider other values of aM, aH, a~.
According to the preceding section the energy splitting due to the interaction with the s shell is
obtained simply by calculating it for a single particle in the p shell and multiplying it by the factor,
P2(c). The alpha-particle will be supposed to be a complete shell of two neutrons and two protons,
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both in s states. The orbital functions of these particles will be called R(r) normalized so that

f R'r'dr = 1.
0

The energy splitting for a single p proton due to its spin orbit interaction with the s shell of neutrons
will be called (»),„and the splitting due to the interaction with the s shell of protons will be written
as (»), . In all cases»=E3/2 E$ where Eg2, E3 are respectively the energies for 223~2 and 2P2. The
values of IE will be listed below in terms of integrals involving Q, R as well as the special values that
one obtains for

with
The abbreviations

and
will be used. One finds

Q
—N s—vr2/2 R =N&e-~"'~'

Nq2=8v3"/33r' N122 =4@'/Or'*

J gg —ar&

p'= 4(13+v)'+a(p+ v); y'= tv+a(13+ v)

lt =5/Mc

(5.1)

(5.2)

(5.3)

(5 4)

(5.5)

(»),."'=—(3/64~')&')t J{6Q1Q2+2rlQ1 Q2+2r2Q1Q2 +rlr2 sin ~Q1 Q2 }R1R2d~ldr2

= —(3/4))t'v"'p'"A (y+4a) P
—' (6)

(») "'—(») "'= (3/327r')X'Jt Jr2 cos 9Q22R,R,'dr, dr, = —(3/2)X2v»2y»2Aay —' (6.1)

where the superscripts M1 indicate that quantities are taken for aM=1. These formulas are in

agreement with the previous calculation. '

(»), H'= —(3/64~')X' Jrlr2 sin' OQ1QOR1'R2'drldr2= —(3/4)X2v'"p"2Ap ' (6.2)

(DE) "'—(») M'= —[(») "'—(») "'] (6.3)

(»)H' ,—(3=/1283r2) VJ R1Q,(J'/r) {(2r22 —2rlr2)ROQ1

+ [Ql'R2/rl Q1R2'/r2)r 1'r2' s—in' 8 }d r ld r2 (3/2) X'v'"y"2a—A—P '(6.4—)

(») H' —(») ' = 2[(») HO —(»)
(») HO — (») Hl ~ (») HO (») HO ~

(») Wl (») H1+ (») Hl ~ (») Wl (gE) Wl — (gE) Hl ~

(») "'=o (») "'-(») '=(») "'

(6.5)

(6.6)

(6.7)

(6.8)

The order of the above equations is such as to give in succession the values of the needed quantities
for aM = 1, aM =0, uH = 1, cH =0, u~ = 1, u~ =0. For uM = 1 and cM =0 it is supposed that there are no
spin orbit interactions of the Heisenberg and Wigner types and similarly in Eqs. (6.5), (6.6) only the
Heisenberg and in Eqs. (6.7), (6.8) only the Wigner spin orbit interactions are considered. An equa-
tion such as (6.5) is, of course, not supposed to hold for the actual contributions due to the Heisenberg
and Majorana forces but rather for the expressions on the two sides of the equation using the same
function J(r) in Eqs. (1), (2). The relations between quantities for different aH, aH, aw are expressed
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TABLE I. Values of hE =E3~2—E»2 for the symmetric state due to interactions in the p shell.

aM —1
8'

aM —0 aH=O
8'

aw —1—W
aW —0

simply in terms of (EE),„and (AE), (AE)—,„.For this reason Eqs. (6.3), (6.5), (6.6), (6.7), (6.8) were
written in terms of them. For practical applications one needs, however, (AE),„+(AE), since this
gives the result due to the whole alpha-particle.

INTERACTION WITH THE P SHELL

For the symmetric state represented by U' of Eq. (4.8) the relations are particularly simple. One
obtains a contribution to the energy difference E3/2 —Zq the values in Table I with

3X
L2 (rlr2) JQ1 Q2 +I72(rlr2) JQ1 Q2Q2 )drldr2

16m'~

9X' p J'
=+ Ql'Q2' —L2'(rP/72 )rlr2 7172 2(rlr2) ]Zrldr2.

320m'~ r

(7)

For the special forms of Eqs. (5.1), (5.2), (5.3)

W= X2A n(1+ 2n/1) —"'. (7.1)

The relations between the values of AE given in Table I may be seen from the symmetry of U'.
Thus one finds AE/3=4(U', A2p U') for aM = 1. The change to aM =0 is made by changing A21 into
—Ap, . Since U' is completely symmetric (U', A21sU') = (U', A12s U') and therefore hE for aM =0 is
just the negative of that for aM=1. For a

I7 dJ 8 8
AE = 3X'2i U', (yi —y2) —(xl —x2) U'

i

rd7 &Xi By 1

=3&22~ U', J
BU'*DU' BU'*BU'

U' [+3X
-~y2~&1 il+2~yl- & &y2 ~2 1 ~+2 ~yl—

d 7.~d rod 7.3.

The first term of this expression is zero since on interchanging 1 and 2 the square brackets change sign
while U' does not. The last term is, on the other hand, just the negative of AB for uM = 1.The relations
between (AE)H' and (AE)H' and between (AE)w' and (DE)w' are the same as between (AE) ' and
(EE)M'. For

for

(P, QP&) = (U', C.&22'+&22s+&2P+&12s] U')

(4 Qo 4) =2(U' L&21'+&»'3U').

On account of the symmetry of U' these expressions are equal.
Using Eqs. (6), Table I and Eq. (7) one obtains the general result for hE for the state U' in the case

of the most general interaction of the type in which the potential energy is

(1 g g ) JMPM gJHPH g,Jw. 1

TABLE II. Values of b,E/mc'.

2
1.5
1

gM — gH —gW —(

—0.32—0.21—0.11

aM = —aH =aW =2

—0.60—0.41—0.22

gM gH gW

—0.87—0.60—0.33
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with corresponding correction terms in a, aH, a~. The general result being lengthy, it suffices to
write it down for JM = Jn = Jw and the special forms of Eqs. (5):
gg=y2A l(1 —g —g,)aM[ —v5/'p5/2(p+4n)/2O5 —v5/ //5/ n/2y/'+n(1+Zn/p) —7/2]

+ (1—g —gy) (1—aM) [—v'/'//, /'/2P'+ v""/'//, '/'n/2y' —n(1+ 2 n/ )v/']
H[ 5/ 6/ /P5+. /2 5/ / (1+2 / ) '//2]+g—(1 aH)[ 5/2 /2 /Pli+ (1+2 /p)

—7/2]

+gnaw[ 2vt'/2@5/4/p —v /
//,

/ n/2O5 —n(1+2n/v)

+gg(1 —a ) [v'/ //5/'n/2O'+n(1+2n/v) ~/ ] (8)

For p= v, P =y and the formula simplifies:

(5n+/)/' (n —/)/'
aE=X'An (1—g —g,)aM — +—+(1—g —g,)(1—a") ——+ga"

2nP' P' 2nP' P'

2 p' p'

— O' P'

p,' p,
7 5 p,' p,

7 p' p7
+g(1 —a") ——+—+g a" — ——+g (1—a") +-

O' P' - — 2O' P' - 2P" P-"
(8 1)

For n=163IImc'/fP, A =72mc', t' An=0. 627 m'c. Substituting numbers into the last equation one
obtains for g=-,', g~

———,
'

p/n= 2, AZ=VAn[ 0 066——0. .177aM+0.088an —0.177aw],

p/n= 1 5 AZ=X~An[ 0 030 0.129aM+0 064a —0 116aw].
(8 2)

According to Feenberg and Wigner, ' p/n is between 1.6 and 2.0. In order to account for the experi-
mental value —0.78 mc' one needs rather high values of aM, aH, a as is seen from Table II.
The result is sensitive to ///n. For the larger y/n = 2 one needs values of aM, —an, aw in the vicinity of.

3; for p/n = 1.5 these values have to be about 4. The result is not sensitive to reasonably small changes
of g and g&. The presence of an ordinary interaction (g&) is favorable for getting a large absolute value
of AB without using excessive values of a~, aH, aM. If A and o. are changed 'so as to remain in agree-
ment with the binding energy of the deuteron the factor Aa changes approximately as a'. Due to this
cause alone it is di%cult to have a sufficiently large change in AE' to make an important difference in
the results without using values of o. in bad contradiction with Feenberg and Knipp's and Feenberg
and Share's" determination of n. This cause might change aM =4 into aM = 3 for p/n= 1.5 since this
would require using n= 18 mc'/5'.

The values of aM, etc. in the neighborhood of 3 appear to be so high that one might discredit them
on the grounds that they indicate the theory to be forced, since it appears to give the experimental
value as a difference of two large numbers. This, however, is a false argument in several respects. The
contributions to hE/mc' for y/n=2, for example are —0.33(1—g —g~)aM, —0.11(1—g —g~)(1 —aM)

for the Majorana interaction. For a =3 these contributions are in the ratio of —0.99: +0.22.
Although the signs of these contributions are different, one of them is less than —„of the other. For the
Heisenberg interaction the terms in gaH and g(1 —aH) are of opposite signs for aH = —3 but one of them
is about twice the other; for the Wigner interaction the signs of the contributions of g&aw and g&(1 —aw)
are the same. It should also be remembered that although the absolute value of a~ for electromagnetic
interactions is small (aw= —1) yet the coefficients that occur in the interaction energy [Eq. (1)]
are as in

I3k /( &k 2& /),

which gives rise to combinations 2p2 —p~ when terms in one spin vector are collected. The occurrence

' E. Feenberg and J. K. Knipp, Phys. Rev. SO, 253 (1936);E. Feenberg and S. Share, Phys. Rev. 50, 253 (1936).
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of large numbers in the electromagnetic interaction is not much more plausible than that suggested
by the experimental fine structure vis.

Bgi(30p+2e().

DEPARTURE FROM THE MOST SYMMETRIC WAVE FUNCTION

When account is taken of the 'S and the 'D condition of the neutrons the interaction energy as
used for the calculation of the spin orbit splitting does not correspond exactly to the wave function U'

on account of the presence of the Heisenberg interaction. In terms of I. and X of Feenberg and
Wigner one fi.nds for the matrices of the potential energy"

Majorana
)3L+2K, 0 &

O, SK)

Heisenberg
5:E

1

) 0,

(5&K, 3L/2+2—K)
0

3L,—4K&

Ordinary

~3L+2K,

o,

Here the rows and columns are referred to the wave functions

0'= (5'/3)|l s+(2/3)PD, 0"= —(2/3)f'+(5'/3)4n

The Heisenberg interaction mixes a small amount of P" into P'; From the values of E, I obtained by
Feenberg and Wigner and by Feenberg and Phillips, the ratio E/L, is seen to be so small that E may
be neglected in the diagonal elements of the above matrices for purposes of estimating the coefficient
of P".This coefficient is according to a simple perturbation calculation

and correspondingly the change in c of Eqs. (4.1) and (4.7) is —-,'of this. Hence

5& 2(5'*)gK gK/L
c=—— =0.7454 —0.497

3 9(1—g/2 gg)L — 1 —g/2 —
gg

(9)

According to Eq. (9) positive K/L gives smaller c than that corresponding to the most symmetric
function P'. The wave function thus contains slightly more 'D than is the case for P'. The factor
(3c'—1)/2 of Eq. (4.8) is decreased, so that the expected splitting due to the interaction with the
alpha-particle is also decreased. For g=g~ ——

~ the change in c is —0.021 and (3c' —1)/2 changes due
to this from 0.333 to 0.288 or about 14 percent. The uncertainty in the theoretical value of AE due to
the uncertainty in y/a is greater than this. There appears to be no point, therefore, in estimating the
effect of the departure of c from Sl/3 more closely for the s shell. The spin-orbit interaction of the p
shell with itself is smaller than that with the s shell for the symmetric state P' as well as the 'S state
of neutrons. It is to be expected that the e8ect of the small change in c on the contribution to AE
due to the interaction within the p shell is also slight and it will not be considered in detail here.

An approximate idea of the magnitude of the effect of the p shell can be obtained by calculating the
spin orbit interaction in the S condition of neutrons. The interaction with the s shell is taken care of
by Eq. (4.7) (6.0), (6.1) ~ ~ (6.8). The interactions within the p shell give

(AZ) ' = —(3/64vr') X'jI Jg2QgQg(rgr2) L6QgQ2+2rgQ, 'Q2+2r2QgQ2'+ rgr2 sin' 8Q, 'Qp']d r gd r g

X'An(4a/v —3)

4(1+2n/ v) '~'

"Since the main part of the potential energy is —(1—g —g1)JI' —gJP~—gled, the J of this paper is opposite in sign
to that of Feenberg and Wigner. This should be remembered in using their integrals for L and X.
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This formula is in agreement with the one previously found.

(AE)M'= —(3/64-)t' t'JloQlQoQl'Qo'rl ro cos 8 sin'8drldro

—5X'Aa

4(1+2n/v)'"

(1o 1)

(~~)"'= —(3/128-) A'J~QPQP(J'/r) [ rl ro si—n'8+2rlro' cos 8 2rloroo—cos' 8]dTld To

VAn(n/v —2)

2(1+2n/u)"'

There is a general relation

(10.2)

which follows from the identity

One has also

2(~Q)Hl (~~)MO (~~)Ml

All+An= —(~al+Bla)~~8.

(10.3)

(~~)HO (~g)Hl (10.4)

(~~)wo 0

X'An(3+n/v)

(1+2n/r)"'

(AZ) '= —(3/32+)Xo I'QPQ& rlo(J'/r)(rlrz cos 8 —ro)d Tld To

(10.5)

(10.6)

Collecting the contributions for the s and p shell one obtains a formula of the type of Eq. (8). For

p, = v the equation simplifies and. becomes

3"'p "' pn 3'"' 3p,' (' p,) 5p~
'z=x'"n a (1—g —gl) —

I
5+-

I
—

I

——
I
—
, +(1—g —g )(1—'M)

2P'E n) &p 4) P' 2P'E n) 4P'

6p'/n , l p" (n+g'", +I —1I—,+.(1-'") —,-I —1I—,
p' ~2p ) p' p' 42@, ) p'

15'' ( n)p' 3p—
I
3+-

I
—+g (1—'")

2Po
(10.7)

The contributions of the p shell are here repre-
sented by the last term within each of the square
brackets. For gl(1 —aw) the P shell contributes
nothing. For g=gl ——~l, A =72mc', n= 16&me'/A. '.
and p/n=2, Eq. (10.7) gives

AE/mc'= —0.150—0.457aM+0. 229aH —0.298aw

The experimental value is then accounted for
without difhculty by letting a = —aH=a =1

giving hE = —1.134 mc'. Kith somewhat smaller
values of p/n or with different aM, aH, aw the
absolute value of AZ is easily decreased. The
contributions to AZ due to the p shell are
relatively insignificant in this case, the main
contributions arising from the interaction with
the s shell. Thus with the above numbers the
ratios of the p shell interaction to that with the s
shell are for uM =1, —0.012; for c =0, 0.42; for
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aH=1, —0.063; for uH= —1, —0.093; for aH=O,
—0.13; for e~ = 1, 0.23, for 12~=0, 0. The largest
of these ratios, 0.42 for a =0, does not enter the
result at all if one uses aM=1 as has been done
above. The net effect of the P shell for the 'S
condition of neutrons is only —0.011 mc'. For the
symmetric state Eq. (8.1) gives values for the
interaction with the p shell which are about ——',

of the whole for p jn=2.
It should be noted that the 'S condition of

neutrons does not represent the actual coupling,
even approximately, if the interaction energy is of
theform —(1—

g
—g~) JPM gJHPn— g~Jw —1with

values of the constants such as were used above.
The object of calculations with Eq. (10) with
such constants is to see how sensitive the splitting
is to a change in the wave function for a fixed
form of spin-orbit interaction energy.

Experiments of Bothe and Maier-Leibnitz and
of Maier-Leibnitz and Maurer" indicate the
presence of a state of C" at about 0.8 Mev above
the ground level. According to Feenberg and
Wigner, Feenberg and Phillips as well as Hund"
the lowest state of C" may be a 'I' arising out of
two missing p protons and one missing p neutron
similarly to the way in which the ground state of
Li' arises out of one p proton and two p neutrons.
The possibility that the two lowest levels of C"
in the level scheme of Bothe and Maier-Leibnitz
are to be indenti6ed with this 'P level is open but
it does not fit in a simple way the large ratio of
intensities of the 80 cm and 90 cm groups of pro-

~6 W. Bothe and H. Maier-Leibnitz, Zeits. f. Physik 10'7,
513 {1937);H. Maier-Leibnitz and W Maurer, Zeits. f.
Physik 10'7, 509 {1937).

& tons emitted in the reaction 8"+He'= C"+H'.
This interpretation appears to be doubtful but if
correct it would indicate a one structure splitting
of 0.8 Mev with an error of possibly ~0.2 Mev.
Even though this splitting is larger than that in
Li7 there is no contradiction involved since with
spin orbit interactions between pairs of particles
the simple relationship between holes and parti-
cles does not hold. If the splitting of the normal
state of C" is of the order of 0.4 or 0.2 Mev it
could remain unobserved in B"+He'= C"+H'
The 80 cm proton group would have to be
interpreted then as being due to a level with a
different angular momentum from that of the
ground state. This interpretation is apparently
not in contradiction with observations of
Cockcroft and Lewis" on C"+O'= C"+O'. The
ejected protons, according to their Fig. '1 on p.
264, show a number-energy distribution that is
not quite symmetric about the maximum, judging
by their "protons D+D" curve. The experi-
mental point for the range 11.9 cm and the part
of the curve for ranges between 9 and 11 cm are
suggestive of one structure. It would be inter-
esting to see a more detailed experimental curve
with more points for ranges between 11 cm and
14 cm with thin carbon targets and a mono-
chromatic proton beam of nearly the same energy
used for comparison.
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'7 J. D. Cockcroft and W. B.Lewis, Proc. Roy.- Soc. 154,
261 {1936).


