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Note added in proof: In the above argument for the dis-
integration of Ta!® no stable W0 is assumed to exist.
Professor A. J. Dempster kindly informed me of his recent
discovery of this isotope (Phys. Rev. 52, 1074 (1937)).
This removes the objection to the negative electron emis-
sion from Ta®, This process must be considered as possible
in addition to K electron capture, either due to a branching
reaction or an isomer of Ta!®, both isomers disintegrating
with periods of little difference.
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The mechanism proposed by Oppenheimer and Phillips
for the disintegration of nuclei by deuterons with proton
emission (d-p reaction) is examined. A formula is derived
which expresses the probability of this process in terms of
the sticking probability of the neutron (§2) and the
penetrability of the potential barrier. The importance of
the finite (rather than zero) nuclear radius for the pene-
trability is pointed out and the penetrability is calculated
for various values of the radius (§3). The energy distribu-
tion of the emitted protons is found to be given directly
by the sticking probability of the neutron (§5). Therefore
it may differ considerably from the distribution in “‘ordi-

- nary"” nuclear reactions by containing relatively more
high energy protons. A measurement of the energy distribu-
tion would allow direct conclusions about the width of
low nuclear levels which is of importance for the theory of
the a-decay and therefore of the nuclear radius (§5). The

§1. GENERAL

N any ordinary nuclear reaction the first step
is the entry of the incident particle as a whole
into the initial nucleus. In the ‘“‘compound
nucleus” thus formed, the nuclear particles rear-
range themselves until the compound nucleus
breaks up into final nucleus and produced
particle. However, according to Oppenheimer
and Phillips,! this general scheme does not apply
to reactions of the d-p type:* Here the incident
deuteron does not enter the nucleus as a whole
but splits up outside the nucleus into a proton

1 Oppenheimer and Phillips, Phys. Rev. 48, 500 (1935).

2 I.e., reactions produced by deuterons (d) with emission
of a proton (p). For the nomenclature, see Livingston and
Bethe, Rev. Mod. Phys. 9, 245 (1937).

probability of the O-P reaction is compared with that of
ordinary nuclear reactions, The O-P mechanism is found
to prevail in the d-p reactions for nuclear charges of about
25 and higher; if the reaction leads to a nucleus which
emits fast B-rays, the O-P mechanism will be valid at
still lower charges. The relative probability of d-p as
compared to d-n reactions is found to be (on the average)
unity for very light nuclei, to decrease with increasing
atomic number until the O-P process becomes prevalent,
and to increase from there on. The excitation function of
reactions with nuclei up to Z~30 is found to be an inade-
quate test for the O-P mechanism (§6). The question of
secondary (cascade) disintegration following the d-p
reaction is discussed and it is found that such disintegra-
tions (e.g. d-pn or d-pa) should be rare with deuteron
energies below the top of the potential barrier (§7).

which leaves as the ‘“produced particle,” and a
neutron which is absorbed by the nucleus.

The Oppenheimer Phillips (O-P) process is,
therefore, in principle simpler than the ordinary
type of nuclear reactions. While the ordinary
reactions are double processes, consisting of the
formation and disintegration of the compound
nucleus, the O-P process is a simple absorption,
i.e. formation of the compound nucleus which is
in this case identical with the final nucleus. The
proton does not enter the reaction at all except
by carrying away the surplus energy and mo-
mentum, this latter function being, of course,
quite essential because otherwise a simple ab-
sorption process could never occur. Since the
O-P process differs essentially from all other
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nuclear reactions, the usual “‘dispersion theory’’#-5
does not apply to it but a special theory must be
developed which will be done in §2. In this
theory, the cross section of the O-P process will
be expressed in terms of the neutron width of the
states of the final nucleus* ® or of the ‘‘sticking
probability’’ of the neutron.®

It is, of course, a matter of primary importance
whether a d-p disintegration will occur more
easily according to the O-P scheme or to the
ordinary scheme, i.e., with the deuteron entering
as a whole. It was first believed! that the O-P
process was favored mainly because the neutron,
being uncharged, penetrates more easily into the
nucleus than the whole deuteron. However, while
this effect is certainly important for heavy nuclei,
it appears negligible for light ones (Z~20). The
essential point in favor of the O-P process seems
to be that in the ordinary scheme the d-p
reaction would have to compete with other
processes, notably the d-» reaction, while in the
O-P scheme there would be no such competltlon
(reference 5, §80).

Even so, the O-P process will be restricted to
fairly heavy nuclei. For the lightest nuclei, the
potential barrier is so low that it presents no
obstacle to the entering deuteron nor to the
outgoing proton, the latter fact being important
for the question of the competition of the proton
emission with the neutron emission. (cf. §6).

§2 OPPENHEIMER-PHILLIPS PrOCESS AND CoM-
POUND NUCLEUS

Since the O-P process is a simple quantum
process, its cross section is given by

2T
UZ;I‘/‘VAN x4 Xp XB® ¥p°¢¥p*dr|?,

(1)

where 4 denotes the initial, B the final nucleus, D
the deuteron, P the proton, N the neutron. Vawx
is the interaction between initial nucleus and
neutron, the x’s are the internal wave functions
(discrete states) and the y’s the wave functions
describing the motion in space (continuous
spectrum). The upperscript ¢ denotes normaliza-
tion per unit current, e per unit energy and a per
3 Breit and Wigner, Phys. Rev. 49, 519 (1936).

4 Bethe and Placzek, Phys. Rev. 51, 450 (1937).
5 Bethe, Rev. Mod. Phys. 9, 69 (1937).
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unit amplitude. The relation between . these

normalizations is
Ye=vipe,
ve= (M?0/20°0) e,

(2a)
(2b)

where v is the velocity, M the mass of the
particle in question.

The expression (1) is related to the neutron
width of nucleus B which is defined by?®

Ty=2n| S Van x4 x8*¢¥n°dr’|?
X(2i4+1)(2s+1)/(2j+1), (3)

where the integration goes over the same
coordinates as in (1) except those of the proton,
and 7, s, j are the spins of nucleus 4, neutron N
and nucleus B. In order to correlate (1) and (3),
we shall assume that the nuclear wave functions
x4 and xp are rapidly varying in comparison with
the particle wave functions ¢y etc. Then, e.g. the
integral in (3) may be written approximately

[ S Van xa x8* dr'|2|¥n® |, - (3a)

the average being taken over the positions of the
neutron important in the integral (3). According
to reference 4, §4, the main contribution to (3)
comes from positions of the neutron at the
surface of the nucleus; therefore the average
should be taken over these positions.
Combining now (1) with (3), we find

Ty 2j4+1 1
[¥ne |2 (2i+1)(25+1) &
X | S¥p ¥p** xp d7p|%. (4)

In the last expression, the integration goes over
the positions of the proton; its result depends on
the coordinates of the neutron and should be
averaged over the surface of the nucleus. (More-
over, an average should be taken with respect
to the directions of the outgoing proton, cf. §4.)

¢ For the statistical weight factors, cf. reference 4, ap-
pendix. An elementary derivation is this: In the capture
cross section (1), we are interested in the transition from a
state with given orientation of the spins of neutron and
‘initial nucleus 4, to a compound state with any spin
orientation. The neutron width (3), on the other hand,
gives the transition probability from a compound state with
given spin orientation to any separated state. Compared to
the capture cross section, the neutron width must therefore
contain a factor which gives the number of orientations of
the neutron spin, 2s4-1, times the number of spin orienta-
tions for the initial nucleus, 2241, divided by that number
for the final nucleus, 2j41.
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The quantity T'y/|¥x|? which is just the first
- factor in (3a), no longer contains any reference to
the neutron wave function. It may be expressed
in terms of the sticking probability of neutron
and initial nucleus if the definition of a sticking
probability is extended to negative kinetic
energies of the neutron. Such an extension is
necessary because most final states B reached in
the d-p process have less energy than the initial
nucleus 4 plus a free neutron (cf. §7). For fast
neutrons, the connection between neutron width
and sticking probability is”

T
ﬁ: (254-1)(2i4+1)k D’ &y 7R? v,
Ne

where vy is the velocity of the neutron, &y its

©)

sticking probability, R the radius of the nucleus

and D’ the spacing of the levels® of nucleus B.
For our neutrons, the velocity vy would become
imaginary. To avoid this difficulty, we arbitrarily
replace the neutron energy Ey=3My va? by the
deuteron energy Ep=3%Mp vp® and obtain

=T/ |¥x®|2=(25+1)(2i+1)h D’
XEN’ 71'R2 Y)D\/Z. (6)

The modified sticking probability &y’ will be
identical with £y for high energies and will be
somewhat smaller than £y for low energies.?

Inserting (6) into (4) and introducing wave
functions normalized per unit amplitude for
deuteron and proton with the help of (2a b), the
cross section (4) reduces to

(2]+1) MP Up R?

7= v " D" &' | SYp® ¥r**xa dTp|? Av)

The integral over the proton coordinates must be
calculated with the neutron kept fixed.

7 Konopinski and Bethe, to appear shortly, §2. See also
reference 5, §54D.

8 More accurately, 1/D’ is the total number of levels per
unit energy, counting each level according to its statistical
weight 254-1.

9 When applied to slow neutrons, (6) gives

, wI B

=35 ym?h (6a)
where D= §D’(2:41)(2s+1) is the actual spacing of neu-
tron resonance levels, I'=Tx Ex~% and Q is the energy
evolution in a d—p reaction. Taking R=10"2 for radio-
active nuclei (§5, 6), we have for atomic weights around
100, approximately #2/MR2=0.7 MV. Q is about 5 MV, D
may be estimated to be about 5 volts (reference 5, Chap-

ter X) and I’ about 1073 volts? (reference 5, §62) This .

would make £y’ about 0.1 from slow neutron experiments.

§3. THE PENETRABILITY OF THE POTENTIAL
BARRIERS

The integral in (7) which determines the cross
section contains three factors:

1. The proton wave function y¥p. This function
will have almost constant amplitude provided
the proton is energetic enough not to be appreci-
ably affected by the potential barrier. This will
always be true for the fastest protons emitted,
i.e. those corresponding to low states of the final
nucleus B (cf. also §5, 7).

2. The wave function of the center of gravity
of the deuteron, ¥p, will fall off in an exponential
fashion as the deuteron approaches the nucleus,
due to the Coulomb potential barrier.

3. The internal wave function of the deuteron,
xp, will fall off exponentially with the distance
between proton and neutron. Therefore, if the
neutron is kept fixed at the surface of the nucleus,
this function will decrease with increasing dis-
tance of the center of the deuteron from the
nucleus. This factor wvaries therefore in the
opposite direction than the second; thus there
will be an optimum distance 7, (of the deuteron
from the nucleus) at which the product ¥p xp
will be a maximum. We may say that at this
distance the deuteron will ordinarily ‘“‘break up”
into its constituents.

The wave functions ¢¥p and xp may be
calculated using the WKB (Wentzel-Kramers-
Brillouin) method.’® This has been done by
Oppenheimer and Phillips,! and their results may
be taken over directly. The only point in which
we differ from their treatment is that it does not
seem legitimate to us to set the radius R of the
nucleus equal to zero. Especially if the deuteron
energy approaches the height of the potential

10 To the wave function ¢p of the center of the deuteron,
the WKB is directly applicable, since the corresponding
wave equation is separable in polar coordinates and thus
the problem reduces to a one-dimensional one. The wave
equation for xp, however, is not separable; if we introduce
polar coordinates s, &, ¢ for the position of the proton rela-
tive to the center of the deuteron, the interaction between
neutron and proton will depend only on s while the Coulomb
interaction between proton and nucleus depends also on .
In order to apply the WKB to such a nonseparable problem,
the direction of grad ¢ must first be known. This direction
is given by symmetry considerations if nucleus, neutron
and proton all lie on a straight line. Then grad ¢ will ob-
viously also be along that line. Thus we can find ¢ for all
these ‘‘straight-line positions.” This is sufficient since, for
given distances R and 7 of neutron and deuteron center from

the nucleus, x will be largest when the neutron is closest to
the deuteron, i.e. when all particles lie on a straight line.
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F16. 1. The break-up distance 7, of the deuteron as a
function of its kinetic energy E for various values of the
nuclear radius R. Abscissa e=E/I (I=deuteron binding
energy). Ordinate n=Ir,/Z¢?. Curves for various values of
p=IR/Ze

barrier, it is necessary to consider the finite
nuclear radius. This is the case for practically all
experiments carried out with light nuclei such as
Na, Mg, Al and even for Cu bombarded by
deuterons of 3-5 MV, the finite nuclear radius is
important.

Using the WKB method, we obtain for the
wave functions

QMp)} prEsZe
¢D(r)~exp<‘— hD) f _e——E) dx}, 8)

’ x

(2up)?
/)

xp(#, R) ~exp{ —

2(r—R) 262 Ze2
X f -2 ) dr}. ©)
0 4 7+%§'

Here Mp=2M is the mass of the deuteron,
up=%M the reduced mass of proton and neutron
in the deuteron, M the neutron (= proton) mass.
I is the binding energy of the deuteron, ¢ the
distance between proton and neutron in the
deuteron, and

rg=2e*/E. (8a)

The equations (10), (11) may be re-written:

2M?* Ze?
¥p XDNGXP{ —
ho I

Fle,n, ,,)‘l, (10)

11 Lawrence, McMillan and Thornton, Phys. Rev. 48, 493
(1935); Henderson, Phys. Rev. 48, 480 (1935).

where

Fe, n, p) =€ f(en)+(n/1—mn)*

XLfA=n)=f({1—n}{2—pn7})], (11)
f(x) =arc cos x*—x*(1 —x)?, (12)
n=1Ir/Ze, (11a)
p=1IR/Ze, (11b)
e=E/I. (11c)

Of the two terms in (11), the first represents the
penetration of the deuteron through the Coulomb
potential barrier (¥p), the second the penetration
of the neutron through the ‘“potential barrier’”
due to its binding to the proton.

As already mentioned, the product yx will
have a sharp maximum for some value 7, of the
deuteron distance 7, i.e., F will have a minimum
for a certain value 5o of 4. The contributions to
the integral in (7) will come mainly from the
neighborhood of 7,; therefore, to the accuracy
attempted in this paper, it will suffice to calculate
F at its minimum 7. The condition dF/dn=0
gives the following equation for 7o:

(1—eno)t=no(1—n0) [ —f' (1 —n0)+(2—pns?)
Xf({1=no} {2=pno ' )]+ 31 —10)}
XLfA—=no)—f({1—=mno} {2—pne'})]. (13)

From this equation, ¢ can easily be obtained as a
function of %, for given p.

The result is given in Fig. 1 for some values of p
which are important experimentally. According
to (11b), p is the ratio of the deuteron binding
energy I=2.2 MV to the height of the potential
barrier Ze?/R. With the large nuclear radii
proposed by the author,! the potential barrier for
deuterons varies from about 3 MV for Na to
10 MV for U (reference 5, Table XXXIII)
corresponding to a variation of p from 0.7 for Na
to 0.2 for U. With the small radii of Gamow, p
would be about three-quarters of these values
(0.5 to 0.15).

As is seen from Fig. 1, the ‘“break-up distance”
7o is not very sensitive to the nuclear radius
which is represented by p. For zero deuteron
energy, no is slightly larger than unity which
means that the deuteron breaks up at a point at

12 Bethe, Phys. Rev. 50, 977 (1936).
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which the Coulomb potential is slightly less than
the binding energy I of the deuteron. With
increasing deuteron energy, the break-up position
shifts to points of higher Coulomb potential, i.e.,
to smaller values of 7. This continues until the
break-up occurs at the surface of the nucleus
itself, i.e., until no=p. From then on, the deuteron
penetrates as a whole into the nucleus and the
penetration probability is given by the ordinary
Gamow theory (reference 5, §68). The deuteron
energy for which the deuteron breaks up just at
the surface of the nucleus (i.e., for which 5y=p),
is equal to the height of the potential barrier
minus the deuteron binding energy

Ey=Ze*/R—1I. (14)

In addition to the experimentally important
values p=0.2 and 0.4, there is also given in
Fig. 1 a curve for p=0. This curve which corre-
sponds to the assumption of Oppenheimer and
Phillips behaves rather differently from the
others. The reason is connected with the behavior
of the “potential barrier for the neutron’

Ze¢ Ze
Vy=I+——
r  2r—x

(15)

(cf. (9); x=distance between neutron and
nucleus, 2r—x distance proton-nucleus). For
small nuclear radii (0<%), this potential may
become negative for positions of the neutron just
outside the nucleus so that the barrier does not
quite extend to the surface of the nucleus; for
larger nuclear radii, Vy remains always positive
rightdown to x = R. This constitutes a qualitative
difference between the assumption of zero radius
and the actual situation.

After the break-up distance 5o has been de-
termined, the value of F(e, p, 7o) may be found

by direct insertion into (11) (12). The result is

given in Fig. 2 where this minimum value of Fis
plotted against the deuteron energy for various
values of p. It is seen that the various curves are
approximately parallel so that we may write
approximately

F(e, p, 10) = F(e, 0) —g(p). (16)

Inserting this into (10), we find that the energy
dependence of the penetration function Ypxp is
almost the same for all values of the nuclear

s 1

£/1 ¥ 2

F16. 2. The Oppenheimer-Phillips penetration function F.
The penetrability of the potential barrier is P=exp.
(—0.6 ZF) where Z is the nuclear charge. Abscissa E/I
=kinetic energy of deuteron/deuteron binding energy.
Curves for different values of p = IR/Ze? = deuteron binding
energy/nuclear potential barrier. p=0.6, 0.4, 0.2 correspond
to Z=13, 25 and 70, respectively. The broken curve gives
the penetration function Fin the ordinary Gamow-Condon-
Gurney theory for p=0.2; for p=0.6 the G-C-G function
(represented by the dots) practically coincides with the
O:-P function.

radius and that this radius is only important for
the absolute value of ¥y, and therefore for the
absolute yield. (The yield will, of course, increase
with increasing radius.) The approximate validity
of (16) is the reason why the penetration function
with zero radius, as calculated by Oppenheimer
and Phillips, agrees with the observed excitation
functions of reactions of the d-p type.!

For comparison, we have also given in Fig. 2
the penetrability of the deuteron as a whole

according to the ordinary Gamow-Condon-
Gurney (G-C-G) theory which is

¥ Ze?

¥o(R)~exp | —

- e-%f(em}. (17)

This penetrability coincides, of course, with the
O-P penetrability above the critical energy (14).
The figure shows that for low potential barrier
(p=0.6) the G-C-G curve is practically identical
with the O-P curve even at low energies while for
high barrier (p=0.2) there is a considerable
difference, the G-C-G curve being considerably
steeper. For p=0.4, the result would be nearer to
that for p=0.6 than to that for p=0.2. Thus it
is necessary to go to fairly heavy nuclei in order
to find an appreciable difference between the
O-P and the G-C-G excitation functions (cf.
Fig. 3). This fact does not preclude the possibility
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that the O-P mechanism is valid for much lighter
nuclei (cf. §6).

§4. INTEGRATION AND NORMALIZATION

Compared to the exponential in (10), all other factors
in the cross section (7) are relatively unimportant. We
shall therefore use crude methods for their determination
so that our final result can only give the order of magnitude
of the cross section. Any attempt at greater accuracy
seems unwarranted in view of the use of the WKB method
for the calculation of deuteron wave function, and of the
approximations made in §2.

The normalization condition on the internal wave
function xp of the deuteron is S"xp?dr=1, the integration
being over the position of the neutron relative to the
proton.!® For this normalization, it is sufficient to replace
xp by the wave function of a free deuteron, which amounts
to neglecting the polarization of the deuteron by the
Coulomb field of the nucleus. The normalized wave
function of a free deuteron is

xp"= (a/2m)be~/s (18)
a=(MI)i/h (18a)

and s the distance between neutron and proton. Thus (9)
must be multiplied by a?/(27)%s.

The required integration over the proton coordinates,
especially the angles, is facilitated by the fact that the
square of the integral must be averaged over all directions
of the motion of the proton, and all positions of the neutron
at the surface of the nucleus. We shall introduce polar
coordinates with the direction from the center of the
nucleus to the neutron as axis; the angular coordinates of
deuteron and proton in this system may be dp¢p, dpep
whereas the directions of motion of the two particles (at
infinity) may be specified by @ p®p, ©p®p. If the distance
of the proton from the nucleus is large compared to that
of the neutron (nuclear radius) which will be true whenever
the deuteron energy is small compared to the potential
barrier, we may put dp=dp=9, ¢p=¢pr=¢. We have
then to integrate (7) over ¢¢ and to average the square of
the integral over ® p®pOpdp.

We expand, in the usual way, the wave functions of
deuteron and proton in polar coordinates. If ¢’ is the angle
between rp and the direction of motion of the proton,
we have

vp=(kprp)~1Y_ (2 +1)fu(7p) Pr(cos &)
u

with

(19)
=4r(Rp/rp) 2 fv(7p) Virms (S 0pP) Virm*(Opdp)

Um?
and a similar expression for the deuteron. Here fi is a
radial wave function which, at large distances from the

18 Then |¢¥p xp|2drp drrel gives the probability of finding
the deuteron in the volume element drp and the relative
coordinates between the limits indicated by drrel. In order
to obtain the probability for given neutron and proton co-
ordinates, we must multiply |¥p xp|2 by the Jacobian

6(1'Dyrrel)=1 3 3P
d(tw, Tp) -1 1 '
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nucleus, has the form

Sfur=e®1 sin (kprp— 'zt 61r). (19a)

The last factor in (7) becomes then
| S xp¥ % pv*drp | 2= (4m)"22_ S sin ©pd@p

Imlim!
X sin @ml@pd‘l’pdd’pl Yirm (©Opdp) 12[ Yz,,.(@D(I’D) l2
X | (4m)2XpA p S drp(rp?/rpr D) fi(r p)fo(r)x D (7P, 0)
X S sin 8dddo[xp(rp, ¥)/x0(rp, 0)]
X Yin(30) Vim*(90) 2. (20)

Here xpn(rp, 0) is the value of the internal wave function
of the deuteron if nucleus, neutron and proton lie on a
straight line, as calculated in §3. The last (angular)
integral will be a slowly varying function of 7p, therefore
we may write

| Sdrp- -+ S sin 9d3de- - - |2
~|Sdrp--|2| S sin 9d9de- - + |*max,

the value of the last integral being taken at that value of
rp which makes the integrand of the first integral a maxi-
mum, i.e. at rp=27—R (cf. §3).

The integrations over ®p®pOpdPp can be carried out
immediately, they give unity for any Iml’m’. To evaluate
the remaining integrals, we observe that fi» has about the
same form for all important values of !’; therefore we
re-write (20) )

(4n)2KpRp2 Y | S drp(re/r D)fi(r D)fu(7P)
1

Xx0(rp, 0) |2wan X 2| S sin 9ddde

U'm/m

X [xp(®)/x0(0)]Yin(3¢) Vim* (@) |2 (21)
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F1G. 3. The ratio of the penetrabilities of the potential
barrier in the Oppenheimer-Phillips and the Gamow-
Condon-Gurney theories for various nuclear charges as a
function of E/I=kinetic energy of deuteron/binding
energy.
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The sum over V'm’ can be carried out immediately using
the completeness relation for the spherical harmonics;
then the sum over m is found using the addition theorem

2| Vim|2=(21+1) /4,

so that the last sum in (21) reduces to
J sin 9ddde[xp(#)/xp(0) I (22)

Here we use again the wave function (18) of the free
deuteron, and the geometrical relation

2= .I€2+r"p2 —2Rrp cos &

sds= Rrp sin 3d¥; s(3=0)=s0=rp—R. (23)
Then (22) becomes i
27 (se?/Rrp) S (ds/s)e 2% (=50
=~ (27so*/2aRrp?) (1 —e™4*R)  (24)

since 7p is the average value of s. Since 1/a¢=4.5-10"13 cm,
¢4k is negligible even for fairly light nuclei.

The integral over 7p contains the factor fi(rp)xp which
has a sharp maximum for rp=27,—R (§3), and the factor
fi(rp). The latter function oscillates rapidly with a period
of 2xXp and has the amplitude unity. It can be shown
that the change of fi» with 7p is more rapid near 7p =27p— R

than that of the product fixp, except for very large proton -

wave-length Xp. Therefore we assume that the main
contribution to the integral comes from a region of ex-
tension A on either side of the maximum of fixp, and
replace the integral by 2X times the value of the integrand
at rp = 27— R. Putting the average of f12(27;— R), averaged
over V', equal to one-half, (21) becomes finally

(4m)22Kp*R % (rp/ rn)zlzPopz(a/ 2ws?) X [21+1/4x]
X (27s¢*/2aRrp?) = 4w (Rp*R p?/Rr?) 3 (20+1)Pops.  (25)
l

Here Pop: is the square of fixp, the latter being taken
without the factor at/(27)¥s (cf. 18). Thus, for =0, Pop:
is simply the square of (10), the Oppenheimer-Phillips
penetrability )
P — 54_:2‘_4_.* 282 F( » )
OP=€Xp n It € 70, P
=exp (—0.6ZF(§, 0)).

For 140, slightly smaller results are obtained because of
the additional potential barrier due to the centrifugal
force (ref. 5, §72, and ref. 7). As for ordinary disintegra-
tions, we replace the sum over ! by Pl where I, is a
“critical orbital momentum.” '

Inserting these results into (7), we obtain the final
formula

0op=2V2(2j+1) ME2RRp*A p*'*re"2D' £n' Pop-.

(26)

(27)
§5. ENERGY DISTRIBUTION OF THE EMITTED
ProTons

The cross section (27) may be written
0'0P=60(2j+1)D’ EN’ .EP‘*, (28)

where ¢ does not depend on the energy Ep of

the proton. The excitation energy of the final
nucleus being a constant minus the proton
energy, the number of protons with an energy
between E and E+dE, ¢(E)dE, is obtained by
summing (28) over all the nuclear states in the
energy interval dE. Since dE/D’ is the number
of levels counting each level according to its
degeneracy 2j+1, we must simply replace
(2j4+1)D’ by dE:

a'oP(E)dE= () EN’ E-1dE. (29)

In this formula, the factor E—# varies relatively
slowly with the energy and is, moreover, theo-
retically rather uncertain. The number of protons
per unit energy is given primarily by the sticking
probability £y’. This is in striking contrast to
disintegrations of the ordinary type in which the
number of outgoing particles per unit energy is
determined by the number of energy levels of the
final nucleus in the corresponding energy interval
(ref. 5, §54). This latter relation leads, as is well
known, to the Maxwell-Boltzmann law

oord(E)YdE~e FIT dE (30)

for the energy distribution of the outgoing
particles in an ordinary nuclear reaction such as
the d-n reaction.

While the energy distribution in an ordinary
reaction can thus be predicted from the “‘evapo-
ration model,” not much can be said about the
sticking probability £y’ which determines the
distribution of the Oppenheimer-Phillips protons.
Two extreme views may be taken

(a) The sticking probability may have the same
order of magnitude for all levels of the compound
nucleus (in our case = final nucleus), including
the lowest ones.!* Then the protons from the d-p
reaction should be uniformly distributed in energy
between two limits [see below, (31), (32)].

(b) The sticking probability may decrease for
low compound levels in such a way as to leave the
reduced neutron width T* (cf. 6) approximately
constant. This would mean that £y’ varies inversely
as the spacing D’ of levels: In this case, therefore,
the energy distribution of the protons would be
the same as in an ordinary nuclear reaction,

1 Grave theoretical reasons are against this assumption
because it would mean the validity of the one-body model
for the low states of nuclei.
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showing a very sharp drop in intensity towards
higher proton energies.

(c) Any intermediate assumption may be
made; e.g., we think it plausible that for rela-
tively high excitation of the compound nucleus, £
is almost constant, while near the lowest level the
reduced width G* becomes constant, with a
transition region between.

In view of these uncertainties and of the great

theoretical importance of the sticking probability,
it would be very interesting to measure experi-
mentally the energy distribution of the emitted
protons. In order to make the O-P mechanism
certainly valid, the experiment should be carried
out with heavy nuclei and preferably with an
element with only one isotope. The deuteron
energy is rather immaterial, but the deuterons
should be fairly monochromatic (thin target).
Owing to the large density of nuclear levels, the
protons will, of course, not show any ‘group
structure’’ as with light nuclei, except possibly
near the high energy limit (corresponding to low
states of the residual nucleus). The spectrum
would extend to an upper limit

Emax=ED+Q1 (31)

where Q is the reaction energy (about 4-6 MV).
At the low energy end, the proton spectrum will
break off at an energy approximately equal to the
Coulomb potential at the distance 27— R from
the nucleus, i.e. the distance at which the proton
is found when the deuteron breaks up. With the
notations of §3, we have

Ze?

Emin= = .
27— R 2m0—p

(32)

For zero deuteron energy, we have about
290—p=1.9 so that E,i,=1.2 MV; for Ep=1
=2.2 MV, Epni, is about I; and if the deuteron
energy becomes equal to or greater than the
height of the potential barrier, Exin will be equal
to the potential barrier. In practically all cases,
Enin is large enough so that the corresponding
proton range Rnin is considerably greater than
the range of the incident deuteron. Therefore the
whole proton distribution should be easily
observable without disturbance by the scattered
deuterons.

It is of particular importance that these
measurements would give the width of nuclear
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levels right down to the lowest states of the
compound (= final) nucleus, states which could
never be examined by ordinary neutron bom-
bardment. The d-p reaction supplies neutrons of
“negative kinetic energy.”” The importance of the
width of these low levels lies mainly in the
theory of the «a-decay. It can probably be
assumed that the a-width without barrier is of
the same order as the neutron width!® for a given
level. Thus the measurement of the proton
distribution from the O-P reaction should settle
the problem of -the nuclear radii. If assumption
(a) above (constant sticking probability down to
the lowest levels, uniform proton distribution)
proves true, the width of the low levels would,
according to (6), be very large due to their large
spacing. This would make the radii of radioactive
nuclei almost as small as in the one-body model
of Gamow (about 9-10~ cm). If, on the other
hand, assumption (b) proves to be correct (con-
stant G*, proton distribution showing rapid
decrease towards high energies), the large nuclear
radii proposed by the author (12-107 cm) would
result. Assumption (c), which we consider most
likely at the moment, would lead to an inter-
mediate value for the radius.

§6. COMPARISON OF OPPENHEIMER-PHILLIPS AND
“ORDINARY"’ PROCESSES

Integrating (27) over the proton energy from
Emin to Em&x, we ﬁnd

0’0p=2%7ipzlc’27’0f_2R(xmin— Xmax)POPENI\v,y (33)

where Amin and Am.x are the proton wave-lengths
corresponding to the energies Enin and Epax (cf.
31, 32). (Of course, Amin >Amax-) £na’ is theaverage
of the sticking probability over the levels of
nucleus B between ground state and excitation
energy Enax—Emin, slightly greater weight being
given to the higher states. The taking of such an
average is, of course, adequate only if ¢ changes
slowly with the energy (assumption (a) in §5) ; if,
on the other hand, the reduced neutron width
G* (cf. 6) remains approximately constant
(assumption b), we may write

cop=V2R Ap? lc,2 7o )\n:ain
XT' Enin™! Pop &', (33a)

15 The ‘‘neutron width” G* deduced for levels below the
neutron dissociation energy is, of course, not an actual
width but only a convenient measure of the matrix element.
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where 77 is the temperature of nucleus B corre-
sponding to the excitation energy Emax—Emin
and £y’ the corresponding sticking probability of
the neutron. 7" is in general considerably smaller
than Epin- :

The O-P cross section (33) may be compared
with the cross section of an ordinary nuclear
reaction produced by a deuteron (reference 3,
Eq. (681a))

occa =mhp? L2 Poce £p To/T. (34)

Here T is the total width of the levels of the
compound nucleus formed by adding the deuteron
to the initial .nucleus, T'q the partial width
referring to the outgoing particle, Pgcg the
penetrability of the potential barrier for the
deuteron as a whole, according to the ordinary
theory of Gamow, Condon and Gurney, £p the
deuteron sticking probability and I, the critical
orbital momentum for the “ordinary’ disinte-
gration. The ratio of (34) to (33) is

oeoe w12 7¢? & Pace To

oop _2% 1"* R(Amin— Amax) Evnw Pop T .

(35)

The critical orbital momentum I, is discussed
in reference 5, §72. For deuteron energies well
below the top of the barrier, we have (Eq. 633)
l2=1g where g is given in (600a) of reference 5.
Analogous considerations for the O-P process
give 1,/ =1g’ where g’ differs from g in that the
nuclear radius R is replaced by the break-up
distance 7, of the deuteron. Since g~ R}, we have
12/1.”* = (R/7¢)t. Then we may write

& P T
=k(Ep, Z)— 228

gop Eva Por

0GCG

(36)

where & is a relatively unimportant factor which
is given by
™ r o%

e @37)
2* R%(xmin - 7‘max)

Assuming the nuclear radius to be 102 cm for
radioactive nuclei, and to be proportional to
A} (A =atomic weight) otherwise, we find

k=0.145 Z% A—1 9o}

X[(2no—p)t—(e+9~t17, (37a)

where ¢g=Q/I=2 to 3. The factor k turns out to
be almost independent of the deuteron energy,
decreasing by 10 to 20 percent when the deuteron
energy increases from I to 2I. For Ep=1I, the
values of k are approximately

Z=10 20 30 50 70 92
= 4.7 88 135 26 39 57.

In view of the many approximations made, the
numerical values of & should not be trusted ; they
may easily be wrong by a factor of 5 either way.
However, the tendency of %k to increase with
increasing Z seems to be real. Moreover, ¢ may
actually depend more strongly on the deuteron
energy.

The second factor in (36), viz. the ratio of the
sticking probabilities of deuteron and neutron, is
very difficult to estimate. It is likely that £p is
considerably larger than #y'; in fact, £p will be
approximately unity while the ‘“‘modified sticking
probability’’ £y’, may be about 0.1 (footnote 9).

The penetrabilities of the potential barrier can
be found from Fig. 2; e.g. for p=0.2, Z=70,
Ep=2I=44 MV, we have from that figure
For=0.195, Focg =0.28 which gives, according to
(26), Pop=3.5-10"* and Pgcg=0.8-10"%, corre-
sponding to a ratio of 45 in favor of the O-P
penetration. With Ep=I7=2.2 MV the ratio
would be 5000. Altogether, the factors beside
T'e/T in (33), will be about unity for moderate
energies (~3-4 MV), decreasing with increasing
energy.

This means first of all that the d-p reaction will
practically always follow the O-P mechanism for
heavy nuclei. For the proton width of heavy
nuclei is known to be extremely small compared
to the neutron (and therefore the total) width
(ref. 5, §79), so that I'q/T'<1 if Qis a proton. The
ratio I'¢/T can be estimated to be about 10~ for
heavy nuclei and medium excitation energies so
that only one d-p process in 10,000 would follow
the “ordinary’’ instead of the O-P mechanism.

Furthermore, we see that for heavy nuclei and
moderate deuteron energies the O-P process will
be about equally as probable as the d-n reaction.
(The d-n reaction follows the G-C-G mechanism

" with T'g practically equal to I'.) A more accurate

experimental determination of the relative proba-
bilities of d-p and d-n process could be used to
determine the relative sticking probabilities of
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deuteron and neutron according to (33). How-
ever, it must be considered that the d-# reaction
is, in the case of heavy nuclei, often followed by
the emission of an a-particle or a second neutron
(cascade disintegration, cf. ref. 5, §79 E). The
yields of these reactions must, for our purpose, be
added to that of the d-» reaction itself.

For lighter elements, the probability of the
O-P process will decrease as compared. to the
“ordinary’’ processes.owing to the change in the
relative penetrabilities. This decrease will be
partly compensated by the decrease of & (cf. (37)).
Nevertheless, the ‘“‘ordinary type’ d-p reaction
will ultimately become as probable as the O-P
process so that we reach the limit of validity of
the O-P mechanism. As we shall show, this limit
occurs for Z about 25, so that £=10. Setting, as
before, &v=+5ép, the limit of validity of the O-P
mechanism is given by

I Pop

~100. (38)

Fproton PGCG

The figure 100 is of course very uncertain, and a
possible error of at least a factor 5 either way
must be admitted.

To estimate T'/Tproton, we note (1) that even
for medium heavy nuclei I' is practically equal to
the neutron width, (2) that the width for each
kind of particles is supposed to be proportional
to the number of available states of the respective
final nuclei (ref. 5, §54, §79). The latter depends
on the available energy (ref. 5, §79) which is

where Q is the reaction energy and B the
potential barrier. The difference of the available

energies for the d-n and the d-p reactions is thus

Uv—Up=0Qx—Qp+Bp

=¢_—0.8 MV+Bp, (40)

where Bp is the proton potential barrier, 0.8 MV
the difference of the masses of neutron and
hydrogen atom, and e. the energy difference
between the (isobaric) nuclei formed in the d-p
and the d-n reaction. If the former nucleus is
heavier, e would be equal to the maximum
energy of the 8-particles emitted (plus the energy
of the subsequent y-ray if the -emission leads to

an excited state). If the d-» nucleus is heavier,
e_ is negative; and if in particular the d-» nucleus
emits positrons, e_= —1.02—¢, where ¢, is the
maximum energy of the positrons. The relative
number of available states, and therefore the
ratio of the widths, is given by the statistical

formula
I'n ) ( Un— Up)
—=exp { ———— ),

™ T (41)

where T is the nuclear temperature corresponding
to some average excitation energy between Uy
and Up. Now for medium heavy nuclei Qy is
about 5 MV (difference of mass excesses of
deuteron and neutron), Qp—Bp will turn out to
be about zero (§7), so that L{(Ux+ Up) will be
5-7 MV, depending on the deuteron energy. The
corresponding nuclear temperature would be
about 1.3 MV according to reference 5, Table
XXI.
The solution of (38) is approximately

UN—‘ Upz4:T

To verify this, we show that Pop/Pacc is not
very different from unity under the conditions
given by (42). On the average, e_ in (40) will be
zero (see below for a more detailed discussion);
therefore (42) corresponds to a proton barrier of
AT+0.8 MV~6 MV=2.7 I, i.e. (cf. (11b)) to
p=0.37. For p=0.4 and a deuteron energy of
2.2MV (=1I), we have Fop=0.37 (cf. Fig. 2) and
Foce=0.39; (cf. (19)). With R=10""2 cm for the
natural radioactive nuclei, a barrier height of
6 MV corresponds about to Z=25. This would
give (cf. (26))

Pop/Pocg=e"625-00%=14,

(42)

With a higher deuteron energy, we should find an
even smaller ratio Pop/Pgcg. Therefore I'y/Tp
=exp (Uy—Up/T) is only slightly less than 100
(cf. (38)), so that (42) follows immediately.

According to (36), the limit of validity of the
O-P mechanism is therefore given by

Bp=4T+4+0.8 MV —e¢_. (43)
Assuming 7'=1.3, this gives
Bp=6 MV —e¢_. (43a)

The limit of validity depends therefore on the
relative stability of the nuclei formed in the d-n



OPPENHEIMER-PHILLIPS PROCESS 49

and d-p reactions. If the product of the d-p
reaction is radioactive, the reaction will follow
the O-P mechanism even for relatively light
nuclei; if it is stable, the ‘‘ordinary’ type of
reaction will persist to somewhat heavier nuclei.
This is due to the competition of the ordinary
type with the d-z reaction ; this competition will
be easier when the product of the d-p reaction is
more stable than that of the d-n reaction.

The exact value of the critical nuclear charge
above which the O-P mechanism is valid, depends
also on the assumed nuclear radii. With the large
radii, Bp=6 corresponds (reference 5, Table
XXXIII) to about Z=36; with the small
(Gamow) radii, the limit would be Z=20 (for
e_=0), and with the intermediate radii assumed
in this paper, we have Z=25. In a case such as
Na? d-p where the product nucleus (Na?) emits
B-rays of as much as 4.6 MV (including y-ray
energy), the O-P mechanism may be valid in
spite of the exceedingly low nuclear charge Z=11.

These estimates of the limit of validity are very crude,
mainly because of the uncertainty in the numerical value
100 in (38), but also because the nuclear temperature 7 is
not very certain (it is probably much higher for light
nuclei such as Na which works against the O-P mechanism
in such cases). If, e.g., the correct figure in (38) is 10
instead of 100, we should have 2.37 in (39) and assuming
now T'=1.6 MV (generally lighter nuclei!) 4.5 MV in
(39a). This would shift the limit of validity to Z=17
(with the medium radius), if e_=0, and to still lower Z
when the product nucleus of the d-p reaction is radioactive
(e->0).

Much more information on these problems
could be obtained from experimental investi-
gations of the relative yields of d-» and d-p
reactions. For very light atoms, the probabilities
of the two reactions should vary from case to case
and should, on the average, be about equal. For
higher atomic weight (perhaps 10 <Z <25), the
probability of the proton reaction should show,
on the average, a slow decrease because the
competition between d-n and d-p process becomes
more and more favorable for d-z. The minimum
is reached at the limit of validity of the O-P
mechanism ; further increase of the atomic num-
ber will increase the relative probability of
proton emission because the O-P penetrability
increases compared to the G-C-G penetrability.
Moreover, the fluctuations from case to case
should become much less pronounced in the

O-P region because the competition has stopped.
For very heavy nuclei, as already mentioned, the
d-p reaction is presumably about equally proba-
ble as the d-n reaction for energies of about 4 MV.

While all the problems mentioned thus far
have not yet received much attention experi-
mentally, a rather large amount of work has
been done on excitation functions of d-p as
compared to d-n and d-a reactions. Here the
theory gives much less striking results. Large
differences between the O-P and the G-C-G
type of reaction can be expected only for rather
heavy nuclei for which no experiments are
available. In Fig. 3 we have plotted the ratio
Pop/Pgcc as a function of the deuteron energy
for various nuclear charges. The nuclear radius
was assumed to be 1072 for naturally radioactive
nuclei. It is seen that for Z=20 the ratio of the
excitation functions is practically unity for all

" energies above 2 MV (e=1), for Z=30 it de-

creases only from about 3 at 2 MV to 1 at and
above 4 MV, and only for Z2>50 the ratio
changes rapidly above 2 MV. Therefore we
believe that the validity of the O-P mechanism
can scarcely be proved by comparing the
excitation functions of d-p and other reactions
for nuclei of Z< 30.

§7. SECONDARY (CASCADE) DISINTEGRATIONS

As any nuclear process, a d-p reaction may in
principle be followed by a break-up of the
residual nucleus provided sufficient energy is
available. If the residual nucleus is sufficiently
heavy, it will always disintegrate with neutron
emission whenever this is energetically possible
(cf. reference 5, §79 and §65). In our case, neutron
emission leads back to the original nucleus; it is
therefore energetically possible if

Ep—Enin—I1>0, (44)

where E,,i, is the minimum proton energy given
in (32). From Fig. 1, it can be shown that the
expression in (44) is always negative for deuteron
energies below B+ 1 where B is the height of the
potential barrier. Thus a d-pn reaction can only
occur’® when the deuteron can go over the

16 Strictly speaking, there are always some protons of
smaller energy than Eni,. When such slow protons are
emitted, a d-pn reaction is possible. However, the num-
ber of these protons is small because they have to penetrate

the potential barrier, and therefore the probability of the
d-pn reaction will also be small.
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potential barrier, and in this case the primary d-p
reaction is relatively improbable compared to a
primary d-n reaction, since it is no longer favored
by a greater penetrability. Therefore the d-pn
reaction (which would be hard to observe) will
be of rather minor importance.

The question of d-pa reactions is rather
harder to decide because in this case the energy
evolution cannot be determined so accurately.
However, it can be said with certainty that the
d-pa reaction can only have an appreciable
probability with a given nucleus if slow neutrons
give an n-a reaction with the same nucleus. For
we have shown above that the product nucleus of
the d-p reaction will, in general, not have
sufficient energy to emit a neutron; it has
therefore less excitation energy than the com-
pound nucleus formed by adding a slow neutron
to the target nucleus. If that latter compound
nucleus emits y-rays rather than a-particles, i.e.,
if the capture of slow neutrons is more probable
than a 7n-a reaction, the same will be a fortiori
true of the final nucleus formed in the d-p
reaction, because the probability of a-emission
decreases rapidly with decreasing excitation

JR.

energy. 7n-a reactions with slow neutrons and
heavy nuclei have only been observed for Th and
U (reference 2, Table LX); therefore we may
expect that only these extremely heavy elements
give d-pa reactions to any appreciable extent.
(A small yield of the d-pa reaction will, of
course, always be obtained ; it may be calculated
from the penetrability of the potential barrier for
a-particles if the energy evolution in the reaction
is known). This seems to make unlikely the
reaction Au-d-pa which was reported by Cork
and Thornton!” and was previously considered
probable by the author (reference 5, p. 205).

The rarity of d-pa reactions may also be
understood if we consider that the d-p reaction
produces a nucleus with too many neutrons
which will naturally have no tendency to lose
further charge by emission of an a-particle. This
is in contrast to the d-z reaction which produces a
nucleus of too high charge so. that a subsequent
a-emission seems favorable.

Our considerations show thatd-preactions with
deuteron energies below the potential barrier

should rarely lead to any cascade disintegration.

17 Cork and Thornton, Phys. Rev. 51, 59 (1937).
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When electrons of sufficient speed pass through helium
under conditions favorable to single scattering, the elec-
trons scattered through a suitable angle fall into two dis-
tinct classes, those scattered elastically and those scattered
inelastically. The former have been scattered by nuclei
and the latter by atomic electrons. Because the atomic
electrons are in random motion, those electrons which
have been scattered by them through a definite angle
have a distribution of energies, the most probable energy
being that corresponding to a collision with an atomic
electron at rest. Jauncey has shown that when a fast
electron of energy Vp collides with an atomic electron
having a component velocity # in a certain direction,
the electron will have energy given by V'=Vjcos?8
+u(2mVy/e)t sin 6, where 6 is the angle of scattering. It
can be shown to follow from this relation that the distribu-
tion of emergy among the scattered electrons is identical
with the distribution of component velocities among the

atomic electrons. Moreover, since the last mentioned
distribution is closely related to, and identical in shape
with, the profile of the Compton modified band in x-ray
scattering, measurements of the energy distribution of
the scattered electrons will give an experimental determi-
nation of the profile of the band. Wave mechanical compu-
tations lead to a definite shape for this profile which can
now be tested by experiments on electron scattering. A
beam of electrons, with energies between 1000 and 4000
volts, was directed into helium at a low pressure and the
distribution of energies of electrons scattered at 34.2°
measured. It was found that the experimental results
gave a profile for the Compton modified band in excellent
agreement with the profiles calculated by Hicks and in
good agreement with those calculated by Kirkpatrick,
Ross and Ritland. Values for the probability of the various
component velocities of the atomic electrons are tabulated.



