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Van der Waals Forces Between Symmetrical Rotators
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Work of F. London on the van der Waals forces between linear dipole molecules has been
extended to polyatomic molecules which are representable as symmetrical tops. The results
obtained by a second-order perturbation calculation are compared with those of a variational
calculation for the specific case of the interaction between two tops in one-quantum states.

N a recent paper by Margenau and Warren'
- - the first-order perturbation energy between
symmetrical top molecules carrying permanent
dipole moments along their figure axes was cal-
culated. The results were applied to the pressure
broadening of the near infra-red spectral lines of
ammonia, and qualitative agreement with ex-
periment obtained. This indicates that these long
range forces play a significant role in line
broadening even at atmospheric pressure. It was
there assumed that the second-order forces
would be neg1igibly small over the range for
which their calculation was valid, a conclusion
based on the results of London' for linear dipole
molecules. In the present work, the second-order
perturbation to the van der Waals forces is cal-
culated for symmetrical top molecules. The
results show that the second-order eRect is
indeed negligible in line broadening. Actually the
addition of another degree of freedom (spin about
the figure axis) to the calculation for linear
molecules reduces the second-order interaction.
An independent calculation of the eRect is made
by the variation method.

The Schrodinger second-order perturbation
formula may be used to find the energy change,
averaged over degenerate states, resulting from
the approach of two molecules carrying dipole
moments p, along their figure axes:

tively, g; is the degree of degeneracy of the ith
state Th. e perturbing potential (interaction of
the dipole moments) is

V= —(p'/R') L2 cos 8i cos 02

—sin e~ sin 82 cos (Q~
—$2)]

where the orientations of the molecules are
expressed in the Eulerian angles 0, p, x relative
to the line joining them, and R is the separation
of the two molecules. A state j is characterized
by the product of two unperturbed sym-
metrical top eigenfunctions, each of which is
dependent on the three quantum numbers J, E,
3II. Since the energy of the symmetrical top is

where A and C are the moments of inertia about
the principal axes, summing over degenerate
states involves summing the numerator of (1)
over permissible values of the 3/I's (from
to +J) and the two possible values of the E's.
If the quantum numbers of the two molecules
belonging to the ith state are denoted by J;, X;,
3l; and J, E, M the numerator of Eq. (1)
becomes

Vq„" is the matrix element of the perturbing
potential V between the degenerate states ) and
p belonging to the energy states i and j respec-

H. Margenau and D. T. Warren, Phys. Rev. 51, 748
(1937).

~ F. London, Zeits. f. Physik 63, 245 (1930).
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The summation in (3) is over degenerate quan-
tum numbers of both initial and final states. It
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has been carried out over degenerate quantum
numbers of the 6nal state (j) in calculations on
transition probabilities, for example, in the work
of Dennison. ' Because the result at this stage is
independent of the degenerate quantum numbers
of the initial state (i), the remainder of the
summation yields only the degeneracy factor, g;.
In terms of Dennison's transition probabilities

J;E;cV;) ' g; t Jg;) '

J;E;3II;& 3 4 J,E;&'

The factor —, arises from the three possibilities of
polarization which contribute equally to the

2p, ' ( J~,)'( J K q'
3R' ( J,It, & 0 J &y'&

J,Z, q ~ J,'R, 'q

2p, ' l JE& I, J E'&
(gg, )„„(2)—

3R' i +.0 +.0

The elements A' are different from zero only
when 6J=O, &1 and AE'=0 (selection rules for
~~-type bands). With Dennison's' ' expressions
for the A' s, the 6nal result is

. total transition probability A . Expressed in
these terms, the numerator of (1) becomes

(J'+ 1)' —X"(J+1)' —X'
(+Q)A„(2)=- +, ,3R'9 (J+1)(2J+1) (J'+1)(2J'+1)(J+J'+2) J'(J'+1) (J+1)

KSX'2 J2 —X2 (J'+1)'—X"
J'(2J'+1) (J—J'+1) J(J+1)J'2(J'+1)' J'(2J+1) (J'+1)(2J'+1)(1+J' —J)

J'2 —X'2
(3)JJ'(J'+1) J'(2J'+1)(J+J')

where the subscripts z' have been dropped
throughout. Table I gives a few values of this
expression. It is seen that an increase in X, the
"spin" quantum number, weakens the inter-
action between molecules of fixed J and J'.
Since this energy perturbation would be de-
scribed classically as the tendency of one dipole
molecule to line up its neighbors, it may be said
that an increase in the "spin" energy of a top
strengthens its resistance to orientation.

If E is set equal to zero, the wave functions of
the symmetrical top go over into those of the
linear molecule. If the X's in (3) are allowed to
vanish, the resulting expression is identical with
that obtained for linear dipole rnolecules by-
F. London. ' It is to be noted that (3) has the
familiar form of the 1/R' law which is character-
istic of this effect. It does not apply, of course,
to cases of close approach where the numerators
of terms in (1) become comparable to the
denominators. For a typical molecule, calcula-
tions indicate that Eq. (3) is quite accurate for
distances of separation greater than 9 or 10A.

3 D. M. Dennison, Rev. Mod. Phys. 3, 280 (1931),
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2

27

2

9

J=2 J'=2
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—0.158

4The expressions given by Dennison are here to be
multiplied by 4.

Since the first-order splitting of levels is syrn-
metrical, the "center of gravity" of a degenerate
group of levels is unchanged by this interaction.
Hence Eq. (3) contains the total average eRect
of these long range forces.

An upper bound to the energy of interaction
can be found by the variation method, by using
a linear combination of unperturbed wave
functions. The mathematical complexity, how-

TABLE I. Values of (hB)q„(') for various energy states.
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FIG. 1. Energies of state as functions of R.
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th energy of the system witihinimizing e

respect to the constants in the variation function
leads to a secular determinant of ten rows an

ever, prevents an explicit calculation for the

special case where both interacting molecules are

ation function suggested by the problem is a

functions with which the given state (flip/ 110)
0

combines, i.e.,

columns, but which possesses only four distinct
roots, reducing to an equation of the fourt
degree in E„, the variation energy. The various
matrix elements in the secular equation - were
constructed from a table of integrals involving
symmetrical top wave functions published y
R '

h d Rademacher. s The resulting fourt
11 fordegree equation was solved numenca y or

various values of the molecular separation,
using reasonable values of the molecular con-

from which 8, the separation of the rotational
levels=1. 8)&10 "ergs, or about 0.001 ev.). The
lowest root of the secular equation is an upper
bound to the energy of the given state. T is

~Z ~» for
energy is shown in Fig. as as a function of R.
Included for comparison is a plot of (AZ) p„

lecting the effect on B„ofaveraging over degen-
erate states, it is seen that it is larger than t e
second-order perturbation for R&SA, since
contains also the first-order eRect, which obeys a
1/Rp law. At distances less than about 8A, the
second-order perturbation diverges markedly.
This shows that Eq. (3) is valid only for R greater
than this value.
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