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term in [r'XP7e~ occurring in Eq. (18.9). In a
similar way the term in [r'XP7em is canceled.
It is thus seen that the transformation of Eq.
(18.6) together with the wave equation trans-
formation of Eq. (19.2) transforms the wave
equation in the frame X into the wave equation
in the frame X'. Since at a large distance the
values of p' used in the transformed Eq. (17.3)
and the center of mass Eq. (18) are the same the
numbers of collisions taking place into cor-
responding solid angles are equal. No special
consideration of the geometrical factors is neces-

sary here anyway since they are the same for
the Born first approximation as for the general
case and since they have been found to be satis-
factory in a previous section.

Rote added in proof: Considerations similar to
those made for Eq. (17) have been carried out
also for the Majorana and Heisenberg exchange
equations.

The writer would like to thank Professor E.
Wigner for interesting discussions on the subject
of this paper and the Wisconsin Alumni Research
Foundation for its support of the work.
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The paper contains the rigorous solution of the following problem in multiple scattering: a
beam of particles impinges with arbitrary velocity distribution upon the plane boundary
surface of a body which extends towards infinity on the other side of the boundary. In this body
the particles have, a finite probability of being either captured or scattered without loss of
energy. The probability of scattering shall be spherically symmetrical in the laboratory frame of
reference. Number and velocity distribution of the returning particles are given explicitly;
density as well as velocity distribution of the particles inside the body are determined by the
formulae but not worked out in detail since they lack direct physical interest. The result is found
to depend on the ratio of the capture to the scattering cross section and on the velocity distri-
bution of the incident particles. Applying the theory to the diffuse reflection of slow neutrons at
paraffin surfaces it is found that agreement with observations and previous determinations of
the capture cross section can exclusively be obtained, if the active level of the "deuteron with
spin zero" is virtual. The connection of these results with some other experiments on the
velocity and magnetic moment of the neutrons is discussed.

INTRODUCTION

""EUTRONS before reaching the point of
observation usually have to travel through

various layers of different materials in which
they undergo collisions depending on the nature
of the materia1 penetrated. These collisions can
be elastic, inelastic, or capture collisions. Quan-
tum mechanics has supplied us with a large
amount of information concerning the single
processes while the problem of the effect of
consecutive collisions on the beam has not yet
in our opinion been solved satisfactorily. A large

number of authors (Fermi, ' etc. , Yost and
Dickinson, ' Wick, ' Ornstein, 4 etc.) have treated
special cases like the stationary state of neutrons
that are losing their energy through collisions in

hydrogenated substances, elastic diffusion of
neutrons accompanied by capture, albedo, etc.
Without attempting to enter into any detailed
discussions of these papers we think that the

' E. Fermi, Ricerca Scienta. VII-II, 13 I,'1936).
2 Yost and Dickinson, Phys. Rev. 50, 128 (1936).

G. C. Wick, Atti del Acad. Reale dei Lincei, 23, 775
(1936).

4L. S. Ornstein, Kon. Akad. van Wet. te Amsterdam,
Proc. XXXIX„No. 9 (1936).
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difference in treatment and results will become
apparent from our own presentation below. The
use of the diffusion equation and similar methods
will appear unjustified on account of the finite
mean free path of the neutrons; it furthermore
turns out that the inAuence of the boundary is of
far greater importance than would be anticipated.

In the present paper we treat the problem of
neutrons, incident with an arbitrary velocity
distribution upon the plane surface of an
infinitely extended body which fills the half-space
x&0. About this body we make the following
three assumptions:

1. Collisions between the neutrons and the
particles of the body occur without loss of
kinetic energy of the neutrons.

2. The scattering of neutrons is spherically
symmetrical in the laboratory frame of reference.

3. There exists a finite probability for capture.
These three assumptions are fairly well satis-

fied in nature by thermal neutrons incident upon
a hydrogenated substance and by neutrons of
higher velocity passing through rnatter of suffi-
ciently high atomic number. The question of
greatest practical importance is at present the
penetration through hydrogenated substances
since here experimental data are already present
which per'mit comparison between theory and
observation. (Confer Section 4.)

between the number of particles entering and
leaving d v due to their motion, plus the difference
between the number entering and leaving d7.

due to collisions. In the absence of collisions the
equation is simply

(Bw/dt)dtdr = —v grad wdtdr.

The e8ect of a scattering collision is to leave
unchanged the particle's position in space, but
to alter its velocity; while the result of a capture
collision is to remove the particle from the
element d~. We denote by

$(v, vz, v, v —v, vz vz, v —vz)dv dvzdv

the probability (per unit time) that a particle
suffer a collision removing it from the point (x, y,
s, v, ', v„', v, ') into the range dv, dv, dv, at (x, y, s, v„
v„, v,).Then. the total number of particles entering
dxdydsdv, dv„dv, in the time dt due to scattering is
given by

dtdxdydsdvzdvzdvz)l w(x, y, N', vz, vz, vz, t)

4 (vzi vz~ vz) vz vz~ vz vz& v* —vz)dvz dvz dvz ~

while the number leaving is simply

dtdxdydsdvQv„dv. w(x, y, s, v. , v„, v., t)

SEcTIQN 1 . THE FUNDAMENTAL INTEGRo-
D IFFERENTIAL EQUATION

In this section the theory of the motion of
particles suffering multiple collisions in matter
will be developed, and adapted to the case of
neutrons incident upon a plane boundary. . The
motions of the particles are described by a
general equation of conservation of particles.
In order to specify the particle, six coordinates
besides the time are required, three to determine
its position, and three to determine its velocity.
We denote by w(x, y, z, v, v„, v„ t)dxdydsdv, dv„dv,
the probability that at the time t the particle
be found in the six-dimensional volume element
dr =dxdydsdv dv„dv, located at the point (x, y, s,
v„v„, v,). The general equation of conservation
states that the change in the number of particles
in the volume element d7- in a small time dt,
given by (Bw/Bt)dtdr is equal to the difference

The integral in this last expression is just
the total probability per unit time of any
scattering collision, which will be called F.
In similar manner the probability per unit
time of capture will be called 0, so that the
number of particles leaving d7. due to capture is
dtdxdydsdv, dv„dv, Qw(x, y, s, v„v„, v,). Collecting
the above expressions we obtain the general
conservation equation

Bw/Bt+ v grad w+ (I'+ 0)w

=j w(r, v, t)ztz(v, v' —v)dv 'dv„'dv, '. (2)

It is desired to apply Eq. (2) to the case of a
beam of neutrons incident upon a plane parallel
plate of thickness a and infinite area. The axis
of the plate is taken as the x axis; the position
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Of the neutron is specified by the single co-
ordinate x. It will be assumed the particle loses
no energy in scattering, so that the velocity is
completely determined by the angle the direction
of the motion makes with 0 —x. As velocity
coordinate, we take the cosine of this angle
denoted by i O.nly the steady state will be
considered so that Bw/Bt=0. The magnitude of
the velocity will be called vp. Then Eq. (2)
becomes

the type to which the method of Fokker' has
been applied. In this method the right member
is expanded in powers of the disP/acenzent to
which the particle is subject in the assumed
time interval dt. This expansion is valid only
subject to certain restrictions on the collision
function which are not generally satisfied. There-
fore an exact solution of Eq. (4) has been ob-
tained, arid the result is different from that given
by the diffusion theory, which is identical with
Fokker's expansion carried to the second order.

In the case of spherically symmetric scattering,
p is independent of the scattering angle and is
equal to I'/2 by normalization. Making this
substitution, and setting A = I'+ 0/i)p, 8= I'/2'i)p,

we obtain

1

I'Bw/ctx+Aw =BJ"w(x, t")di (4)

The boundary conditions defining the desired
solution of this equation will now be investigated.
It is first observed that the continuity of m

alone is required, since only the first derivative
with respect to x appears in the equation. This
is to be expected from physical considerations,
since the distribution function itself cannot have
a step at the edges of the plate, but the rate of
change will have, due to the abrupt inset of
collisions. Two boundary conditions may now
be written down, expressing the fact that outside
the plate the velocity direction of the particle
remains unchanged, since no collisions can occur.
Applied to the incident boundary (defined by
x =0) this requires that there the distribution of
particles having a forward motion be simply the
assumed original distribution incident upon the
plate; which will be called f(i). Applied to the
further boundary (defined by x=a) it requires
that there the distribution of particles having a
backward motion be identically zero, since none
can be scattered back after leaving the plate.
Summarizing these conditions we obtain:

w(0, I) =f(i) for I )0, (a)

w(a, I) =0 for I (0. (b)

It is instructive to observe that Eq. (2) is of

SEGTIoN 2. SQLUTIQN oF THE INTEGRo-
DIFFERENTIAL EQUATION

In this section the solution of Eq. (4) under
the given boundary conditions will be derived.
Since the distribution inside the plate cannot be
observed, a complete solution is not required;
only the values of w at x=0 and x=a are
physically significant, gi'ving the reflection and
transmission coefficients respectively. In this
paper only the reHection coefficient, or albedo,
will be obtained.

It is first observed that (4) is a linear, in-
homogeneous, first-order differential equation in

x, whose formal solution is given by the integral
equation

w(x, )') q(p)e =+a/-l f"e(V)e »A-"(S-)

with w(y) defined by

(6)

and with g(f') an arbitrary function of |.Setting
x=0 in (5) we obtain at once

q(|') =w(0, t )

which shows. that g(i) is the distribution at the
incident boundary, and is equal to f(t ) for
positive I Setting x. =a in (5) and using (7) we
obtain, for negative f:

a

tw(0, t') = 8w(y)e" »rdy, —I'(0. (8)
0

t'Cf. Max Planck, Akad. der Wiss, , Berlin, Sitzungs-
berichte, Erster Halbband (1917}.
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We now introduce in (4) the Laplace adjoint
function to w, de6ned by

&a

w(x, f)e ~—*dx (9)

0+ico

w(x, l) = o(f, v)e'*dv,
27/ f O' %CO

which is always valid if there exists a strip
n &vi&P in the v =v, +fvp plane within which
the integral (9) is absolutely convergent, the
path of integration being de6ned by taking 0

inside that strip. In our case this strip is the
whole v plane. Now multiplying (4) by e ~* and
integrating we obtain

a a

e &*(Bw-/Bx)dx+A I e-& wdx
0 tJ 0

=8 w(x)e &*dx, (12)

and on integrating the first term by parts:

fe "w(a, f-) —fw(0, 1)+vie(i, v)

+Av(f, v) =88(v), (13)

and for brevity we set

a

-(e) = e()', p)d) fe=e(e)e-"ae. (m)
—1 0

When v(f', v) is known, w may be obtained from
the inversion formula:

1

8(v) 1-8
iA+vf

' fw(0, f)
dg

A+vf
0 dg oo

—8 —— = w(y) e""'rdy (18)
~ -iA+vf p

or from (10):

'tw(0 0)
8(v) 1 8-

—A+&|- ~ A+vs
0 dl88( A/t—') — . (19)

A+vC

and assign to v the value —A/1 We then obtain

(0, C) = 8—/f ( A—/i) (16)

This relation shows that w(0, i), in which alone
we are interested, may be obtained directly from

8(v) by setting v = —A /1, without resorting to the
inversion formula (11). The restriction e & =0
is therefore equivalent to a(I'+Q)/fop))1. For
thermal neutrons in paraffin (I'+Q)/vp ——1/X is
approximately 3.3 cm ', so that the condition
is well satisfied by plates of thickness greater
than 1.5 cm.

With this specialization Eq. (15) becomes

't (0, f)
8(v) 1 —8 = df' (»)

iA+-vf --i A+vt

The integral on the right may be split into two;
for negative t we replace 1 w(0, i ) by the expres-
sion given by Eq. (8). Hence:

or

Multiplying by dp and integrating:

To simplify the form of this equation we intro-
duce a new variable e= —A/v, and define

i)(f., v) = + . (14) u(s) = 8/s8( 'A/s), —so that —u(f') =w(0, f) from
A+vf' A+vt' (16). Finally we let o=B/A =I'/2(I'+Q). .Then

(19) becomes:

' i Lw(0 C) e"'w(a—, l)3df
8(v) =

A+~g
1

+88 (v) . (15)
,A+q|-

~'tw(0 0)
u(s) 1+os =o I df

yf —8 p f—s

' fu(f)
+o dt (20).

y g —S

This equation contains only one unknown, the
The treatment will now be confined to the function u(s), which is an analytic function of

special case u= ~. The significance of this the complex variable s and which is identically
restriction is seen if we set e & =0 in Eq. (13) the desired velocity distribution w(0, s) on the
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in which u(s) must be regular for R(s) (0. 'In
terms of this operator Eq. (21) reads:

Tu(s) —o.sp/(sp —s) =0.

The operatur lu may be expressed by a simple
complex integral:

1 p p(s)u(s)
Tu= ~ ds

27/2 y S —8
(23)

Fi|-. ).

Gap

p(s) u(s)—
' i.u(i.)

df =0. (21)
1 g —S

In the left half-plane R(s) (0 the function u(s)
is by definition given by the integral

u(s) = 8/—ze(x) e"*~*dx,

segment of the real axis defined by —1(s(0.
If we consider now the incident velocity distribu-
tion given by f(s) =6(s—s'o), ' and introduce the

1
symbol p(s) =—1+os df /(f s) w—e may re-write

Eq. (20) as

where I. is the path of integration shown in

Fig. 1. Thus I, includes the point s=s and also
the segment —1 (s&0 of the real axis. To
identify (22) and (23) we first observe that the
residue from s =a gives:

1

u(s) 1+os)"df/(I s) . —

Then we may write:

1

Tu(s) =u(s) 1+os s—
0 su(s) t' df'

+
i

I ds (24)
2~z~ l. s —s" ~ I —s

where 1.' does not include s=s. Then inter-

changing the order of integration and using

partial fractions we obtain:

from which follows at once:
I. u(s) is regular in the entire left half-plane

R(s) (0, and vanishes at infinity like 1/s.

On the other hand we obtain directly from
Eq. (21):

1

Tu(s) =u(s) 1+os
1f—S

0- ' df (. 1
+— I su(s) ——

2mz pi —si ri s —s s —f
ds. (25)

' i-u(f.)
Tu(s) = p(s)u(s) —0. df'

1 g
—S

(22)

' The albedo for any desired incident distribution may
then be obtained by integrating the result over that
distribution.

II. The difference p(s) u(s) —Oso/(so —s) is regular
in the right half-plane R(s) )0, and (since
lim p(s) =1—20) also in the right half-plane
Z= 00

u(s) vanishes at infinity like 1/s.

It can now be seen that these regularity condi-
tioris I and II are sufficient to define a function

u(s) as the solution of the integral equation (21).
To show this we introduce the operator:

Since I.' does not include s=s the last term
reduces to

dl 1 f su(s)
0' ——ds

1$—s 2x2~1, s —g

and the complex integral is 0 for positive g, but
is I u(f) for negative I'. Hence the last term gives

' f.u(i-)—o —dt'
~ 1 g —S

and (23) is therefore equivalent to (22). (In this
discussion it is assumed u(s) possesses no singu-

larities in the left half-plane R(s) (0, a condition
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which we have seen must be fulfilled in order
that Eq. (20) be satisfied. )

Using this representation of TN and setting

Pi(z)
log

(1-2o)' 2pi

'EGO p(s) ds
log (27)

1 —20 s —2'

O'Sp 08p dS

sp —s 27' I sp —s s —s

we obtain from Eq. (21) the equivalent equation

27CZ J
p(s) u(s)—

0Sp dS

Sp —S S —8
(26)

1 ( o'zp $ ds
i

pu —
) —;R(z)&0.

27I;~ 0 sp —s) s —s

Now according to condition II the expression
(pu —ozp/zp s) is regular and vanishes at in-

finity like 1/s for R(s) &0. Consequently we may
take instead of the i axis any path parallel to it
which runs in the right half-plane, and obtain
therefrom the vanishing of the expression

Since the expression in the bracket vanishes at
infinity like 1/s the integration path may be
deformed into the imaginary axis, giving for the
left side of Eq. (21):

pp(z) 1
'

p(s) ds
log = — log

(1 —2o)
' 2zi; . 1 —2o s —z

(28)

and obtain the function log pp(z)/(1 —2o)i for
R(z) &0 by analytic contiriuation. The deformed
paths I i and I.p for the functions log pi(z)/
(1—2o) l and log pp(z)/(1 —2o)& respectively are
taken as shown in Fig. 2, including the small
circle X with center on the positive imaginary
axis. Inside this cirde we have

log Pi/(1 —2o) *+log Pp/(1 —2o)'*

in the left half-plane R(s) &0. In the right
half-plane log pi(z)/(1 —2o)' is obtained by
analytic continuation. For example the con-
tinuation may be carried out by proper deforma-
tion of the integration path in Eq. (27); since
the function log p(s) is regular in the neighbor-
hood of thei axis, with exception of s=0 as may
be seen from the relation p(it) =1 2ota—rcta. n

(1/t) ~1—2o )0. In similar manner we define
for R(z) )0:

(rzp 1 f ozp i ds
]

pn-
sp —s 2X'$ L, ( sp —s) s —8

2' 2 Ly

p(s) ds 1 p(s) ds
log log

1 —20. S —8 2m' ~s.2 1 —20' S—8

R(z) &0, y(z) regular,

R(z) )0, y(z) p(z) regular,

p(«)y(«) = 1

(b)

(c)

which is equivalent to Eq. (21).
We can express the conditions I and II in

simPler form by introducing y(z) —= (zp z) tt(z) /'o zp,

obtaining for y(z) the regularity conditions:

2%1 p,

p(s) ds
log

1 —20 s —3

p(z)= log
1 —20.

Hence log pi+log pp= log p inside X, and there-
fore the identity holds for all values of s. Since
log Pi for R(s) &0 and log Pp for R(s))0 are
regular the desired separation p(z) =P&(z)Pp(z)
has been obtained.

Introducing the expression for y(z) in n(z)
we obtain:

lim y(s) =constant. (d)
ZMCO

It is seen that if p(z) can be expressed in the
form p(z) =pi(z) pp(z) where pp and 1/pp are
regular in the right half-plane R(z) )0, while pi
and 1/Pi are regular in the left half-plane

R(s) &0; then the function y(z) =1/Pi(z)Pp(zp)
satisfie all above conditions. Such a separation
is in fact possible. We observe p( pp ) = 1—2o and
define for 0-(-', :

1
n(z) =

zo —z Pi(z)Pp(zp)

O'Sp

(29)

Since p(it) = 1 —2ot arctan 1/t is an even function

The definitions of pi(z), pp(z) may be put in
more suitable form. Replacing s by it:

pi(z) 1 -" z+it p(it)
log = —— log dt (30).

(1—2o) l 2z' Z'+tP 1 —2o.
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Similarly for R(s) )0:

log pi(s) = —sp(s). (34)

u(s) =O.soe*o«'o& '«'/(s —s)

Since u(s) =w(0, s) for s&0 by definition, the
number of particles leaving the surface at an
angle defined by s is u(s)ds, and the number of
these crossing a surface parallel to the plate
per unit time is —su(s)ds since the velocity
component normal to the plate is the fraction
—s of the total velocity. The total number
crossing such a surface per unit time, which is
the albedo (for normalized incident intensity),
is therefore given by

0

P = su(s)ds. (36)

SECTION 3. GENERALIZATION FOR VARIOUS

VELOCITY DISTRIBUTIONS

Fro. 2.

there is no contribution from it log p(it) and

In this section there will be derived expressions
for the albedo when the distribution of incident
particles either is uniform, or obeys a cosine law.

As a erst step we obtain a relation for

Pi(s) s "log p(it)
log = —— dt

(1—2o) * 2m s'+P
su(s)ds

dt
+—log (1—20) . (31)

2m ~ — s'+t2

Now for R(s) &0 we have

from (21), letting s~ —~:

lim su(s) = —0./1 —20.
Z~CO

0

su(s)ds+so . (37)

s'+P s

Now letting s—& —~ in (33) we obtain lim sy(s)

=log (1—2o)'*, and using this in (35):

and hence, for R(s) &0 and 0 ~1/2: lim su(s) = —oso/(1 —2o.) ie*«&'»
Z~QO

—s "log p(it)
log pi(s) = dt —s&(s) (32) Equating (37) and (38):

2m g~+t2

where p(s) is the integral: su(s)ds= —so/1 —(1 —2e)le' &*o&]. (39)

1 log (1 2rrt arctan 1/t)—
p(s) = —— dt (33) For a general initial distribution f(so) this must

8 +t be averaged, giving the general result:
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t 1 —(1—20) le'«']sf(s)ds
Now inserting in the left member of (39) the
value of u(s) given by (35) there results:

sf(s)ds
0 ge

—zy(z)

(Tsoez z(zz )z— —ds ——soL] (1 2(r) e*zV(zzi)

] So 8 (44)

sf(s) ez «z &ds
or setting s = —s:

=1—(1—20) i-
1

S SQS
0

(40)
ge zp y (zp)

1 Sesq (s)

ds = 1 —(1—2o) &ez«("' (45)
S+Sp

Now P has the form 1 —C(1 —2(r)z, where in

general C is of course dependent on o-. It is
therefore sufFicient in the case of small (1—2o.),
which corresponds to small capture cross section,
to compute the factor C for o- = -'„ the error in C
being of order Q/I' (or 1/X in Fermi's notation).
Now for a uniform incident distribution f(s) = 1,
for a cosine law f(s) =2s, so that we require the
values of

1

se'«s) ds and
0

S2e'«')dS fOr o = —,'.

1+ao log a —1/(((, +1)=0.

In order to obtain these values we erst observe
that Eq. (20) possesses the particular solution
u(s) = 1/a —s in the special case that the incident
distribution is given by ui(0, l ) = 1/a f; in-
which a must satisfy the relation:

' se'+'& (1—20) '*

8$' = (46)

in which o- may be replaced by
c log (a+1)/(a —1)

from (41). This equation gives us immediately
the value of

1

se'«')ds

fOr o. =2, When a—+~. The reSult iS:

se'«')ds = lim a
1 Sesy(s)—Qs

a —s

This gives an alternative expression for the erst
term on the right side of (43), the insertion of
which yields readily:

This solution has no physical significance, the
value of c given by (41) being an eigenvalue of
the equation which 6ts no reasonable boundary
conditions. Nevertheless it is of assistance in
deriving certain relations concerning u(s). Since
Eq. (35), gives the value of u(s) for an arbitrary
incident direction, its integral over the incident
distribution 1/c —s must give 1/a —s.

= lim a/(T(1 —20) '

a+ i 1—
=lim a' log

a-+m a —i

(47)
1

(a+1)
alog

f(a —1/—

~e—zy(z)
ses y (s)

ds
(s —s) (a —s)

= 2/g3. .

using s as integration variable. Replacing z by
—s and splitting into partial fractions we obtain:

An expression for

1

S2es p (s )gS
&ezra(z) 1 -Sesy(s) Sess'(s)-

+
a+2' a+s ~0 s+s a —s

ds. (43)
will now be derived, subject to the same approxi-
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1mation 0 = zi. Setting 0 = z in (45, log t'
dt=

0 1+t

' log t2

dt+
1+t2

log t2

dt
1+@

1 1

e'+&') s ~ p

~ ~se'«'&ds —— s'e'&('&ds+
p

(49)

and hence

Expansion of the denominator in powers of s/s
gives:

~ ' log 1/t' dt—+
1+1/P P

log t'
dt+

1+t2

dt
Thus we obtain, noting

'0 +t

log t'——dt
1+t2

dt=0. (53)
1+t2

1 ~lf s2e'+(')ds = lim s se'~ "ds—
BOO

Q0 ezra (z)
(50)

s( (s) =log (V'3)s g(s)—

8 1
eg(Z)

ezra(z)

(54)

i
I s'e'«'&ds=lim

zmm ds (ezra(. )j0

-d ~iq

ds(s)

=Iim 2s'—
z-+co d~ ezra (z)

Now it is convenient to mo ifydif the form of
Eq. (33). Changing the integration variable in

Eq. (33) from t to st we obtain:

1 ~ log (1 —2o.tz arccot z't)
~w(~) f=—

1 "log 3Ps'(1 st arccot zt)—
f,

'=-. (52)

1 "log 3t's'
— —dt.

1+P

ft is apparent from Eq. (49) that the terms in
and hencet e rac e eh b ket become equal as s~~, a

. Qle there-the limit as written is indeterminate. We

enominator
~ ~

independently to obtain the limit:

with
d f s $ 1

g'(z) e"*'
ds &e*«*&l g3

It is now observed that

lim 3t's'[1 zt arcco—t st] = 1
ZMCO

and hence

&r 0 z

CO

llm s g (z) =— h(T)dr
Z~CO 7l Q

and therefore lim g(s) =0
ZMCO

To find g'(s) we write:

1 "h(st)
g(z) =— dt

p 1+t

where h(s) = 3s'(1 —s arccot &). Let zt = r:
h(r) dr z "h(r)dr

()=—)

(56)

(57)

(59)

(62)

dt' z
( g'e'«')ds=lim 2s'—

(
zmm ds e*~ (*&

0
log 3z' dt 1 log t'

7l ~ p 1+t x p +

For brevity we call the 6rst term —g ,s„ the and
last is equal to

(63)

1

But we have:
log 3t'(1 t arccot t)dt. —



HALPERN, LUEXEBURG AND CLARK

The definite integral may be put in a numerically
more tractable form

log 3t'(1 —3 arccot t)dt

i' log 3 cot' t(1 (co—t t)

sin

"log cos' t
dt+

sin' t

3(1.—t cot t)
v/2 log

sin

sin' t

= [tan t log sin' t 2t]o—"+I (64)

m. /2 log
where I=

p

3(1 scot t)—

sin

sin' t
dt

log (1—cos' s./2)= —m. + +I 7l +I4
cos m. /2

By numerical integration I=0.90, and hence

s't,"«' ds = 2 090

3 7r

=0.826. (65)

SEcTIoN 4. INTERPRETATIoN oF THE RESULT )

CoMPARIsoN wITH OBsERvATION

Cosine law distribution: f(i) = 21'

p = 1 —(1 —20) '(0.826/-', ) = 1 —2.48 (1—20) '*

= 1 —2.48[1/(N+1) ']. (66c)

The result obtained can be made physically
plausible by considering separately the case of

With the aid of the formulas derived above it
is now possible to write explicit expressions for
the albedo in the cases in which the incident
distribution is normal, uniform, or cosine law.

Normal incidence: f(l ) = 8(1 l)—
P = 1 —(1—2o.) le«'& = 1 —2.91(1—20) '

= 1 —2.91[1/(N+ 1)i]. (66a)

Uniform distribution: f(l ) = 1

p = 1 —(1 —2o) **(4/Q3) = 1 —2.31(1—20) l

= 1 —2.31[1/(N+1) l]. (66b)

0=-', which gives the albedo 1. In the absence
of capture processes an incident particle if
followed in its path through the material can
only either escape to infinity or after successive
collisions arrive again at the surface and escape
towards negative values of x. Consider a particle
after its first collision in the distance, say, xp

from the boundary; then the probability to
travel to "infinity" before it again hits the
surface x=0 is vanishingly small. All incident
particles therefore again leave the material, On

the other hand for a finite probability. of capture
the problem reduces to the determination of the
probability that a particle will be captured
before again hitting the surface. This probability
is a finite number which increases with increasing
capture cross section and therefore leads to
values for the a1bedo smaller than 1.

Amaldi and Fermi7 have attempted to ap-
proach the geometrical conditions underlying our

problem and to determine experimentally the
albedo for the case of thermal neutrons in

paraffin. From his theoretical discussions of the
case Fermi obtained for the albedo the expres-
sion: P = 1 —2(1/N) ~, which leads to the value
124 for N if Amaldi and Fermi's result P=0.82

is employed. On the other hand, if Arnaldi and
Fermi's experimental value for the albedo is
taken and our numerical coefficients are used,
we obtain for N the following values respectively

(a) Normal incidence: 261
(b) Uniform distribution: 164

(c) Cosine law distribution: 189
From our data given above it becomes apparent
that the ratio of capture to scattering cross
section is always considerably smaller than that
assumed by Fermi, but can be determined by this
method with sufficient accuracy only if we have
better information about the velocity distribu-
tion of the incoming particles. Considerations
based on the diffusion equation lead Fermi
to the distribution law f(0) =cos 0++3 cos' 8

which would give for X a value slightly below-

200.
It is now of importance to compare the

possible values obtained for N from our theory
with the second theoretical determination for N
which follows from the comparison of the calcu-

~ E. Amaldi and E. Fermi, Phys. Rev. SO, 899 (1936).
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lated cross sections of scattering and capture
due to interaction of proton and neutron. If it
is assumed that the capture of a proton by a
neutron and the accompanying emission of
gamma-radiation is due to the magnetic dipoles
of the proton and neutron, the theory' leads to
the following expression for N

(67)

in which v stands for the velocity of the neutrons;
p& and p& denote respectively the algebraic
value of the magnetic moment of the proton and
the neutron in nuclear Bohr magnetons; e and
e' stand for the absolute value of the energy
level of the compound nucleus proton plus
neutron, the first referring to the normal deuteron
nucleus with spin 1 the second to the deuteron
"with spin 0"; C is a numerical constant de-
pending on atomic constants and nuclear energy
levels, the exact definition of which is without
interest for us at this moment. The upper or
lower sign is valid, depending upon whether the
"deuteron with spin 0" represents a stable or an
unstable state.

Numerical evaluation of (67) leads to the two
values 188 and 76 for N depending upon whether
the deuteron with spin 0" has a real or virtual
level. It is furthermore assumed that the neu-
trons have thermal energy and that the values
for p& and p& equal 2.9 arid —,2 nuclear Bohr
magnetons, respectively.

Before comparing these values with the one
obtained from the albedo measurements it must
be remembered that (67) holds true for the
interaction of free protons and neutrons whereas
the observations have been . carried out with
bound protons. The scattering cross section in
the latter case is approximately three times that
of free protons. We therefore obtain finally for
comparison the two values 565 and 230 for X.

It is obvious by inspection that the value of
1.24 obtained by using Fermi's numerical factor

Bethe and Bat her, Rev. Mod. Phys. 8, 129 (1936).
H. A. Bethe, Rev. Mod. Phys. 9, 12.7 (1937).

differs almost 100 percent from the least value
possible. Agreement can be obtained with our
theory by assuming a velocity distribution of
the incident neutrons which lies between the
cosine law and perpendicular incidence and only
for the case of a virtual /evel of the "deuteron of
spin 0." The existence of a real level seems to
be definitely excluded.

As satisfactory as this agreement might ap-
pear, there are still certain difficulties involved
in the interpretation which do not permit us to
say that a complete proof of the capture theory
of neutrons has been established. Recent evi=
dence" makes it quite possible that the value for
the proton moment has to be reduced to 2.5
nuclear Bohr magnetons. A corresponding re-
duction in the absolute value of the neutron
moment to 1.65 nuclear Bohr magnetons so as
to maintain the relation that proton moment
minus neutron moment equals deuteron moment,
increases the value of X according to (67) by
the factor 4/3.

Furthermore recent experiments by M. D.
Whitaker" on the scattering of neutrons by
paramagnetic substances" have raised doubt
whether the neutron velocity is really down to
thermal values and whether the neutron has a
magnetic moment as large as the additivity
rule mentioned above would postulate. In both
cases the value of X would increase and difh-
culties would arise for the presently accepted
theory of deuteron formation.

The calculation presented above seems to
indicate that the transmission coefficient for a
finite thickness of the scattering body would
become to a certain extent independent of the
velocity distribution of the incident neutrons.
It therefore appears possible to obtain an exact
solution to the problem for plates of finite
thickness. The authors are working on this
question and on the extension of the theory to
include inelastic scattering processes.

' Estermann, Simpson, and Stern, Phys. Rev. 51, 1009
(1937).

"M. D. Whitaker, Phys. Rev. 52, 389 (1937).
"Halpern and Johnson, Phys. Rev. 52, 52 (1937).


