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The stationary states of the system of extranuclear elec-
trons in an atom can be treated without making much
explicit use of electrodynamics and, as is well known, the
present lack of understanding of the electromagnetic field
is relatively unimportant in practical calculations of spec-
troscopic energy terms. It suffices, in such applications, to
deal with wave equations which are correct only to the
order 22/c? times the term value, where v stands for the
velocity of the electron. The difficulties involved in form-
ing a completely satisfactory quantum electrodynamics
or any quantum field theory appear at the moment to be
so formidable that one may expect their solution along
lines rather different from those attempted so far. It has
been a lucky circumstance for the development of atomic
theory that the 2°/c® approximations sufficed for the gross
treatment of energy levels while the 92/¢2 approximation
apparently gives a satisfactory account of their fine struc-
ture. The development of the theory of nuclear physics
has paralleled that of atomic physics inasmuch as the
gross structure of nuclear levels has been of primary
interest. This has been done with an apparent sacrifice of
even approximate agreement with relativity through the
introduction of potentials varying in an arbitrary way
with the distance. The present paper is a continuation of
a previous attempt to improve this state of affairs. While
in atomic theories, Maxwell's equations can be used as a
guide in the setting up of a wave theory, no field concept
of comparable certainty is as yet available for nuclear
interactions. Fortunately, however, it turns out that the
requirement of relativistic invariance to the order #%/c?
together with the known symmetries of the electromag-
netic field are sufficient to determine the #2/¢? approxima-
tions to the wave equations in the electronic case. Even
though the retardation of electromagnetic potentials is in-
volved in the problem, its complete wave mechanical
understanding can thus be partly replaced by requirements
of invariance to order #2/c% In the present as well as in the
previous paper the possibilities of making analogous exten-
sions are investigated for arbitrary interactions.

In the previous work the possibilities in classical rela-
tivistic dynamics have been the starting point. The class-
ical approximately relativistic equations have then turned
out to be invariant in the sense that for each particle the

motion, as obtained by means of the equations in one sys-
tem, is the transform of the motion as obtained by the
same equations in another system. Using the picture of
wave packets subjected to small accelerations, some neces-
sary conditions for wave equations have been also derived
and the corresponding forms of spin orbit interactions
have been obtained.

In the present paper approximately relativistic equa-
tions are investigated using two different methods of
approach. One of them consists in using the first approxi-
mation of Born’s method for the description of the collision
process. It is then possible to devise matrix elements that
give an invariant description of the collision process not
only in the 2?/¢? approximation but in all orders of #/c.
These matrix elements are not applicable, however, to
ordinary physical systems in higher approximations of
Born’s method. The second method of approach consists
in working only with the v2/¢? approximation. It is then
found possible to have relatively simple equations that
give an invariant description of the collision process
exactly, i.e., independently of Born’s first approximation.
The equations correct to order 92/c? are set up for Wigner,
Majorana, Heisenberg and Wheeler forces using wave
functions with two components per particle. It is also
found possible to have equations for exchange forces with
four components per particle. An equation of this type
has been used by Share and the writer in a calculation of
the relativistic effects in the deuteron and shows that
spin-spin interactions of relativistic origin can be appre-
ciable and should be expected to have a range of force
different from the nonspin dependent part. The interpre-
tation of wave equations is discussed. It is shown how, even
in approximately relativistic discussions, these equations
should be considered only as approximations to equations
with four components per particle. The limitations of the
classical spin model arising from this cause are pointed
out and the magnetic interaction energy of the deuteron is
discussed from this point of view. It is concluded that
most of the existing estimates are not sound, since the
assignment of a magnetic moment to an elementary par-
ticle has to be defined in a physical way, and since the spin
current, as obtained from Dirac’s equation, is the particle
current rather than the electric current.

INTRODUCTION

HE nature of interactions between nuclear
particles is understood at present rather
poorly. It is frequently supposed that it has its
origin in the electron-neutrino field which can be
postulated in order to explain the phenomena of

B-ray disintegration. This hypothesis is very
attractive since it promises to relate in an
intimate manner the observations on mass
defects with those on B-decay. Another argument
in its favor is the adaptability of a field theory
to the requirements of relativistic invariance.
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In this respect the structure of the field inter-
action theories is much superior to the attempts
to introduce interaction forces with finite ranges
between the heavy nuclear particles, for it is
known that interactions with finite range are not
relativistically invariant. This decided preference
for field theories practically disappears, however,
when it is considered that the forces obtained so
far from the field point of view become infinite
as the distance between the particles is decreased
and that the energy becomes infinite as well.
It is, therefore, customary to cut off all integra-
tions at some suitably chosen wave-length.

As is well known, the cut-off wave-length
essentially determines the range of the inter-
action between heavy particles. The cut-off
procedure is arbitrary and destroys the rela-
tivistic invariance besides. One is, therefore, no
better off with the field theory in this respect
than one is in postulating an interaction with
finite range to begin with. The well-known
difficulty of obtaining the empirical values of the
interactions satisfying simultaneously the re-
quirements of range, of approximate symmetry,
of neutron-proton interactions and of B-decay
make this approach still more questionable.
Since it is clear that the proper point of view
for field theories has not yet been found and
since the agreement of theory and experiment for
B-decay is at present unsatisfactory, it appears
to be worth while to investigate in more detail
the consequences of forces introduced more
directly from empirical material. The usual
equations obviously give a description that is not
invariant under Lorentz transformations and it
is presumably impossible to make them com-
pletely invariant by any simple modification
without introducing some sort of field. This,
however, was also the case in the development
of the older atomic theory in which the electro-
static interaction between charged particles was
at first used exclusively. The electromagnetic
field has not been introduced since in a satis-
factory manner into the theory. Nevertheless it
is possible to have self-consistent discussions of
all effects up to the order 22/¢? in the velocity v of

the atomic electrons. It thus appears reasonable -

to attempt the same type of relativistic general-
ization in the theory of nuclear particles even
though one knows to begin with that a com-
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pletely relativistic theory must involve a field.
In atomic theory a treatment by means of a
Hamiltonian referring only to electrons is possible
only if one is not interested in effects that involve
the radiation reaction such as is responsible for
the natural breadth of lines. The relatively
large value of the 22/c? effects on the energy in
comparison with the width of levels due to
radiation damping is thus essential for the
applicability of the ordinary field-less theory.
The analogous condition in nuclear theories is
that the width of nuclear levels due to B-dis-~
integration be small in comparison with their
displacements due to the 22/¢®> effects. This
condition is apparently very well satisfied in
most cases since the 22/c® effects amount to
several 100 kv while the B-ray effects range from
seconds to years. It is not possible, however, to
tell @ priore that heavy particles can be treated
consistently without explicit reference to a field
even in the order v2/c% For a too high density of
heavy particles it is probable that no such
treatment will apply since then the interference
between the fields of different particles may be
of primary importance. It is not known, how-
ever, that this is the case and there is as yet no
very strong reason for abandoning the simpler
though admittedly provisional point of view of
individual interactions between pairs of particles.
In a previous paper possible forms of A.R.E..
(approximate relativistic equations) have been
discussed.! The first treatment was incomplete
in several respects. For exchange forces only the
spin orbit part of the interaction was considered
and the possibility of having similar equations
with exchange forces was left open. It will be
shown below that it is possible to form theories
with exchange forces as well as with the more
general velocity dependent interactions intro-
duced by Wheeler. It also turned out possible to
make generalizations for the treatment of
collisions that can be expected to be restricted to
the first order of the Born approximation but on
the other hand accurate for any velocity. The
consideration of the collision between two par-
ticles forms a convenient starting point for both

types of generalization.

1 G. Breit, Phys. Rev. 51, 248 (1937); Phys. Rev. 51,
778 (1937).
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CoLLisioN BETWEEN Two. PARTICLES

Let the two colliding particles be 1 and 2.
Their masses will be supposed equal. Their
collision will be treated using the first approxima-
tion of Born’s method. The initial momenta
will be designated by p:°, ps°, the final momenta
by p1, p2. Consider first the more familiar case
of electromagnetic interaction between charged
particles. The interaction energy is then? in the
order v2/c? ‘

H=(&"/r)[1—(e1e9) /2 = (enr) (1) /27*], (1)

where e is the charge, r=r;—r, is the displace-
ment vector from particle 2 to particle 1, 7= ||
and ai, @ are respectively Dirac’s matrices that
represent by their expectation values the
quantity —v/c for the two particles. On per-
forming the calculation one finds that the number
of collisions per second, per cubic centimeter,
per unit density of both kinds of incident
particles that take place so as to have the y and =z
components of 1 lie in dp,¥dp,? is

()

where E1, E, are the energies and 9 is essentially
the matrix element of the interaction energy
divided by the ¢ function that expresses con-
servation of momentum. In a fundamental
volume, we have

(P1°ps"s1°52° | H | p1pasise) = M3/ V, )

where §=1if p;°+ps"=p:1+p: and §=0 other-
wise. Here the initial and final states are specified
by assigning the values of the momenta as well
as of the spin variables s for the two particles.
So far the relations are general and do not
depend on the special form of H assumed in
Eq. (1). Use of this special interaction énergy
gives

M= e2f[(a1°*al) (as™*as) — (a:°* ea1) (@:"* aas) /2

— (@:%*araq) (a*arag) /22 Jr1 exp (ikr)dr (4)

k=(p:1—p:")/%,
2 G. Breit, Phys. Rev. 34, 553 (1929).

(4.1)
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where (a*abd) =2 a,*awb,, 4.2)

the initial states being for each particle of
the form

Yu=V"* exp (ip1/h),

where u is Dirac’s spin index. The normalization
corresponding to unit density is

(a*a) = (a*a®) =1.

(4.3)

(4.4)

Replacing the Coulomb interaction 1/ by e="/r
and making ¢—0, one has

M =4re*k~2[ (a:1°*a1) (a:"*as) — (a1°*aa1) (a2"*aas)
+Ek2(a1"*aka,) (@*ekas) ], (4.5)
which within terms of order #%/¢? is the same as?®
oM = me?h2[ (a:7a1) (@:%as) — (a7 eay) (a5 aas) 1/
LP1—p:")?— (E1—E)’c*]. (4.6)

If the interaction energy H’ is to give a
relativistic description of the collision process
then the number of collisions per cm? per sec.
that take place in a reference system K must be
equal to the corresponding number in the system
K’'. By the “corresponding number” one must
mean here the number that would be observed in
K’ if the waves that were used in K are viewed
in K’ because a collision is a four-dimensional
event and the space time density of events is
invariant. It should not be required, therefore,
that the number of the collisions per cm?® per
sec. per unit density of the incident beams which
we have denoted by N be unchanged by the
transformation because the density of a plane
wave changes on passing from K to K’. Let this
“corresponding number’’ of collisions in X’ be N’.
Then every satisfactory H must be such that

N=N'. (5)

The number N’ can be obtained by applying

3 C. Mgller, Zeits. f. Physik 70, 786 (1931); H. Bethe,
Zeits. f. Physik 76, 293 (1932). Invariant matrix elements
of the above type occur first in the papers of Mgller and
Bethe. They are in agreement with the results obtained
from the Heisenberg-Pauli electrodynamics for high
velocities in reference 2 to which Eq. (1) in the text is
the 22/c2. approximation. Mgller’s extension is more general
than the work of reference 2 inasmuch as it deals with
particles that need not be identical and shows that the
matrix elements have a simple mathematical form in
momentum space which is especially convenient in the
treatment of collision problems.
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Eq. (2) in the system K’ and using, therefore,
in 9 unit densities for the initial as well as final
states to give a number N”. In terms of this
number

N'=p¥ps" N"' / p1p2", (5.1)
where the p stand for the densities. Since N'//N
is entirely defined by the transformation formulas
every satisfactory interaction energy must lead
to the same transformation properties of |9|?
as those that follow from Eq. (4.6), viz. that
|on|? be invariant if all the amplitudes a are
transformed by the formulas of the Lorentz
transformation. This can also be seen directly
through the fact that N/|9w|? transforms as

p1p2 SO that
N""=pi'po/ N| " [2/ p1pa| M| 2, (5.2)

where in 9" waves of unit density in K’ are
used. From Egs. (5.1) and (5.2) -

N'/N=pt'ps' 0¥ ps | M |2/ L1202 | |?], (5.3) -

which is =1 for (4.6). It is now clear that an
invariant description of collision processes will
be obtained for any interaction energy in which
the matrix element 9 transforms as (4.6); i.e.,
for all interactions in which |91|? is unchanged
when the quantities a,, a,* are transformed by
Dirac’s formulas.

The invariance of |91|? does not by itself
necessitate the invariance of 9. It is nevertheless
simplest to require the latter as well and it will
be seen at the end of the paper that the equations
obtained are invariant to order »?/¢? quite inde-
pendently of Born’s first approximation. In
asking that 9 be invariant there is an essential
difference between the use of Mgller forms of
type (4.6) and 2?/¢? forms of type (4.4). The high
velocity forms (4.6) are essentially restricted in
their application to those matrix elements for
which conservation of energy holds because it is
not possible to have conservation of momentum
in all frames without having conservation of
energy as well. They do not have, therefore, an
immediate usefulness for cases requiring more
accuracy than the first approximation of Born’s
method because in such cases it is necessary to
know the whole interaction matrix rather than
just the part of it corresponding to a constant
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energy. If one is satisfied with 2%/¢? approxima-

‘tions, however, then it is possible to define 91 so

that it is invariant also for Ei+FE.# E°+ E,°.
In this order of approximation the lack of
conservation of energy destroys conservation of -
momentum only partially, the approximate rela-
tion being

p/+p —p¥ —p¥ =

—V(E1+E.—EL"—ES)/c% (5.4)

where v is the velocity with which K’ moves with
respect to K. It will be seen that 9t =91’ provided
Pi+p2=pi1°+p:2° and also that M =9 to order
2291t /c? even if conservation of momentum holds
only approximately as in Eq. (5.4). It should be
noted that the invariance of the part of 9N
referring to elements with approximate con-
servation of momentum and no conservation of
energy does not establish as yet the invariance
of the physical predictions of the equations
because the intermediate states in two reference
systems are not connected by the Lorentz
transformation that transforms the systems into
each other.

The verification of this type of invariance is
carried out just as easily using a generalization!
of Eq. (1) ‘

—H=J—%(a1a2)J+3(arr) (agr)d]/rdr.v (6)

Here J is a function only of the distance between
the particles. :

M=[(a:"*a1)(as™*as) — (a:%*aa1) (a:"* aa,)

—1(a"*aka,) (" okaz)d/kdk ]I (6.1)

with I=4r f (+J /) sin krdr (6.2)
0

and k=(p1—p:®+pL—p2)/2h. (6.3)

The symmetrical choice* (6.3) is the satisfactory

4In the calculations that follow the invariance of T is
proved by using conservation of momentum but without
using conservation of energy. The symmetric choice of
Eq. (6.3) gives expressions for I that are invariant in this
sense. The unsymmetric expression of Eq. (4.1) requires,
on the other hand, conservation of energy for the invariance
of M. The two expressions for k (symmetric and unsym-
metric) are, of course, equal in the reference system K.
It may appear strange that they lead to different trans-
formation’ properties of 9. The explanation is that the
expressions for k given by the symmetric and unsymmetric
formulas (6.3), (4.1) are equal only on account of con-
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one and will be used here. Under a Lorentz
transformation the quantity k changes by an
amount dk=k’—k such that

(kok) =[(vk)*—3(vk) (kv,+kvy+kv,°
+kvy’)1/(2¢)  (6.4)

and gives rise only to second order effects. Here
vy, Ve stand for the velocities of the particles.
Since I changes only as a result of a change in k,
it is not necessary to take into account the
change in I when one considers the last term in
the brackets in the expression for 9. The first
two terms inside the brackets in Eq. (6.1) form
a Lorentz invariant combination and, therefore,
the change in I is the only material one in this
connection. Since the change in I is of second
order it need not be multiplied by the second
term in brackets because the product is of fourth
order. The third term in the brackets involves
the velocities and changes, therefore, by amounts
comparable with its own magnitude. This change
can be computed using the identity

(E+E) (™ aa)+c(p+p°) (a*a)

+ic(@™{(p—p°) XoJa)=0,
which follows from Dirac’s equations that are
satisfied by @, a**. Here o is Dirac’s vector spin

matrix. The quantities p are, of course, ¢ num-
bers. With sufficient accuracy

+p°

(aa) —

1
(a oza)=—2 C(a [(p—g)x«r(%f_zg)

§(a*aa) =v(a®*a)/c.
Hence :
—18(a:"* akay) (a:"* ekas) =
—(1/2¢) [(vK)* — 3(vKk) (kvi+ kv,
+kv1°+kv2°):|(a1°*a1)(azo”fag). (6.6)
Here it was essential to use the relation

k[ (p—p°) Xe]=0,

servation of momentum, while according to Eq. (5.4)
conservation of momentum cannot be valid in X and K’
unless conservation of energy is satisfied as well. Therefore,
by adding a suitable term in p;+p:—p:°—p2? it is possible
to introduce at will in the transformed equation a term in
—V(E1+E;— E°— E»?) /2¢? and to cancel by means of it
terms requiring the assumption of conservation of energy
for the invariance of M.
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which is true only if conservation of momentum
is satisfied. If conservation of momentum is
satisfied only within the limits of Eq. (5.4) no
harm is done because then only a fourth-order
term results. On the other hand

5T = (kok)dI/kdk.

Using this together with (6.4) and comparing
with (6.6) it is seen that

6.7)

sM=0, - (6.8)

which proves the invariance of 9.

Two CoMPONENT EQUATIONS

An exact relativistic theory satisfying all the
necessary requirements and in particular that of
invariance under reflections can be formulated
only using wave functions with at least four
components for each particle. In applications it
is often convenient to have only two components
and the essential requirements for invariance to
order #%/c? are seen best in the two component
forms. A satisfactory two component theory is
obtained by equating these to the two large
components of the four component function in
the well-known manner. In many applications
this two component function, ¥, can be treated
as an ordinary wave function and its square
integral (¥, ¥) can then be set equal to unity.
Such a procedure is, however, an essentially non-
relativistic one and may. lead to incorrect results
as will be seen further on in this section. Keeping
¥ for the four component function the two small
components of ¢ in terms of the large ones are
given by

&= —(op)¥/2Mc (7

in sufficient approximation for most v%/c? applica-
tions. Here p is the usual differential operator
and ¢ is Pauli’s spin matrix. One has then

(\l/» ¥)= (\I’r \I’) =+ (CI), @),

which differs from (¥, ¥) by terms of order #%/c2.
These terms due to (®, ) must be taken into
account in the normalization integrals that enter
expressions for matrix elements. The alternative
procedure of equating (¥, ¥) to unity would not
be correct. Transformations of ¥ to new two
component functions ¥ chosen so as to have

(7.1)
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(W, ¥M) =1 are possible and convenient if one
wishes to put the wave equation in a form suit-
able for perturbation calculations. This has been
done for example in reference 5. Care must be
used, however, not to give to (¥W*¥®) the inter-
pretation of particle density as one is tempted
to do by analogy with the Galilean case. Thus a
suitable ¥® is

YO =[1+4p*/(8M?**)]¥. (7.2)

Attempting for the moment to interpret
(TW*FW®) ag the particle density one can obtain
the expression for the particle current density by
performing a Lorentz transformation. For a
system K’ moving with velocity v along the x
axis one obtains

(T ORPD) = (1 4-92/263) (TDRF D) —g T, /c?
with
To= (1) 2iM) [0 a®D*9T, O /05 — Wy Do¥, * /925
(/M) (0570 /0y — 0053/ 0) WaO*T,®,  (1.3)

where summations are performed over indices
occurring twice and ¢ are Pauli’s matrices. In
the 12/c? approximation the relation between the
particle density p and the particle current
density J must be p'=(1+v2/2¢%)p—vJ./c.
Hence the assumption p= (¥W*¥®) forces one
to the conclusion that the above J, is the ex-
pression for the particle. current density correct
to terms of order vp/c. On the other hand the
particle current density expression following
from Dirac’s theory is

To= —c(f*amy) = (/2 M) (V*0V o /0x
— W8T */0x) + (/2]

X (aaﬂza/ay —a’agya/az)‘l’a*‘lfg. (74)
The functions ¥ and ¥® agree in the lowest
order terms. The two expressions (7.3), (7.4) for
J., therefore, disagree in the spin terms. It is the
latter expression, following from Dirac’s theory,
that agrees with experiments on the magnetic
deflection of hydrogen atoms® as well as the

5 Reference 1, Eq. (9) for one particle. Eq. (17.1) for
two particles. Applied in Eq. (17.6) to Eq. (1) of present
paper. :

6 R. Frisch and O. Stern, Zeits, f. Physik 85, 4 (1933).
I. Estermann and O. Stern, Zeits. f. Physik 85, 17 (1933).

BREIT

measured magnetic moment of the “electron
orbit.”” The expression p=(¥W*¥®) is thus
seen to be in contradiction with experience since
it requires (7.3) even though

f (T O*F D) dxdydz=1.

The situation indicated above is a natural one
since according to Eq. (7.1) the charge density
contains terms in the spin when it is expressed
in terms of ¥. '

The disagreement between the relativistic
expressions for current densities in the order v2/¢?
and the ordinary nonrelativistic spin model has
already been known from the point of view of
hyperfine structure® where it is essential to use
Dirac’s equation for s terms of single electron
spectra in order to obtain results agreeing in sign
with those for other terms. This disagreement is
of a different character from the one just
mentioned. When the wave equation is reduced
from the four component to the two component
form one obtains a term which has no ordinary
classical analogy.? This term is responsible for the
splitting of the s terms. The terms which look
like the ordinary classical spin-spin interactions
have the expectation value zero for s terms
because they are modified by factors which make
the result converge so that they disappear by
symmetry. On the other hand Eq. (7.4) can be
used to calculate the interaction energy with the
nucleus directly as the energy of the nuclear
magnetic moment in the magnetic field due to the
electronic current. It has been verified by
Casimir!® that the result is identical with the four
component calculation of Fermi’s'’ and the re-

1. I. Rabi, J. M. B. Kellogg and J. R. Zacharias, Phys.
Rev. 46, 157 (1934); 46, 163 (1934); 49, 421 (1936).

7The molecular beam experiments give approximately
the same values for the magnetic moment of the proton
and deuteron as the atomic beams. This indicates that
the magnetic field a¢ the nucleus is given correctly by
Dirac’s theory. The atomic beam experiments in the
stronger fields show further that the magnetic moments of
the electron configuration are given correctly by Dirac’s
theory.

8 G. Breit and F. W. Doermann, Phys. Rev. 36, 1732
(1930). See Eq. (12) and following paragraph.

9 G. Breit, Phys. Rev. 37, 51 (1931).

10 Casimir, Physica 3, 936 (1936). See also footnote 14
reference 1 for effect of spin-spin coupling of different
origin. Detailed calculation by S. Share and G. Breit,
Phys. Rev. 52, 546 .(1937).

11 E, Fermi, Zeits. f. Physik 60, 320 (1930).
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sults were then extended by him to the magnetic
interaction of a proton and a neutron. It should
be noted, however, that the use of an ordinary
spin-spin interaction operator based on classical
analogy cannot be expected to be equivalent to
the interaction with the spin currents represented
by the last terms in Egs. (7.3), (7.4). It is
generally and perhaps incorrectly claimed that
the classical spin model has no sense and that one
“must’’ use Dirac’s equation. There is no doubt
that the classical model of two interacting mag-
nets is inapplicable to the interaction of an
electron with a nucleus. This does not mean,
however, that it is completely inapplicable to the
interaction of a proton with a neutron. For it
should be recalled that the magnetic moment in
Dirac’s theory is not properly thought of as an
intrinsic property of the particle but rather as a
consequence of the particle current density due
to the last term in Eq. (7.4). It has, therefore, no
direct meaning to multiply the result of calcu-
lations obtained by means of (7.4) by the
magnetic moments of the proton and neutron as
measured in nuclear magnetons. This procedure
is allowable only for the calculation of the
magnetic field due to one ‘“‘nuclear magneton’’ of
the proton but not for the calculation of the
remaining field. According to -the calculation of
Breit and Doermann® the classical spin model
leads for s terms to (—3%) of the hyperfine
structure splitting which is obtained on Dirac’s
theory. In this calculation both the nucleus and
the electron were supposed to be magnets of
finite size with an intensity of magnetization
distributed uniformly throughout the volume
which was assumed to be small for the nucleus as
well as the electron. The reversal of sign as
compared with Dirac’s theory was recently
noticed independently by Lamb.’? The reversal
of sign is easily visualized by considering the
direction of the magnetic field due to the electron
at the proton. On the classical spin model the
field is opposite to the magnetic moment of the
electron, while on Dirac’s theory the field is due
to the current of the electron and is therefore
parallel to the magnetic moment of the current
distribution. The same picture can be applied to

12, E. Lamb, to be published in the Physical Review.
The writer is grateful to Dr. Lamb for correspondence on
this subject.
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the interaction between proton and neutron. The
fraction of the total magnetic moment of the
proton that exists per unit volume at a point
having a displacement R, with respect to the
center of the proton will be denoted by D(R;);
D(R,) stands for the corresponding quantity for
the neutron. The functions D are supposed to be
spherically symmetric. The absolute values of the
magnetic moments will be written g,uolp, gapoln
where the g factors are g,, g,, the nuclear Bohr
magneton is po=eh/2Mc and the I are the
absolute values of the nuclear spins in units #:
Each I could have been set=1%. The correspond-
ing interaction energy operator is

LI,
H' =g, gnuic? f f [—————p
]r+Rn_Rp|3 -

_3(In(r+Rn_Rp))(In(r"l‘Rn_Rp))
[r+R,—R,|5 ]
XD(R,)D(R,)dR,.dR,.

Here r is the vector representing the displace-
ment of the neutron with respect to the proton
and I,, I, are vector matrices of absolute value
I,, I,. The expectation value of H’ for a strong
field state in which there are definite eigenverte
1.7, I,%is for s states

AW = — %Ipzlnzgpgn,u02fD(R")D(Rp)

r(r+R.+R;) dyi(r)
r|t+R,—R,|® dr

drdR,dR,,

where ¢(r) is the wave function representing
relative motion of the proton and neutron. The
integration over R,, R, amounts to the calcula-
tion of the electrostatic force-acting on the charge
distribution D, due to the distribution D, in the
direction from p to n. This force is conveniently
denoted by
{1/7} on

and then

ay ()

dr

dr.

AW = — 31,71, g g uuc? f {1/7) pn

If D, has a value only through a small sphere and
D, through a thin spherical shell of radius 7,
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large : compared to the radius of the sphere
representing the proton then {1/72},,=1/#2 for
r>rgand {1/7?} ,,=0 for r <7,. Then

AW = (47 /3) I p*1 27g pg nita™?(70).

If 7ois small this is just (—2) of the corresponding

result of Casimir’s. The above calculation cannot’

be applied to all of the interaction since part of
the proton’s magnetic moment is probably due
to the spin current.

. Theuseof the spin current in order to represent
the magnetic moment of the neutron is logically
also not completely correct since the neutron has
no charge. Since the spin current of Eq. (7.4) is
thought of more simply by Dirac’s equation for
the motion of the proton it is perhaps clearer to
talk about this part of the interaction energy by
means of the current density expression in
Dirac’s theory. The interaction energy can then
be reasonably postulated to be given by the same
operator as in hyperfine structure theory with
the neutron moment replacing the moment of the
nucleus and the proton current replacing that of
the electron. Fermi’s calculation for an electron
in the field of a nucleus' can then be repeated
without any essential difference. The fact that
the ratio of the neutron and proton masses is
nearly unity while that of the nucleus to the
electron is much larger does not matter because
only the distance between the particles enters the
interaction energy. The elimination of small
components by means of the large ones can be
made for the proton as Fermi did it for the
electron. The interaction energy due to the
proton’s charge, assumed to be given by the
expectation value of the above operator, can thus
be obtained without a new calculation using the
results of hyperfine structure. One obtains in this
manner the same result as Casimir even though
the spin current of the neutron is not used. This is
analogous to the comparison between electron
proton interactions with four and with two
components for the proton which has been made
by Lowen.!® It should be remembered, however,
that the correspondence holds only if the
neutron’s magnetism is extended through regions
small compared with the size of the deuteron. If

1], S. Lowen, Phys. Rev. 51, 190 (1937).
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one uses pp,=g,/2=2.8; un=g,/2= —2, Casimir’s
equation gives —5.6C where C depends on the
binding energy of the deuteron, the range of
force and fundamental constants. According to
the above discussion one can tentatively estimate
the interaction energy by using u,=1 to interact
with p,=—2 by Casimir’s formula and to give
—2C. The remaining u,’=1.8 interacting as a
classical magnet then gives (—3)(—2X1.8)C
=1.8C. This leaves a net effect of AW = —0.2C or
about 1/30 of Casimir’s. For u,=3, u,= —2 the
first order perturbation would vanish. These
estimates cannot be expected to be reliable since
the classical spin model is probably incorrect,
since the magnetism is in all probability dis-
tributed in some sense through space, and since
according to Lamb,? field theories lead one to
expect lack of constancy of magnetic moments.

A composite system can be described by a
linear combination of products of four component
functions. For each particle it is sufficient, how-
ever, to specify only the two larger components
since the small components are determined then
by Eq. (7). It is, therefore, sufficient to have
equations in the 2% component function which
will also be denoted by ¥ for # particles. In
making calculations with such equations it must
be remembered that the normalizing condition is

W, ) =(TO* W) =1

for each state. This means that the probability
of a state 7 can be taken as |¢,|? in the expansion
V=2 Ca¥n/(Yn, ¥x)}. When one works with ¥ it
is more convenient to deal with coefficients C,
defined by the expansion ¥=3 C,¥,/(¥,, ¥,)%.
Since the 2" large components of ¥ are equal to
the components of ¥ and similarly for com-
ponents of ¥,, ¥, it follows that

Cn(‘I’m ‘I’n)*= Cn(‘/"m "l’n)%-

From a wave equation in ¥ there follows a set of
equations on the C, and hence also on the c,.
Thelatter are of the form hdc,/idt+ Y Mpmcnd =0.
Since the ¢, are coefficients of 4» component
functions the 9 must have the transformation
property

p1' o2’ 1 po® | M |2 = p1papi®ps® | OM|2  (7.5)
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asfollows from Eq. (5.3). The connection between
¢, and C, gives

' [ (¥ny ¥n) ]
Mymd=
(\I,ny \I,n)

(Y., HY,,)
[(Way W) (W, W) ]}
X[(\Ilm’ \I’m)/(‘pmy \I/m)]%.

These matrix elements are not Hermitean if H is
Hermitean. It is, therefore, necessary to use non-
Hermitean A in agreement with the fact that
four component forms lead on reduction to
non-Hermitean two component equations. [Cf.
Egs. (9), (17.1) reference 1.] The first and last
factor in M., give together for states of constant
momenta

1+ (=22 = 2+ 1" +5:7) /(8 M*C).
On transformation this factor changes by
V(p1+p2—p:"—p2’) /(4 M%) =0,

which vanishes by the conservation of mo-
mentum. It is, for this reason, sufficient to
consider the transformation of the remaining
part of 9. In Eq. (7.5) 9’ is the matrix element
for normalized wave functions. It is obtained by
taking the value of 9., as given by Eq. (7.6) in
the primed reference system. One has as a
necessary condition for invariance

Lot p2’ 1 p2” RiRoRR 1 (W o, HW)' /6
=[p10201°02°R1’ Ry’ R\ Ry 1} (¥, IJ\P@)/&
Ri: (‘I’w \I’z)y Ri():: (‘I,io, \I/io)

(7.6)

(7.7)
where

and the 6 expresses conservation of momentum.
The state m is referred to by 0 and ¥,,= ¥,°%,°.
Similarly for ¥,. The relations (7.6), (7.7) are
independent of the normalization of ¥y, Wy,
¥y, ¥y’ and they can be used by letting ¥, be
that wave function which corresponds to viewing
in K' the state represented by ¥, in K. The
p1, pi', have the same relationship. Since
p1/p1’= (1, Y1)/ (¥, ¢¥1') the factor [ con-

sists of ratios like

L@ ¥0)/ (¥, ¥0) P=1+p/(8 M.
The condition for invariance is thus that
M= [1+4 (P2 + P22+ p1°2+4po"2) /(8 M?*c?) ]

X (¥, H¥,¥,)/5=Invariant (7.8)
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be invariant. By means of this result it is possible
to test a given equation for invariance. We apply
the test first to the case of ordinary interactions
already dealt with in a previous paper.!

ORDINARY INTERACTIONS'

Let the interaction energy be given by the
operator

Pip2J +JIpiD2  p1®p2xexPf+ fxxbpropsd
4022 4 M 2%c?

H=J
(8
{[rX (2p2—p1) Jo1—[rX(2p1—Pp2)Jos}

4 M2c?
f=dJ/rdr, r=1.—12

in the coordinate space of the two particles. The
corresponding operator in momentum space can
be obtained by the substitution

V,=A;exp (ip:;r/h) (=1, 2), (8.1)
where in the last equation pi, p: are ¢ number
vectors equal to the momenta of the two parti-
cles. The quantities 4; are two.row one column
matrices corresponding to the fact that for each
particle there are two components of the wave
function. The quantities 4 ; transform according
to the formulas

v? vp A
A’={1+——————————[p><o-]}/1,
8c2 4Mc® 4Mc?
' (8.2)
A't AJr{lJrﬂ2 ® + v [pX ]}
= —— — o
8¢? 4Mc? 4M02p

for each particle. Hence also

v(p+p’)

Zc;— 4Mc?

(A°,A)’=(A°, {1+

A

4Mc?

+

[(pO—p)Xa]}A). (.3)

Discarding constant factors of no interest we
have to test for invariance
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p:p+p
EUE=f(A1°A2°, [J—;z——-—I—IEJ
4 M 22
. (p:°r) (po°r) + (p1r) (par)
4022

f
[rX(2p2—p1) Jou

4 M2
if
+4M2c2[r X (2p1—p2) Jo2
+ 811/[262(?12+P22 + p1%% 4 p%%) }A A 2)

Xexp (tkr)dr (8.4)
k=(p1—p1°+p2"—p2)/2h.

In this and the following equations the p; are ¢
number vectors so that the order of factors in the
curly brackets is immaterial. The last term in
the above formula is due to the four component
normalization which introduced the correspond-
ing factor in square brackets in Eq. (7.8). The
above form of I can be transformed by partial
integrations which suppose sufficient regularity
of J. The result is

with

P1°p2’+Pip2
2M3c?
(p°k) (p"k) + (p:k) (p:k) d
- 4 kdk
pl+pP PP hie

+
8M3c? 4 M3

ED?=(A1°A2", {1~

[k (2p:—p1)]

hi(l‘ 2

4022

[kx(Zpl—pz)]]AlAz)z, (8.5)

where I is given by Eq. (6.2). Calculating éJ)t all
terms are found to cancel each other so that

sM=0 (8.6)

and the test is satisfied. For simplicity only one
type of relativistic equation for a Wigner inter-
action was considered above. The proof is quite
similar for the other types.! No new calculation is
required if it is noticed that the other types are
obtainable from the one tried by the addition of
relativistic invariants. It may be noted that in
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the discussion of (8) just as in that of (4) the
invariance followed without making use of
conservation of energy.

ExXcHANGE AND VELOCITY DEPENDENT
INTERACTIONS

The above way - of testing equations for
invariance is more suitable for the discussion of
the invariance of exchange interactions than the
method of the variational integrals previously
used. It appears at first sight that the very idea
of an exchange interaction is at variance with the
postulate of relativity. A proton and a neutron
exchanging places at a certain time { in the
reference system K can be viewed in the system
K'. Since the section f=const. contains in it
world points with continuously variable values
of #' there are some values of ¢ for which the
system appears to consist of two protons and
some other values for which it appears to consist
of two neutrons. Such a state of affairs would,
however, be in contradiction with the principle of
conservation of charge to which there is no known
exception, and a theory with this consequence is
not acceptable. The situation is nevertheless not
much worse than with ordinary forces acting ata
distance because for these also no invariance is
obtained for finite ranges. If one only requires
approximate invariance to order v?/¢? the lack of
simultaneity in K’ of observations made simul-
taneously in K is of the order vr/c?=A¢ where 7
is the distance between the two heavy particles.
This should be compared with the reciprocal
of the frequency characteristic of exchange.
This frequency has the order of magnitude
v=(¢(12), JY(21))/h where ¢(12) is the wave
function representing the two particles. If the
wave packets representing the two particles do
not overlap, the frequency of exchange is zero
and no difficulty with conservation of charge can

- arise since the proton and neutron do not change

places. Wave packets of the two particles that
overlap partially give rise to an exchange oc-
curring’ with a small frequency. As long as
vAt<<1 the lack of simultaneity introduces no
absurdity in the description of the behavior of
the wave packets because the time at which the
exchange occurs cannot be specified to better
than approximately 1/v. The upper limit of »
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is of the order J/h. In this case
vAt= Jur/hc® ~ (60mc?/ k) (ve? /mc?)

=60(e?/hc)(v/c) ~ 1/13;7'

for v/c~1/10. The viewpoint of exchange forces
leads thus to a slight but not very serious
inconsistency even under these conditions. The
time during which lack of conservation of charge
could be observed classically is still only a small
fraction of the inaccuracy that is present in our
knowledge of the time at which the proton-
neutron exchange occurs. The difficulty with
conservation of charge that has been just dis-
cussed is, therefore, not in the way of considering
formulations which are partially invariant. On
the other hand extensions to higher velocities
appear questionable.

By a procedure exactly similar to that used in
discussing Eq. (8) one verifies that

H' = — JP¥4-QM )

satisfies the invariance test (7.8) where P¥ is the
Majorana exchange operator and Q¥ is given by

4M2QM = — b(p1ipaixini fPH + fPMyixip,ip,T)
— (1 =0) (pripriai [PY + fPYiwipripy
+ P2 poininl fPY A fPMxixipyipal) +a(pipe] PM
+JPYpyps) +(1—a) (1] PMps+psJ PVp)
+ilp:XJP¥pi[a'e1—(1—a")e:]
+ilpaXJPp2 10”02~ (1~a")e:].  (9.1)

The invariance of ¢ can be seen to be inde-
pendent of the restriction of conservation of
energy by using

kM = (p."—p1+p2—p1°)/2h.

The matrix elements in momentum space take
then the form

pip2J PY + J PMpipy—(p1°p2’+pip2)

9.2)

X (4:°4, AlAz)fJ exp (ckMr)dr (9.3)

and similarly for the other quantities occurring
in Eq. (9.1). The quantities a, a’, a’/, b are
arbitrary constants. Their values are immaterial
for the transformation properties of Q¥. For the
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Heisenberg interaction one similarly finds that
H'=—JPHEQH (10)

satisfies the invariance test. Here PH is the
Heisenberg exchange operator and Q¥ is given by

4M*PQH = —b(pr'pa'x'x’ fPH + P fuxixipripy?)

— 11 =b)(priprixiaifPHE+ PA fxixipyipyi

+pa'palx T fPH+ PH fxixipyipy’) +a(p1J PHpy

+p2JPHp1) +(1 —a)(pipeJ P¥+PHJp1p2)

—hla'pi+(1—a")p: ][ VI Xe:1 ]PH
—hla"pa+(1—a")p1][ V2 X2 ]PH.

The last two terms in the Eq. (9.1), (10.1)
represent the spin orbit interactions for exchange
forces. They agree with the results previously
obtained.!* The other terms required by invari-
ance represent what may be called orbit-orbit
interactions even though this classical language is
perhaps misleading” when applied to exchange
forces. The presence of such terms is more
difficult to infer by the method previously used.
As for ordinary interactions one can obtain one
possible form from another by the addition of
invariants.

For two particles the Majorana interaction
— JPM is equivalent to the ordinary interaction
—J for states with even orbital angular mo-
mentum and it is equivalent to an ordinary
interaction +J for states with odd orbital angu-

(10.1)

“lar momentum. The orbit-orbit interactions do

not change the orbital angular momentum of the
two particles. It is thus natural that these
interactions have essentially the same form for
exchange and for non-exchange interactions. The
spin-orbit interactions on the other hand are
known to produce a mixing effect between
different values of L which in atomic spectra
gives rise in extreme cases to jj coupling. For
them no similarity of as close a character need be
expected, therefore, as for the Majorana inter-
action. For the Heisenberg interaction it will be
noticed that the spin orbit interactions are the
same as for ordinary forces except for the
presence of PH. For identical particles PH=—1
there is then no essential difference between the
transformation properties of the Heisenberg and

1 Reference 1, Eqgs. (15.7), (15.8), (15.9).
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the ordinary interaction which is in agreement

with the formal similarity of the results obtained

for the two cases.

Wheeler'® introduced for consideration inter-
actions of a more general type than the usual
exchange forces which he calls velocity dependent
forces. His generalization will be considered here
only insofar as it concerns forces without spin
dependence. An extension with spin dependence
can be made along the same lines. The interaction
potential between two particles 1, 2 is defined as
a linear operator occurring in the wave equation

Ho'y(r/, 1o, 15, - +) =fR(r’, r')6(ry 414

_rl’,"‘r2”)¢(r1”, !‘2”, r3y .. ‘)dr1”dr2”,

(11)

where r=r,—1r,

and § is a three-dimensional Dirac delta function.
This form is the most general one consistent with
the requirement of the cqnservation of mo-
mentum. The isotropic character of space and the
absence of preferential axes in the bodies of the
elementary particles makes it also necessary to
suppose that R depends only on r’/, 1’ and
(r'r’") so that R is invariant under rotations.
Substitution of Eq. (11) into Eq. (7.8) gives

M= (4,42, AlAg)fdr’dr”R(r’, r'’’)

X1+ (pr2+p2+ 1%+ pa) /8 M2 Jeie  (11.2)

with a defined by Eq. (11.5). The application of .

the transformation formulas (8.2), (8.3) gives

I = (4,94, fdr’dr”R(r', r'’’)

y {vz v(p1+p:+po+p2)
c? 2Mc?

¢iV|:(P1°—P1) Xo1]+iv[ (ps —p2) X o2 ]
N 4 Mc?

+—’-[<vr“>(v(p1-p2)>—<vr')<v<p1°~p2°)
4hc?

(V) (90— pi) ) M — (v2") (P — i) /M]}eia

XA145,).
15 J. A. Wheeler, Phys. Rev. 50, 643 (1936).

(11.3)

(1.1
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The problem now is to make 60t =0 by choosing
the function R properly. This can be accom-
plished by starting with an arbitrary continuous
and differentiable function Ry and adding to it
terms that will compensate after a Lorentz
transformation the terms occurring in Eq. (11.3).
Let

k=(p1—p:—p:"+p2")/21;

(11.4)
w=(p"—p:"—p1+p2)/2h.
Then
© (Pr—po)r” — (P’ — )1’ = Ak (r" +1')
A (' —1"") =2ha. (11.5)
Define S=fe"°‘Ro(r’, r')dr'dr"’. (11.6)

The function S must be expressible in terms of
the absolute values of k, x and the scalar product
(kx) because R is invariant under rotations. Thus

S=S(k, k, kx). (11.7)
Consider a part of st
oM1= (424, 414,)61;, (11.8)

6T, = f dr'dr"e Ry(t', t/)[(V2") (v(p1—p2))

= () (v(p:* — ") + (V1) (p1 — pa”) / M
= (vr") (p* = p*) / M ] (2 /4hc?),

which corresponds to the square brackets in
Eq. (11.3). The factors r”’, r’ occurring in 61, can
be expressed!® in terms of derivatives of S with
respect to the components of k, x. Calculating
61, in this way and making use of conservation of
momentum it is found that

(11.9)

2281, = [(vk) - (lez)][ (V,:: S+ (;, ;:;S]
- o 2]

P=p:+p:"+p2+ps.

18 This is a natural thing to do since 8I; is the change
in S due to the transformation. The intermediate step of
Eq. (11.9) can be avoided if desired using this fact.
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The change 69, can be compensated. by adding
to Ry a suitably chosen —Q; which gives rise to a
contribution

—59:)}1(2: —(AloAzo,'A1A2)511Q. (121)
It is sufficient to make
0I1=206I1q (12.2)

in order that 69t be compensated. This can be
accomplished by

S
A M%* 1 o= [ (p:°k) (p=k) + (p:k) (p2k) ];;;k‘

aS
L@ (pe'w) + (Pure) (Po)

KOK

+[(p1%k) (p2"x) + (p1°%) (P2°K) + (p1k) (P2x)

EXN)
+ (P1x) (pok) ——  (12.3)

3(kx)

The substitution of S by means of Eq. (11.6)
yields on transformation

1
. _ 1201 1 Oap 0B 0a 0B
Iiq 16M2c2fdr dr"' (P2 P10+ p1"po
79 9
+P2"P1b+P1“P2b)ew[ —+ )(x'“‘{'xn")
ax’'®  Ix'’?
a 0
-|—( — )(x"‘—x"“)]R. (12.4)
ax’t  9x’'®

Define K0=R06(r1’+rzl—I']”—I'gll). (125)

When one makes a change of K, into K¢—K;
which corresponds to changing R, into Ry—Q;,
one has .
Ki=0:6(t/41'—1)/" —12""). (12.6)
Eq. (12.4) suggests the following form for K,
h? / 9? 9?2 9?

1= \ + +
16M262 axz’“axl”’ axl’aaleb t?xz"“axl”b

92 - i) i) , "
+6x1”“6x2"”)[(6x’b+6x””)(x +")

9 d

dox'?

Here ( ) indicate that the differential operators

6x,{b)(x’“—x”“):|K0>. (12.7)>
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do not extend beyond these brackets. The partial
differentiations 9/8x’, 9/0x'" are understood re-
spectively in the sense of keeping x:+x.’ and
x1'+x2'" constant. The partial differentiations
d/dx:* are understood in the sense of keeping all
x9¢ constant and all x,® const. with b>a. Eq.
(12.7) defines an operator in coordinate space
which produces I;q as is seen by partial inte-
gration from Eq. (11). It is clear from the form of
Eq. (12.7) that the kernel K involves derivatives
of the & function and that Q; is singular. It
appears probable, although it has not been
proved, that it is impossible to make §Jt=0
with a regular R. In the calculations that led to
Eq. (12.7) essential use has been made of the
isotropy of space by means of Eq. (11.7).
Conservation of energy implies for any collision
process that (kx) =0. No use of this relation was
made. On substitution into Eq. (11) the differ-
entiations 9/dx;* can be transferred to the wave
function by partial integration and are equivalent
to the introduction of momentum operators.
These commute with the total momentum
operator and conservation of momentum is not
destroyed by its introduction.
Again let

Mo =(A1°4°, A142)81,, (13)

with
6]2=fdr'dr"ei“R(r’r")[02/62-—-VP/ZMcﬂ. (13.1)

This represents the first two terms in Eq. (11.3).
Compensation can be effected by introducting an
addition — K, to K which gives rise to a contri-
bution —&Meg= —(A41°42°, A142)61sq similarly
to Eq. (12.1). It will be sufficient to make

, 8Iaq=1>. (13.2)
This can be done by making
h? [ K, 3?K,
Ky=— } ] (13.3)
2M2c2|_6x1”“6x2”“ dx1/*dxy’e

as well as in other ways corresponding to different
combinations of derivatives with respect to
dx1'9x2"", 9x19x,’, etc. These forms are im-
mediately obtained by inspection, no reference to
S being necessary. The contributions —K;—Kp
to K, correspond to the orbit-orbit interactions.
In addition spin orbit interactions are required
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by the remaining terms in 8/ which must be in-
serted after the comma of the scalar product
rather than after the product as in Eq. (13)

51—3 — fdr/dr//eiaR(rl, r//) (’iV/4M62)

XA{[(P*—p1) X1 ]+[(pL—p2) X1}, (13.4)

Two possibilities suggest themselves for terms in
Q such as to give, respectively,

o= f dr'dr"eiR(x', ) (—i/8 M)

X {[(p+p2) X (p:"—p1) Jou

+L(P:+p1) X (p2"—p2) Joo}, (13.5)

I Qn=fdr’dr”ei“R(r’, 1) (—1/8M%?)

X A{L(P:+p1) X (PxO*Pl)]ﬂl
+[(p+p2) X (p2"—p2) Joo}.  (13.6)

Corresponding forms of K are easily found. A
simpler form for K3 is obtained, however, by
using conservation of momentum to substitute
p2—p2° for pi®—p: and p1—pi°® for pe—ps. One
has then

Tsq'=(—i/4 M) f e R (r', 1)

X {[p®Xp1loe+ [ Xpelos jdr'dr”, (13.7)
Ijol'= (i/4M262)feiaR(r’1 r’’)
X {[p*Xpiloi+[pe" X paloa}dr'dr’”’. (13.8)

In this form Eq. (13.7) corresponds to ¢’ =a’’ =0
in Eq. (9.1) for the Majorana interaction while
Iq™ is recognized from Eq. (13.8) to correspond
toa' =a"" =1. '

A generalization with two constants @/, @'’ such
as is present in Eq. (9.1) is also possible here.
Similarly for ordinary interactions one can write
the spin orbit terms of Q as

b

4 M?c?

Qo= {[P1XJP1]01+[§2XJ92]02}

i(1—10)
4 M?2c?

{[p1XJIp1]os+[p2 X Ipeoi},
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which is equivalent to Eq. (15.4) of the previous
calculation.! This is seen to be a linear combi-
nation of terms corresponding to Egs. (13.7),
(13.8). The Majorana and ordinary spin orbit
interactions are thus seen to be properly special
cases of the more general results for Wheeler’s
forces. The forms of Kj; that correspond to
Egs. (13.7), (13.8) are

Kyt = (—ik?/AM?*)([ v+ X vi"' Jo: K

+[ve XV JoKo), (13.77)
K3 = (ih?/4 M*c*)([v1' X vi'" Jo. Ko

+[ve' Xy JoKo). (13.8)
The whole Kis K=K,—K,—K;—K; (13.9)

It should be noted that the kernel K, was
supposed to be the product of a regular kernel
R, multiplied by a § function. If R, is not
regular, the above discussion may be inapplicable
because then the velocities of the particles may
enter explicitly into the interaction energy. The
presence of §(r'—1") and &(r'+r1"") in R, does
not spoil the results, as is seen from the fact that
satisfactory forms were obtained for ordinary
and Majorana forces. The interactions are thus
not applicable to the most general velocity
dependent potentials but are restricted to either
ordinary and Majorana forces or else to regular
R. For as long as R is regular, 3, is a function
only of k and x and these quantities change on
transformation only in the order »2/c2. If, how-
ever, K, should contain a factor,

5(I‘1'+I‘2' _ 1'1” _ 1'2”)5(1" . r”)a2/82x1”ax2”,

the corresponding Iy will contain p1#ps* which
changes on transformation to the order v/c. In
this case the above discussion does not apply but
then also Eq. (12.5) connecting K, and R, is
not satisfied unless R, is made highly singular.

ExcHANGE EQuAaTION WITH FOUR COMPONENTS
PER PARTICLE

It is probable, although uncertain, that
Diracian wave equations with four components
per particle have more direct significance than
equations of the Pauli type. This is suggested by
their success for electrons as well as by the fact
that two component equations are essentially
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nonrelativistic. Inasmuch as experiment® shows
that the magnetic moment of the proton does
not have the value predicted by Dirac’s theory
one may doubt the four component theories as
well. However, B-decay indicates that field
phenomena of the general nature of the electron-
neutrino field are intimately connected with the
behavior of protons and neutrons. It appears
likely that this field has to do with the magnetic
moment of the proton and that a partial de-
scription can be obtained using a four component
theory together with a B-ray field. From this
point of view it appears useful to know something
about possible approximately invariant forms of
exchange equations with four components per
particles. No attempt is made here at enumer-
ating and classifying all possible forms and only
one example will be considered. The equation in
question has been already used in a calculation
of relativistic effects in the deuteron by S. Share
and the writer.!® The interaction energy is

H'= —{J—}(a103)J +3(ear) (es1) f} PM
_ZJTI—c{ ([(p2—p1) Xo1]r) (esr) f

+ F(art) ([ (p1— ) X2 ) +[ (P2 — 1) X o1 Ja]

+Jar[ (p1—p2) Xoo 1} PY.  (14)

Here the meaning of P¥ is the customary one
of an operator which exchanges the space coordi-
nates of the two particles and it is thought of as
the operator 8(ry/—ry'")é(ry’—r,") in the 16
component equation and the ¢; are four com-
ponent Dirac’s spin matrices. As in the discussion
of Eq. (6) plane waves are introduced together
with four component column matrices @i, as.
The matrices a1, 61 are supposed to operate on a;.
Thus «;, when operating on PMx(r;)e(rs)
operates' on components of x even though
PYx(r1)e(r2) = x(rs) o(r1). The part

[—J+3(@res)J —5(eur) (eer) f1PY - (14.1)

of H' is formally analogous to Eq. (16) but it
does not correspond to an invariant interaction

in the sense used here. The part of 9% due to it is

Mo ="[— (a:°*a1) (a2"*as) + (¢:"*ea;) (a:**aas)
+1(a % arkay) (a0 akas)d kA1 (14.2)
k=(ps"—p1—p:°+p2)/2h.
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On transformation
0k =v(vk)/2c®— V(B — E,— E\"+ E») /2¢*h. (14.3)

The first two terms in the brackets of Eq.
(14.2) form an invariant. The change in 9N comes
about therefore, due only to the change in I
multiplied by these two terms as well as due to
the change in the third term with I and k
treated. as constants. The change in I can be
neglected when considering the third term be-
cause it gives rise to .a term of order v*/c%
Similarly the second term in the brackets
multiplied by 67 can be dropped. Thus

0Ny = ((110*(11) ((lgo*az) (kV) (E20 - E]_ —_ E10+E2)
X (dI/dk) /2k62h+ (kV) [((Zlo*lhkal) (020*02)

+ (a1*a1) (a"* askas) J(dI/dk) /2kc. (14.4)

Solutions @, a® of Dirac’s equation for a single
particle not subjected to external forces for
energies E, E° satisfy!”

(E+E°)(a"*ea) +¢(p"+p) (a”*a)

+ic(@*[ (p—p°) Xe Ja)=0. (14.5)

This can be used to express the terms containing
@1, @2 by means of terms in the ¢. It is legitimate,
in making the replacement, to approximate
E+E® by 2 Mc. This substitution simplifies
89, and we have :
89Mo= — (i(vk) /4Mc*) (a:1"as"* {K[ (p2—Dp2") X 02 ]
+k[(p1—p1°) 'X01:Ialaz)dl/kdk, (146)
using the fact that E,"—E;+E:—E:"— (p1+p:

+p1°+p2®) (P2’ —p1+Dp2—p:°)/4M in virtue of

conservation of momentum. The whole
N =M+ N,y (14.7)

and the remaining part 9; due to terms.in
i/4 Mc of H' in Eq. (14) is simplified by partial
integration to
My = (i/4Mc) (a:"*as"* { ([(p2"— p1°) X o1 Jk) (e2k)

+ ([(p2—p1) X 02 ]k) (esk) }aras)d I /kdk. (14.8)
Hence
09y = (i(vk) /4 M c*) (a:"*a" { ([p2"— p1°) X o1 ]Kk)

+ ([(p2—p1) X 02 1K) }a1a2)d 1/ kdk.
17 E, Schroedinger, Berl. Ber. 24, 422 (1930).
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On combining the last equation with Eq. (14.6)
and using Eq. (14.7) one finds that §M=0,
conservation of momentum having been used
once more. By means of Eqgs. (14.2), (14.8) it
may be verified that A’ is Hermitean.

INVARIANT MATRIX ELEMENTS

Collisions between particles occurring with a
high relative velocity can be treated, in the elec-
tromagnetic case, by means of Born’s method, as
has been shown by Mgller.? This can be done
only if the nonrelativistic matrix element is
suitably generalized as has been done in coordi-
nate space using formal electrodynamics? and in
momentum space using less formal arguments by
Mgller.? Although the knowledge of the electro-
magnetic relations is essential for the under-
standing of the problem it is possible to test it
for invariance quite independently of the knowl-
edge of that field. This was discussed in connec-
tion with Eq. (4.6). It is not possible to ascertain
the proper generalization of the nonrelativistic
Coulombian matrix element by considerations
confined to transformation properties combined
with a knowledge of the nonrelativistic limit.
Thus one could use instead of (@1°*aq)(as%*a2)
— (@:"*a1) (a2°*aas) in the numerator of Mgller’s
form Eq. (4.6) the quantity (e:1°*Ba1)(a:"*Bas).
. The transformation properties and the non-
relativistic limit of the new expression for 9 will
then be the same as those of Eq. (4.6). It is thus
seen that the interactions at high velocities are
not determinable from nonrelativistic limits and
require a more intimate knowledge of the field
responsible for them. Nevertheless it is possible
to eliminate those which are not suitable. It is
-also conceivable that it is not possible to describe
the collision between two heavy particles by
means of a matrix element. This, for instance,
would correspond to a condition in which at
high relative velocities two protons are ‘more
likely to disintegrate each other into neutrons,
electrons and neutrinos than to scatter each
other. Experiment shows that at moderate
velocities the opposite is the case.’® Whether at
infinite velocities the ratio of elastic to inelastic
scattering approaches zero or not is not known.

18 M. A. Tuve, N. P. Heydenburg and L. R. Hafstad,
Phys. Rev. 50, 806 (1936).
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The ultimate usefulness of generalizations such
as Eq. (4.6) for nuclear interactions is seen to
be doubtful both from the point of view of lack
of uniqueness as well as on account of a possible
disappearance of elastic scattering to a more
rapid degree than such equations imply. The
generalizations are helpful on the other hand for
the understanding of the mathematical con-
nections of the theory as well as crude estimates
of relativistic effects at high velocities.

The extensions considered are restricted to
matrix elements for which conservation of energy
and conservation of momentum hold between
initial and final states. In this respect they differ
from the forms invariant to order »2/c2. Clearly
it is not possible in a completely covariant theory
to have conservation of momentum without
having also conservation of energy. For forms
invariant to order »?/c? the expression 9 was,
nevertheless, found to be invariant independently
of whether the initial and final states had the
same energy. It should be remembered here that
<M is not the matrix element and that it must be
multiplied by a § function of the change in
total momentum = before it is used in a perturba-
tion calculation. Even though ='—=x=0 and
=% —x’ =0 do not correspond to the same points
in the space of total momentum and energy the
quantity 9 can be discussed in either system.
It will be remembered that in the proofs of
invariance for forms of order #?/c? the conserva-
tion of momentum was essential in the discussion
of terms of the highest order that was taken into
account. In the proofs, as presented, the equation
=°== was postulated. The proofs would not be
of practical value, however, if it were not for
the fact that in the transformed system also
=’=='. According to Eq. (5.4) this is not an
exact relation but its inaccuracy does not matter
in the terms of highest order. It is clearly im-
possible to make use of such a condition for
exact relations. It is also clear that Eq. (4.6)
corresponds to a non-Hermitean matrix element,
the Hermitean character of the corresponding

‘Eq. (4.5) arising through relations expressing the

conservation theorem for the charge current
density.

A given ordinary interaction energy J in
coordinate space gives rise to a matrix element in
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momentum space of the form 918 with
E)T’C:f.f(r) exp (¢kr)dr

—dr f (rT/R) sin Erdr=o(k?), (15)

where k=(p.—p) /%, (15.1)
€=(E1—E10)/ﬁ0. (152)
Then M= go(kz— 62) ((110*601) (azo*ﬂdg) (153)

is a relativistic generalization of Eq. (15) which

automatically agrees with Eq. (15) for low

velocities. Similarly

M = p(k?— ) [ (a:™a1) (a2"*as)
—(a;“*aa])(a2°*aag)] (15.4)

is such a generalization.

- For exchange forces one can write down
similar generalizations. Thus for Majorana ex-

change
(16)

(16.1)

M= p(ku?)
k= (p2"—p1)/h

is the nonrelativistic form of 9. Here ¢ is the
same function of &y as in Eq. (15). If one defines

€M=(E20“‘E1)/h6 (16.2)

with

the relativistic generalizations of Eq. (16) are
M= (p(kM2_€M2) ((110*3(11) (020*302)y (16-3)
M= o(kau—en?)[(a:%*a1) (as*as)

- ((110*(101) ((120*(10'2)]. (164)

The above forms of 9 give invariant results
for collisions when applied in the first approxima-
tion of Born’s method. The fact that they are
not Hermitean does not matter when they are
used that way. They can be generalized so as to
give Hermitean matrix elements by using

k= (p1—p:"—p2+p2°)/ 2k,
€= (El—Elo—E2+E20)/2hC

in Egs. (15.1), (15.2) and

k= (p2"—p1—p:"+p2) /20,
€M = (Ez“—El—Elo—l—Ez)/ZhC

in Egs. (16.1), (16.2). Nothing is gained by doing
so as long as the 9N are used in calculations with

169

Born’s first approximation. For then the sym-
metrized expressions are identical with those in
Egs. (15.1), (15.2), (16.1), (16.2). For more
general calculations one obtains, however, in this
way generalizations of 91U which are Hermitean
and invariant independently of whether either
conservation of energy or that of momentum
holds between initial and final states. Such
generalizations do not appear to have any
physical interest for arbitrary interactions be-
cause they do not necessarily imply in general
an invariant description of the collision process
in higher than the first Born approximation.
Born’s second approximation brings in sums over
intermediate states having an energy different
from that of either the initial or the final level.'®
The intermediate states entering the Born
formula in K’, when observed in K, have total
momenta that depend on their energy, They
cannot be obtained from the intermediate states
used in K by the Lorentz transformation K—K’
since the latter have the same momentum as
observed in K. The possible existence of special
interaction energies in which the result is
nevertheless invariant is apparently not ex-
cluded. A trivial example is offered by 9
matrices diagonal in the energy. In such cases
calculation shows that Born’s second and first
approximations transform alike. However, this
has no practical value because Born's second
approximation - diverges. An exact relativistic
description of the collision process along the
above lines appears to be difficult and may be
impossible.

INVARIANCE OF CoOLLISION TREATMENT WITH
22/c2 APPROXIMATION

It will now be shown that the 9?/¢? approxima-
tion: gives invariant predictions for collisions of

19 Dirac’s method of variation of constants is frequently
referred to as Born’s method. In the first approximation
thése methods give the same result. In higher approxi-
mations Dirac’s method gives the solution corresponding
to the interaction energy being=0 for {<0 and having
the value demanded by physical circumstances for ¢>0.
The time dependent solution obtained by Dirac’s method
thus corresponds to a physical condition which varies
with the reference system. Time dependent solutions
obtained by Dirac’s method in two reference systems
should not be the transforms of each other. Stationary
solutions.obtained by Born’s method, on the other hand,
can be the transforms of each other in two systems sirice
the question of simultaneity in two systems is immaterial
for them.
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two particles not only in the first approximation
of Born but exactly. This will be done by using
a transformation of Cartesian coordinates, sug-
gested by the Lorentz contraction, which takes
into account automatically the relations between
measured momenta and energies in different
reference systems. The considerations previously
published suggest the existence of such a trans-
formation because the equations derived there
approach the proper limit if many particles form
a heavy conglomerate in the field of which the
remaining particle may move. The limit ap-
proached is the equation for a single particle
subjected to a field. In this limit the theory is
‘very much better than Born’s first approximation
because the 9?/¢? correction terms are then exact.
On the other hand the collision between two
particles of equal mass when treated by suc-
cessive approximations using Born’s method is
not obviously invariant in the higher approxima-
tions. According to Eq. (5.4) the intermediate
states in two different systems of reference are
not the transforms of each other the total
momenta of the two sets of states being different
to order v?/c? as measured in one frame. A dis-
cussion by the formal method of Born and the
use of Dirac’s arrangement of the calculation
with time dependent coefficients appear to be
involved on account of this circumstance as well
~as the complexity of formulas for the higher
approximations. Instead the wave equation
corresponding to Eq. (8) will be discussed
directly in two reference systems and the results
for the collisions problem will be compared.
The wave equation to be satisfied is

Exp={2M62+P’2+P22;p’4+P24—J
2M 8 M3c?
PP +IDPipe  Prepataxtf+ fxoxlpiepa®
+ 4 M3?c? B 4 M?c?
hf
+4M2C2|:1’>< (2p2—p1) Jou

f
—4M262|:r><(291—P2)]02 .

(17)

In order to avoid complications with different
times of the two particles this equation will be
considered here only with E having a definite

G. BREIT

numerical value. By means of it one can discuss
the collision of two particles even though the
wave equation does not contain the time. One
may in fact look for a solution which consists of a
product of a function describing the motion of
the center of gravity and of a function describing
the relative motion. The latter can be arranged
to be asymptotic to a plane wave for large values
of the relative distance and its outgoing parts
can be used to determine the collision cross
section in the usual manner. The question as to
whether this is a justifiable procedure does not
enter with the point of view taken here; for the
point under discussion is whether Eq. (17), when
used for the treatment of collisions by the method
of stationary states, will give results transforming
themselves properly. In the frame of reference K
for which Eq. (17) has been written down one
may make the transformation

=3(r1+19) 5 P=pi+p2;
p=3(P1—p2). (17.1)
Since the operator P commutes with the right
side of Eq. (17) it is possible to have solutions. for
which P has a definite numerical value having

the significance of the total momentum of the
system. Solutions of the form

v=3(R)x(r); ®=exp (iPR/A) (17.2)

Ir=r11—7>r3;

are possible and lead on substitution into Eq. (17)
to :
Pt (Pp)* P2 f(Pr)’

4M3ct 8M3* 8M%*?

+

hf
SM%?[IXP](“l—U-z) }X,

P? p‘l p2]+ Jp?
M ame 4

L fxaxbpapb+papbxaxbf

n

4 M2
3hf
ane

W,=E—2Mc—Wr;

(17.3)

L

[rXpl(oito2)—J, (17.4)

2 pi (17.5)

"Tam sy
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In these equations P= (P,, P,, P.) is a set of three
¢ numbers while the vector p is an operator. The
quantity Wgr+2Mc? is the kinetic energy of a
single particle of mass 2 and momentum P. By
means of Eq. (17.3) one can study the collision
process in the frame K. The operator on the right
side of this equation contains the ‘relative
momentum’’ p and the relative displacement r in
L. In addition the momentum of the center of
mass is contained in terms which are not included
in L. For large values of » the waves for ¥ are
asymptotic to a product of two plane waves
representing respectively incident states of parti-
cles 1 and 2. The momenta in these states will be
called pi° p2° and the energies E.°, E.’. By
conservation of energy and momentum

E=E+E, P=p"+p.

In a manner similar to the above the wave
equation for the same incident waves can be
written down in a reference system K’ chosen so
that P’=0. This is the reference system of the
center of mass. The equation for the new function
X' is

(17.6)

WX (t) =L@, ', 01, o)X’ (') (18)
with W,)=E"—2Mc, Wz'=0 (18.1)
and  E'=E"+E"; p¥=-p”. (18.2)

Initial states are referred to as before by the
superscript °. Quite independently of any ques-
tion as to the time dependence of the wave
function the transformation formulas relate
(E1°, p1®) with (E.%,p1%), (E2°, p2°) with (E:", p2*')
and hence also (E, P) with (E’, P’) because, in
regions with sufficiently large 7, portions of the
wave front can be passed through slits and
examined without affecting the main scattering
mechanism in the region of small 7. Since P’ =0
both E and P are determined by E’ and the
transformation velocity. Through the definitions
of W, Wg, W,/ as given in Eqgs. (17.5), (18.1) the
difference W,— W, can be obtained to the order
22W,/c?. Let v be the velocity of K’ as observed in
K. Then

P=(VE' /) (1 —v?/c®)t=VE/c%
The use of these relations gives
W,—W,'= —P*W,/8 M
= — P/ M=) /80,

(18.3)

(18.4)
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where the last expression is to be used only if
W,—W,' operates on a wave function. Since
W.—W,' is of the order »2W,/c? the difference
between p?*/M and p’?/M can be neglected in
Eq. (18.4). On comparing Eq. (18.4) with Eqgs.
(17.3), (18) one notes that the first and third
terms involving P are directly accounted for by
W,— W, and are simply called for by the fact
that in K one uses the energy W, rather than W,’.

It is now necessary to take into account the
fact that the directions and wave-lengths of the
plane waves are subject to change on account of
the Doppler effect that is caused by the transfor-
mation. For large values of r the wave can be
resolved into plane waves by Fourier’s theorem.
The major term in the analysis refers to the
incident waves p:°, p°. However, it is also neces-
sary to pay attention to the other terms for they
are essential in the description of scattering. It is
thus desirable to introduce a correlation between
all possible relative momenta p in the two
reference systems in such a way as to agree with
the formulas of the Lorentz transformation for
large 7. For any state in which the momenta and
energy have the values (p1, E1), (p2, Es) in K and
(pd, E), (pe, EY') in K’ (relative velocity along
x axis),

pro=(P1 +0E /2 (1 —v2/c2)~},
Dr2= (b2 +0Ey /) (1 —22/ct)
pu=>1/, etc.
Hence
P1o— 2= (1+9%/2¢%) (p12' — p2s’)

+o(pl?—po'?) /2Mc?;
Pry—DP2y=101 — P2,

Only those waves can be leaving the system for
which the total momentum is =0 in K’. There-
fore, the description of the collision process is
concerned only with the correct calculation of
states for which pi/= —p.’. For such states the
last term in the expression for p1,— ps% disappears

and
p=p'+v(vp) /2. (18.5)

So far this is an equation between ¢ number
vectors. It shows how the relative momenta p
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in the solutions of Eq. (17.3) should be associated
with the relative momenta p’ in the solutions of
Eq. (18). It is complicated to be calculating the
solutions and their Fourier analyses for both of
these equations. Instead a transformation of
coordinates will be made in Eq. (17.3) in such a
way as to make Eq. (18.5) follow. Let '

x=(1—v2/2c%%", y=9y', z=2. (18.6)
Then
p=p'+v(vp')/2¢%;
p=(1/3)(3/3x, 3/3y,3/3z);  (18.7)

p'=(n/1)(0/0x', 8/9y', 8/92").

Here it will be noted that the quantities p, p’ are

operators. For large 7, when they operate on the
plane waves that exist there, they may be
replaced by the coefficients of ¢r/4, 7t’ /A and give
thus automatically Eq. (18.6).

The transformation used.in Eqgs. (18.6), (18.7)
is of the same type as has been used in the
classical discussions of the electromagnetic field
of a moving electron by Abraham and Lorentz.
From Eq. (18.6)

(vr')? dJ

2¢t 7'dr’

J(#)=J(@)—

(18.8)

The difference p —p’ affects p?/M so as to remove
the term in Eq. (17.3) and similarly the term in
f(Pr)? is canceled by —J(r)+J("). Collecting
(18.4), (18.5), (18.8), substituting into Eq. (17.3),
and neglecting throughout quantities of order
v4J/c* one obtains

Wr’xz {L(p’y r,y gy, 0'2)

h
f [r XPJ(o1—a2) { X

8M (18.9)

The comparison of this with Eq. (18) shows that
the two differ only in a term containing o, —e; as
well as in the fact that Eq. (18.9) is on x while
Eq. (18) ison x'. For large r the wave.function
for each particle is transformed by!

72 vp-’ v

1+—+
8¢t 4M 62

[p: Xo:
4Mc? P ¥

(z=1,2). (19)
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Since the whole wave function is a sum of
products of wave functions for the two particles
and since for large 7 each factor must transform
by Eq. (19) in order to represent correctly the
behavior of current and particle densities for that
particle, it is necessary for large 7 to transform the
whole wave function by

2 v(p/+p2) A
V= { 14—+ +
4¢? 4Mc? 4Mc?

[p:' Xo1]

+—'—"[P2 Xy ]t V.

19.1
YE (19.1) .

It does no harm, however, to extend this trans-
formation to the whole of space because one is
only interested in the calculation of collisions so
that it does not matter what the transformation
is as long as it relates correctly the incident and
outgoing waves. Of course, one cannot be sure
as yet that the function ¥’ defined by Eq. (19.1)
is equal everywhere to the function ¥’ as defined
by the original wave equation (17) applied in K'.
However it will turn out that they satisfy the
same wave equation. Since they are equal at
infinity they must be equal everywhere. For
large 7, ¥’ is just the wave function in K’. There-
fore in this region p//+p2’=0 and

v2
b xemel]v. 192)

Here it should be noted that the only operations
are confined to p’, o1, o2 while v is a ¢ number.
This is the convenient form for the extension of
Eq. (19.1). Substituting Eq. (19.2) into Eq.
(18.9), observing that the operator in curly
brackets does not affect ® in the highest order
of magnitude, multiplying finally the resultant
equation by the reciprocal of the curly brackets,
one obtains additional terms on the right side as

— Jm[p X01]+"]*u_*—[p Xo‘ljf

F/3
[ Xe 1]——‘ f 2[r’XP]01,
Mc

4]LI c?

where v=P/2M is a sufficiently close approxi-
mation. This term cancels the corresponding



MULTIPLE SCATTERING OF NEUTRONS

term in [1'XPJe; occurring in Eq. (18.9). In a
similar way the term in [t’XP]Jo; is canceled.
It is thus seen that the transformation of Eq.
(18.6) together with the wave equation trans-
formation of Eq. (19.2) transforms the wave
equation in the frame K into the wave equation
in the frame K’. Since at a large distance the
values of p’ used in the transformed Eq. (17.3)
and the center of mass Eq. (18) are the same the
numbers of collisions taking place into cor-
responding solid angles are equal. No special
consideration of the geometrical factors is neces-
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sary here anyway since they are the same for
the Born first approximation as for the general
case and since they have been found to be satis-
factory in a previous section.

Note added in proof: Considerations similar to
those made for Eq. (17) have been carried out
also for the Majorana and Heisenberg exchange
equations.

The writer would like to thank Professor E.
Wigner for interesting discussions on the subject
of this paper and the Wisconsin Alumni Research
Foundation for its support of the work.
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The paper contains the rigorous solution of the following problem in multiple scattering: a
beam of particles impinges with arbitrary velocity distribution upon the plane boundary
surface of a body which extends towards infinity on the other side of the boundary. In this body
the particles have a finite probability of being either captured or scattered without loss of-
energy. The probability of scattering shall be spherically symmetrical in the laboratory frame of
reference. Number and velocity distribution of the returning particles are given explicitly;
density as well as velocity distribution of the particles inside the body are determined by the
formulae but not worked out in detail since they lack direct physical interest. The result is found
to depend on the ratio of the capture to the scattering cross section and on the velocity distri-
bution of the incident particles. Applying the theory to the diffuse reflection of slow neutrons at
paraffin surfaces it is found that agreement with observations and previous determinations of
the capture cross section can exclusively be obtained, if the active level of the ‘‘deuteron with
spin zero’' is virtual. The connection of these results with some other experiments on the
velocity and magnetic moment of the neutrons is discussed.

INTRODUCTION

EUTRONS before reaching the point of

observation usually have to travel through
various' layers of different materials in which
they undergo collisions depending on the nature
of the material penetrated. These collisions can
be elastic, inelastic, or capture collisions. Quan—
tum mechanics has supplied us with a large
amount of information concerning the single
processes while the problem of the effect of
consecutive collisions on the beam has not yet
in our opinion been solved satisfactorily. A large

number of authors (Fermi,! etc., Yost and
Dickinson,? Wick,® Ornstein,* etc.) have treated
special cases like the stationary state of neutrons
that are losing their energy through collisions in
hydrogenated substances, elastic diffusion of
neutrons accompanied by capture, albedo, etc.
Without attempting to enter into any detailed
discussions of these papers we think that the

1 E. Fermi, Ricerca Scienta. VII-II, 13 (1936).

2 Yost and Dickinson, Phys. Rev. 50, 128 (1936).
(1;3(;.) C. Wick, Atti del Acad. Reale dei Lincei, 23, 775

4L. S. Ornstein, Kon. Akad. van Wet. te Amsterdam,
Proc. XXXIX No. 9 (1936).



