Heavy Particles and the Neutrino

In a previous letter the writer¹ has suggested that the x particle may be produced by the absorption of a photon by an ordinary electron. Corson and Brode² give the rest mass of a heavy particle as $350 m_0$, while Street and Stevenson³ give 130 m_0 . (m_0 is the rest mass of the ordinary electron. See previous letter for definitions.) To produce a rest mass of $p_2 m_0$ a photon of energy $(p_2^2 - 1) m_0 c^2/2$ is needed. When $p_2=350$, this energy is 31,000 Mev. The values 130 and 350 for p_2 and still other values are consistent with the writer's idea.

If a photon of α_1 greater than $(p_2^2-1)/2$ strikes an ordinary electron $(p_1=1)$ at rest $(\beta_1=0)$, an energy $\alpha' m_0 c^2$, where $\alpha' = (p_2^2 - 1)/2$, is absorbed from the photon, giving rise to a particle of mass p_2m_0 with a velocity $\beta' c = c(p_2^2 - 1)/(p_2^2 + 1)$ in the direction of the photon. The remaining energy $(\alpha_1 - \alpha')m_0c^2$ is treated as that of a primary photon which is to be scattered in the direction θ according to the principles of the Compton effect by an electron of rest mass p_2m_0 traveling with an original speed $\beta'c$ in the direction of the primary photon.

Perhaps heavy particles other than the heavy electron may be produced according to Eqs. (1) and (2) of the previous letter. To produce a heavy particle of mass p_2m_0 from a particle of mass p_1m_0 which is at rest a photon

$$h\nu_1 = m_0 c^2 (p_2^2 - p_1^2) / 2p_1 \tag{1}$$

is needed. The kinetic energy produced by complete absorption of this photon is

$$\Gamma_2 = m_0 c^2 (p_2 - p_1)^2 / 2 p_1. \tag{2}$$

So, to produce a heavy proton with kinetic energy 940 Mev, a photon of energy 2260 Mev is needed. From (2), $p_2 = 2.414 p_1$.

In a β -ray radioactive transformation the β -rays are found to have a continuous spectrum of speeds up to a certain maximum speed $\beta_0 c$, such that the energy relation

$$M_{1}c^{2} = M_{2}c^{2}/(1-\beta_{2}^{2})^{\frac{1}{2}} + m_{0}c^{2}/(1-\beta_{0}^{2})^{\frac{1}{2}}$$
(3)

holds, where M_1 and M_2 are the rest masses of the parent and product atoms, respectively, and β_{2c} is the recoil velocity of M_2 . The writer suggests that the energies of all β -rays in the spectrum are the same but that different β rays have different rest masses pm_0 and different velocities βc , such that

$$m_0 c^2 / (1 - \beta_0^2)^{\frac{1}{2}} = \rho m_0 c^2 / (1 - \beta^2)^{\frac{1}{2}}.$$
 (4)

From (4), it is seen that, as p increases from unity to $1/(1-\beta_0^2)^{\frac{1}{2}}$, β decreases from β_0 to zero. Allowing the expelled β -particle to have a variable rest mass thus removes the need for postulating the neutrino. The kinetic energy distribution curves for β -rays have been calculated on the basis of the rest mass always being m_0 . According to the writer's suggestion, variation of $H\rho$ implies variation of p. From the distribution curve with respect to H_p for the β -particles from RaE, it is estimated that more than 90 percent of the electrons have a rest mass greater than $2m_0$ and a kinetic energy less than half the maximum kinetic energy, 2.06 m_0c^2 . The average kinetic energy for all the electrons is less than one-third of the maximum. This is in agreement with Meitner and Ortheim's calorimetric experiment⁴ on RaE, provided that the life of the heavy electron is long compared with the duration of the experiment, or that the γ -radiation which the heavy electron ultimately emits in returning to m_0 was not recorded in Meitner and Ortheim's experiments.

G. E. M. JAUNCEY Wayman Crow Hall of Physics, • Washington University, St. Louis, Missouri,

December 15, 1937.

- Jauncey, Phys. Rev. 52, 1256(L) (1937).
 ² Corson and Brode, Bull. Am. Phys. Soc., December 2 (1937).
 ³ Street and Stevenson, Phys. Rev. 52, 1004 (1937).
 ⁴ Meitner and Ortheim, Zeits. f. Physik 60, 143 (1930).