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Internal Friction in Solids
V. General Theory of Macroscopic Eddy Currents
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In vibrating ferromagnetic metals macroscopic eddy
currents tend to shield the interior of the metal from
changes in magnetic induction. The dissipation of energy
by these eddy currents contributes to the internal friction
of the metal. This internal friction has previously been
investigated theoretically only for longitudinal vibrations,
and only the asymptotic formulae for high and low fre-
quencies have been found. In this paper this internal

friction is calculated for all frequencies for both longi-
tudinal and transverse vibrations. The theory of internal
friction due to macroscopic eddy currents is shown to be
formally identical with the theory of internal friction due
to macroscopic thermal currents. The methods developed
by the author for the study of thermoelastic internal fric-
tion are thus directly applicable to the study of the macro-
scopic electric eddy currents.

$1. INTRODUCTION

gART of the internal friction of ferromagnetic
metals arises from the magnetic-elastic

coupling. Under certain conditions this part is
of a larger order of magnitude than the internal
friction of nonferromagnetic origin. In spite of
numerous experimental investigations, ' only one
source of ferromagnetic internal friction has been
theoretically investigated' for small strains,
namely that due to the macroscopic eddy
currents. These eddy currents tend to shield the
interior of the sample from changes in magnetic
induction. Further, this effect has only been
investigated for longitudinal vibrations, and
only the asymptotic values for high and low
frequencies. have been obtained. In this paper
the internal friction due to macroscopic eddy
currents is calculated at all frequencies for the
longitudinal and transverse vibrations of circular
rods, and for the transverse vibrations of reeds.

It is found that the internal friction due to
the eddy currents may be written in the form

Q '= H&s &a)/&s jf—(v) (1)

Here Q ' is (1/2m) times the fraction of the
vibrational energy dissipated per cycle. E& and
XII are Young's moduli for constant magnetic
induction and constant magnetic field, respec-
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tively. The first factor may be calculated by
means of Eq. (14). The second factor is given
in $3 for the three cases, and is plotted in Fig. 1.
The asymptotic expressions for f at high and
low frequencies are shown in Fig. 1 by broken
lines, and are likewise given explicitly in $3.
The frequency of maximum internal friction is
determined by the magnetic diffusion constant
DII. This is given by

DII = 108/(0 47rIJ, r), . (2)

where p is the differential magnetic permeability,
and the electric conductivity o- is in ohm ' cm '.
The area beneath all three curves is the same,
namely —,'z log&0 e=0.682. This is a direct conse-
quence of the general formula

f(v) v
—'dr =7r/2, (3)

valid for a specimen of arbitrary cross section in
which the only stress associated with the vibra-
tion is a tensile stress along the axis of the
specimen.

The method used in the present investigation
is that developed by the author for studying
the internal friction due to macroscopic thermal
currents. ' The differential equations for the two
problems become identical when T and 5 are
replaced by H and B/4~, respectively. The two
problems would be identical if the adiabatic
boundary condition for thermal flow were re-
placed by an isothermal boundary condition.

' C. Zener, Phys. Rev. 52, 90 (1938).
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Thus the thermoelastic internal friction due to
macroscopic thermal currents would, if the
surface were maintained at constant tempera-
ture, be given by Eq. (1) and Fig. 1, the sub-
scripts H and B being rep1, aced by T and S,
respectively.

f2. GENERAL THEORY

The theory for longitudinal and transverse
vibrations is particularly simple when the wave-
length of vibration is large compared with the
transverse dimensions of the specimen. In the
first place, all stresses are then negligible com-
pared with the tensile stress parallel to the
specimen's axis. If this axis is denoted as the s
axis, the energy loss per cycle per unit volume
is then

FIG. 1.f functions associated with macroscopic eddy cur-
rents. Curve A, transverse vibration of reed. s=DH/27fd',
d=transverse width of reed. Curve 8, longitudinal vibra-
tion of circular rod. s=DH/27fa', a=radius of rod. Curve
C, transverse vibration of circular rod. s=DH/27fa', a=
radius of rod.

5w = v ' time average of Z,de„/dt (4) On introducing the relation

In the second place, the transverse components
of the oscillating part of the magnetic field and
magnetic induction may then be neglected com-
pared with the parallel components. Thus Z,
may be written as a linear function of only e„
and AH„ the fluctuation of H, from its mean.

Z =(BZ /Be )H& )e +(BZ /BH ) ~
&t) H. (5)

We are here neglecting a term proportional to
the temperature fluctuation. The effect of this
thermoelastic term has already been investigated
by the author.

By substituting (5) into (4) we obtain

Am = v )(BZ,/BH, ),(„)
time average of t) H,de„/dt. (6)

We must now find the differential equation
which AH, obeys. This is obtained of course
from Maxwell's equations. Here the displace-
ment current may be neglected compared with
the real current, since their ratio is given by
~o./(1.8 X 10"o), where o is the electric con-
ductivity in ohm ' cm '. Elimination of the
electric field from Maxwell's equations then gives

(d/dt)B = —(10'/0. 4vro. ) curl curl H.

If we take the s component of this vector
equation, and use our previous approximation of
neglecting H„and H„we obtain

(d/dt)B. = (10'/0. 4m. o) (8'/8 +x8'/By')H. .

8B = (BB /BH ) ( &f&H +(r)B /Be )II& &le

we obtain

(d/dt)t) H, =D~(B'/Bx +8'/r)y')t)H,
+(BH,/8e„)e(,)de„/dt. (7)

Here D~ is defined by Eq. (2) with

The first term on the right side represents the
change in H, arising from diffusion of the
magnetic induction. The second term represents
the change arising solely from the change in
strain. This wouM be the only term in the
absence of diffusion, i.e. , if the electric con-
ductivity were infinite.

The function de../dt is affected only very
slightly by the magnetic-elastic coupling. Hence
very little error is introduced in Am by regarding
de„/dt in Eqs. (6) and (7) as specified by the
elastic equations in the absence of this coupling.
The function dH, is then completely determined
by Eq. (7) and by the appropriate boundary
condition.

We have previously assumed the wave-length
of the vibration to be long compared with the
transverse dimensions of the sample, and also
the transverse components of the oscillating
part of H and B to be negligible compared with
the parallel component. To this same approxi-
mation we may neglect DII, outside the speci-
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men. The appropriate boundary condition is thus

AH, =0 at surface. (8)

Equations (6), (7), (8) contain the physics of
our problem. The mathematics involved in the
solution of Eq. (7) subject to the boundary
condition (8), in taking the time average in

Eq. (6), and finally in evaluating the integral

either longitudinally or transversely is given by
(Es E~—)/Es times -the function

P —kPkP Vk P

In this section we describe in detail the evalua-
tion of this function for one particular case, the
transverse vibration of a circular rod, and then
give the results for the longitudinal vibration of
a circular rod, and for the transverse vibration
of a reed.

2x energy of vibration

has been formally solved in the appendix of
reference 3. The result is

Q
' = L(Es Ea)—/EslZf»»/(»'+ v') (9)

where fo satisfies the condition

Zf~= 1.

The constants fo and vo are interpreted in terms
of the differential equation

IDa(B'/Bx'+B'/By')+2m io} Uo(x, y) =0 (11)

together with the boundary condition

Circular rod: transverse vibration

Let a be the radius of the circular rod. Then
those eigenfunctions of Eq. (11) which satisfy
the boundary condition (12), and whose asso-
ciated coeKcients in the expansion of

e„=constant Xr cos

do not vanish, are given by

cos q J,(qor/a).

Here gk is the kth root of

Ji(g) =0,

and determines the eigenwert Pk by the equation
Uk =0 at surface. (12)

qo ——(2~v(, /Da) Ia. (16)
The Pk are the eigenwert of this equation. The
fo are the squares of the coefficients of the
expansion of the normalized function

e„ )t egg dg. dy

in terms of the normalized eigenfunctions Uk.

Here e„ is taken at an arbitrary s and t.
The ratio (Es Es)/Es may be cal—culated in

terms of the rnagnetostriction constant and the
permeability by means of the equation'

(Es—Ea) /Es
a(Be /B~*)z( & /(B& /B&&)z&'& (14)

This equation may be derived in exactly the
same way as the equation

(Es Er) /EB Er(Be„/BT) z&,&—'/(BS/B T)——zI,&.

We may now write fo explicitly as

( 2

E. 0

a C

r'dr rJio(qor/a)dr
0 0

With the aid of the integral formulae for Bessel
functions' we obtain, as in reference 3, f2,

8Jo'(q'o)

qo'I Ji (q») —Jo(go) Jo(qo) }

Since Ji(qo) =0, the recurrence formulae for
Bessel functions' gives

Jo(qo) = —Jo(qo).

Hence fo = 8/qo'. (17)
$3. APPLICATION TO SPECIAL CASES

4 See E. Jahnke and F. Emde, Funktionentafeln (Teub-
In the previous section we found that the ' See G. N. watson, Theory of Besse/ Functions (Cam-

Q
—' of a rod of arbitrary cross section vibrating bridge, 1922), I&. 17. '
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where
f(v) =»Z(V~'+z') '

s = (27ra'/D~) v.

The asymptotic expressions for small and large s
may readily be obtained. From'

we obtain
Pgg-4 = 1/192

f(v) = s/24 when s&&1.

By observing that when k is large, successive k's
dier by m, we obtain, for large z's,

f(v) = (»/~) )t (q4+s') —'ds.
0

As a check upon Eq. (10), we note that'

QI = 8.—2=1

On substituting Eqs. (16) and (17) into Eq.
(15), we obtain

where g~ is the kth root of

Jo(g) =0.

The constant vt, is related to q4 by Eq. (16).
The function f is given in terms of s = (2ma'/D~) v

by

4s g (q1.4+s') —' exactly,
k=1

by when s«2x,

by (2/s) 4 when s»2m.

These two asymptotic expressions have previ-
ously been obtained. '

Reed: transverse vibrations

Let d be the width of the reed in the plane of
vibration. Then

Hence f(v) =2's ' when s»1. fg = 6/~'0',

When s is of the order of magnitude of unity, vg,
——74'DIr/27rd'.

f(v) may be evaluated by means of the rapidly
converging series (l8). In plotting this function The function f is given in terms of s = (2nd'/D~) v

in Fig. 1, the values of g~ were taken from refer-
ence 5, p. 748.

Circular rod: longitudinal vibration

The constant fk is given by

fu = 4/g4~,

' Reference 5, p. 502.

by

by

67r 's P (k4+s') ' exactly,
A,=l

(s'/15) s when s«4',

(3/~&2) s—l when s&&4s-.


