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We investigate here the concept of generalized comple-
mentarity introduced by Bohr. It is shown that it is not
possible to ascertain the microscopic state of a system
without, for the purpose of measurement, imposing upon
it physical conditions so stringent that they preclude the
application of the statistical description which was appro-
priate before the measurement. One may conclude that the
statistical averages which appear in the formation of an
ensemble should in quantum statistics be given an inter-
pretation somewhat different from that of classical sta-
tistics. These results lead naturally to a critical survey of
the foundations of quantum statistical mechanics. We

discuss the physical interpretation of statistical matrices
which are the quantum equivalent of the classical ensemble.
By a straightforward generalization of classical methods
one obtains a statistical representation of a system if a set
of measurements are given. Let p designate the statistical
matrix which represents the system; the method consists
in making the diagonal sum of p log p a minimum, while
the results of the performed measurements appear as con-
ditions of the minimum. As an application we threat the
composition of two separate systems and derive from this
the general proof of the II theorem which was first given
by Klein.

in a closer consideration appear to pertain
especially to the realm of statistical mechanics.

HE fact that in quantum mechanics each
measurement results in a more or less

profound change in the measured system gives
rise to various important problems if we consider
systems with many degrees of freedom. Quantum
statistical mechanics has been treated by a
number of authors; among them are Pauli, '
Klein' and v. Neumann. ' It might appear,
especially from v. Neumann's theory, that a
quantum statistical mechanics can be built up
that maintains in each step a strict analogy to
the corresponding classical concepts. A closer
investigation shows however that this procedure
is open to serious objections. Ideas connected
with the interpretation of quantum statistical
mechanics have been put forward by Bohr4 and
designated by him as a generalization of com-
plementarity. They are based upon a consistent
application of the uncertainty principle to the
theory of statistical ensembles. In the present
paper we investigate more closely the bearing of
these ideas upon certain aspects of statistical
mechanics. We might remark that our problem
is intimately connected with the difhculties
which, according to Schrodinger, still persist in
our understanding of quantum theory and which

1. MEASUREMENTS AND ENSEMBLES

' W. Pauli, Sonsrnerfeld Festschrift (Leipzig, 1928), p. 30.' O. Klein, Zeits. f. Physik 72, 767 (1931).' J.v. Neumann, Mathernatische Grundlagen der Quanten-
rnechanik (Berlin, 1932), especially chapters IV—VI.' N. Bohr, Nature 131, 421, 457 (1933).' E. Schrodinger, Naturwiss. 23, 807, 823, 844 (1935).

In classical theory an ensemble is generated
by considering a large collection of samples of the
same system and assuming (or proving, as the
case may be) that the representative points in
phase space are distributed according to certain
rules. We designate throughout by "ensemble"
the mathematical representation which is pro-
duced by superposing individual representations,
whereas the physical specimens to which this
description refers are said to form a "collection. "
If only the ensemble is given, the position in
phase space of an individual sample may be
unknown, but it is determined, since in classical
theory we suppose that it can be measured
without appreciable perturbation. In construct-
ing the ensemble we abstract from certain
parameters of each individual sample. The
algebraic superposition thus obtained does not
give us information about the individuals of the
collection; in order to obtain such information
we have to recur to measurements to be per-
formed on the individual samples.

Now consider quantum theory and suppose
that a certain collection is given and that by
some straightforward argument we have ob-
tained a representation by an ensemble. It is
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well-known' ' that the quantum equivalent of a
classical ensemble 'is a statistical matrix. We
shall in the next section review briefIy the more
important properties of statistical matrices and
shall for the moment confine ourselves to con-
siderations of a more qualitative character.
There arises the following problem. Suppose we
want to know what the precise microscopic state
of each sample is (as far as defined in quantum
mechanics) and for this purpose we carry out a
measurement on each sample. Our knowledge of
the individual system is of course restricted by
the validity of the uncertainty principle. But we
are now not so much interested in this feature as
in the possibility of superposing the representa-
tions of the individual samples again in order
to form an ensemble after the measurement has
been performed. In most cases the systems will

be modified by the measurement. If this does not
hold, we meet other difficulties. We shall con-
sider two typical cases of measurements. ~

The first type comprises such measurements
which do not alter the measured system. As an
example we consider the measurement of the
energy. It is well known that this measurement
requires time, and if we want to distinguish
between two eigenvalues of the energy which
differ by the amount AB, the time required will

be of the order fi/AK During that interval the
system has to be isolated from external infIu-
ences. For simple systems such a measurement
presents no difficulty. ' But it is readily seen that
for systems with many degrees of freedom, such
as are considered in statistical mechanics, an
enormous length of time is required since the
density of eigenvalues becomes extremely large.
Such a type of measurement is therefore without
significance for the purposes of statistical
mechanics. To make this point clear it should be
noted that this difficulty does not result from
any lack of ingenuity in constructing our measur-

ing instruments or from an inadequate choice
of the used idealizations. The importance of
using adequate idealizations in clearing up the
limits of measurements has been strikingly

' W. Pauli, Handbuch der Physik, Vol. 24, second edition,
section 9.' The distinction between measurements of the first and
second kind has been introduced by Pauli, reference 6.

demonstrated by Bohr and Rosenfeld. ' It is
evident, however, that the limit considered here
is inherent in the very nature of quantum
theory. This applies also to the typical examples
to be considered later. If we study representa-
tions of systems in the sense of statistical
mechanics, it is absurd to make use of measure-
ments which require long periods, as compared
with the time during which we are actually
interested in the evolution of the system. These
measurements can teach us nothing for our
purpose. Quantum mechanics provides us with
an operational scheme, not only in the mathe-
matical sense of the word, but also in the
physical sense. It prescribes definite rules of
how to manipulate the measuring instrument in
relation to the measured object in order to
obtain a certain type of information. In fact,
according to what particular measuring operation
we perform, the result will be one of a complete
set of pure states, the resulting set depending
essentially upon the type of measurement
chosen. ' It can, however, actually become absurd
to fulfill the requirements which would lead to
the determination of a pure state; then we lose
the possibility of obtaining a unique application
of the formalism of quantum mechanics. Mathe-
matically, it means that we are justified in
representing our system by a pure state (a single
wave function) whenever an appropriate type of
measurement has been carried through. In all
other cases we cannot give a preference to one
definite pure state and we should therefore
represent our system by a statistical matrix (an
ensemble of wave functions) in a way which will

appear more clearly later.
The same kind of argument as outlined here

for the energy applies also to all quantities for
which the measurement requires a very long
time. The quantity to be measured need not
always be a constant of the motion; if it changes
in time we may choose our measuring instrument
in such a way that it just counterbalances in each
moment the change undergone by the quantity.
More details about this latter topic, which we

' N. Bohr and L. Rosenfeld, Danske Vidensk. Selskab.
(1933).

9 This fact has recently been discussed from a viewpoint
close to ours by E. Schrodinger, Proc. Camb. Phil. Soc.
31, 555 (1935); 32, 446 (1936).
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need not consider here, may be found in v.
Neumann's book."

We take now a second kind of measurement.
Suppose we measure the position in configuration
space of our system (i.e. we measure simul-
taneously the positions of all its constituents).
The measurement may be such that following it
the system is certainly to be found within a small
volume element of the configuration space. This
measuring operation is evidently of a perturbing
type. The coupling between the measuring
device and the parts of the system will in general
be much stronger than the interaction between
the parts of the system themselves. After the
measurement has been performed on each sample
of the collection, we may again superpose the
individual wave representations so that in the
ensemble (statistical matrix) thus obtained each
part of the configuration space appears with its
due weight. But this collection will physically
be fundamentally different from what it was
before the measurement. Indeed, as a result of
the measurement, the constituents of the
system will have obtained very high average
velocities; the previous couplings will thus no
longer hold and the system will burst into a
number of parts within a comparatively short
time after the measurement. There is, then, no
physical sense in having a common representa-
tion of this collection by a statistical matrix. For
if we follow the behavior of the samples even
during a short time, they will completely diverge
from each other as well as from the average
behavior of the collection before the measure-
ment. In this case, again, the use of an ensemble
for describing and especially for predicting the
average behavior of a collection of systems as
found in nature and the precise knowledge of the
state of the individual samples exclude each
other.

In order to avoid the change in a system caused
by performing a measurement on it, it has been
proposed" to compensate this change by an
appropriately chosen additional potential so as,
for instance, to make the state after the measure-
ment a stationary one. In our case we could,
immediately following the measurement, sur-
round each system by a sufficiently high potential
barrier in configuration space which prevents it

"v. Neumann, reference 3, p. 189.

from escaping out of the position in which it has
been found by the measurement. But this
auxiliary potential would have to be different for
each individual sample and it lacks evidently all
physical sense to use an algebraic superposition
of such states for describing an average behavior
of systems; this statistical representation by an
ensemble would become a mere mathematical
fiction without any physical significance. There-
fore, in this case also we spoil the physical sense
of the collection by determining the states of the
individual samples.

The examples just considered explain the
sense of the generalized principle of comple-
mentarity. 4 We recognize that quantum me-

chanics may be applied uniquely only in the case
of systems of comparatively small size. If systems
with many degrees of freedom are involved, the

possibi7ity of giving a unique quantum mecha-nicat

representation of a system by a pure state and the

possibility of leaving it in approximately the con

ditions under which it appears as sample of a given

collection, mill in general exclude each other. As
distinguished from classical mechanics, this con-
dition cannot be overcome by sufficiently refined

measuring devices.
In order to understand better the sense of

such a statement, it should be made clear that
the concept of a statistical ensemble has essen-

tially an a posteriori character. There exists no
general a priori principle of how to collect
samples which can be represented by the same
statistical matrix and there is no universal cri-
terion for the degree of variation that would
suSce to exclude a sample from a given col-
lection. It is therefore not possible to ascertain
in rigorous a priori terms the meaning of an

appropriate statistical representation of a system.
In individual cases we can frequently define it
without difficulty.

We may now ask how to characterize measure-

ments which do not vitiate the capacity of
systems to serve as samples of a given collection.
The performance of a measurement on each
sample will frequently make it necessary to split
a given collection in a number of sub-collections
according to the respective results of the meas-
urements. If, for instance, a measurement would

determine a pure state of the system, then each

pure state might give rise to a separate collection.
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If the measurement is less precise, the new col-
lections can be more comprehensive. We will
especially ask for the conditions which have to
be fulfilled in order that the effect of the uncer-
tainty relations brought about by the measuring
process does not lead to a change in the essential
properties of the collection which was given
before the measurement. We shall call such
measurements nonperturbing ones. This term can
be understood to mean also that the measure-
ment should not require an excessively long time
during which the system would have to be
isolated from all external influences. As already
pointed out, a concept of this kind will have an
essentially u posteriori character and can only be
defined with respect to given concrete circum-
stances. Since in quantum mechanics each
measurement produces some perturbation, there
exist only approximately nonperturbing meas-
urements. The mathematical expression of a
measurement in terms of statistical matrices will
be given later. It might nevertheless be useful to
illustrate at this time our considerations by
studying briefiy a nonperturbing measurement
in a simple special case.

Take a Brownian particle suspended in a gas
or liquid. We propose to measure, for instance,
the x coordinate of the particle at a given
moment. In doing this we communicate to the
particle an average momentum of at least the
amount

if Dx is the margin of precision of our measure-
ment. The particle has itself a certain average
speed due to its temperature movement and we
may assume that our measurement does not
essentially perturb the system, if the momentum
produced by the measurement does not exceed
the average momentum under the temperature
movement. According to (1) this gives immedi-
ately

Ax=5/(mkT)',

where m is the mass of the Brownian particle. A
measurement of the type defined by (2) may here
be called nonperturbing.

The Brownian particle will undergo a displace-
ment which, by Einstein's formula, using Stokes'
law for the resistance of small spheres, may be

expressed as

where r is the radius of the sphere and q the
viscosity of the gas or liquid. It may be seen by
comparing (3) with (2) that after some time the
particle will have left the area covered by the
wave packet of the size Dx; therefore relevant
statistical predictions about the behavior of our
system can be drawn, even if only nonperturbing
measurements are given. Assume now, for in-
stance, that the equality sign holds in (2). Pre-
dictions of the type (3) can only be made for a
limited time. Indeed, from (1) we know that the
wave packet of the size Ax representing the
result of our measurement will spread out in
course of time and after a period which is not too
short we may write

(~x~)A, hp t/m——=t (kT/m)&.

Since this effect is proportional to t, whereas the
Brownian displacement is proportional to t&, the
spreading out of the wave packet will always in
course of time overtake the diffusion effects, and
predictions based upon (3) then become invalid.
This, of course, represents just the remainder of
the unavoidable perturbation connected in

quantum mechanics with each measurement.
The considerations given above may illustrate

the different role which statistical mechanics
plays in quantum theory as compared with
classical physics. In classical theory we use
methods of statistical mechanics in order to save
the labor of detailed measurements and of cal-
culations concerning features of the system in
which we have no particular interest. It has
however a definite physical sense to ascribe such
features to the system, even if we should happen
not to know them, since they can always be
determined by measurements which do not
produce an essential perturbation of the system.
In quantum mechanics, on the other hand, there
is no sense in speaking about a definite micro-
scopic structure of a system, i e , a defini. te. pure
state, unless such a state has first been realized in
the measuring operation. Indeed the state, more
precisely the orthogonal set of states which will

show up as a result of the measurement, depends
essentially upon the particular choice of the
measuring device. ' From this viewpoint sta-



QUANTUM MEASUREMENTS AND STATISTICAL METHODS

tistical mechanics gains a much greater sig-
nificance than it seems to have in classical
physics.

2. STATISTICAL MATRICES

It is convenient to have a special sign for the
sum of the diagonal elements of a matrix. This
quantity, usually called the "trace" of the
matrix, will be designated by Tr(p) and we have
by the normalization of the r„and P„:

Tr(p) = &.

The trace is invariant with respect to a trans-
formation of the type

X 'pX=r. (7)

Now suppose in particular X to be unitary and
r to be the diagonal form of p. Ke can easily show
that the eigenvalues of p are just the r„of (5).
Indeed

pP~*=Qr.f.*(x') 1f.(x")tf (x")dx"=r f *

We shall now review briefly some properties
of statistical matrices. ' ' Suppose 6rst that our
system can be described by a single wave func-
tion P(x), where x denotes as usual all coordinates
of the system; such a system is said to be in a
pure state and we can define a corresponding
statistical matrix by

(x'I pw Ix")=0*(x')4(x"). (4)

A generalized statistical matrix which represents
an ensemble or "mixture" consists of a number
of pure states Pggm, superposed with the
respective probabilities rjr2. - .. We suppose the

to be all orthogonal and normalized and we
normalize the r„by the condition P„r„=1. The
statistical matrix representative of the mixture
is then defined as a sum of matrices of the type
(4):

(x'
I p I

x")= Pr„P„*(x')P.(x").

On the other hand, each de6nite Hermitian
matrix may of course be written in the form (5).

For the sake of simplicity we confine ourselves
in the following considerations to matrices which
have only discrete indices. The diagonal elements
of a definite Hermitian matrix are all positive in
any representation of the matrix. Indeed, we
have from (7), since I is unitary

p =Q fx.„f'r.,

where p stands for the diagonal elements p
Let p be any other statistical matrix; its eigen-
functions may be different from the P„". Con-
sider the sum p"=np+Pp' with positive coef-
ficients n and P. This is again a definite matrix.
We have namely for the diagonal elements
p "=ap +Pp ' and therefore p

" is positive by
(8). Since this is true for all systems of reference,
it is evidently true for the system in which p

'

is diagonal. Hence p" has only positive eigen-
values and is a definite matrix.

We prove now IQein's lemma '! For every
definite Hermitian matrix we have the inequality

Pp log p —Pr„ log r„,

where p are again the diagonal elements of p in
any representation and r the eigenvalues. The
equality sign holds if and only if p is diagonal so
that the p are just a permutation of the r„.

We know that the p as well as the r„are all
positive. Consider the auxiliary function

Q„=r (log r„—log p„) r„+p„. —

It is readily seen that this function vanishes for
p =r„and is positive for all positive values of
p and r„. Now multiply Q„„by fx„„I' and sum
with respect to n and m. Considering (8) and the
relations

we obtain

ZQ Ix I
=Jr log r„—Qp log p„. (10)

and the f„* are the corresponding eigenfunc-
tions. Since the r„are all positive by their
definition as probabilities, we see that a statis-
tical matrix can only have positive eigenvalues.
A matrix with this property is called "de6nite. "

Since the left-hand side is essentially positive,
our inequality (9) is proved. We have yet to
ascertain in which case the equality sign holds.

"See also. v. Neumann„reference 3, p. 202.



992 %ALT E R M. EL SASS ER

We shall here confine ourselves to the case of a
matrix p with a finite number, say N, of rows and
columns. If the equality sign holds in (9), the
left-hand side of (10) must vanish and since all
terms are essentially positive, we must for each
pair of indices (n, m) have either Q„„=O or
x„=0.But a unitary matrix in N dimensions
has at least N nonvanishing elements one in
each row and one in each column; therefore at
least X of the Q„must be zero one for each
value of n and m. This proves according to (10)
that the p reproduce the r in some order. If we
label the p conveniently, X can be taken as the
unit matrix; otherwise X will correspond to
some permutation of the r„.

We come now to the physical properties of
statistical matrices. If I7 is the Hamiltonian of
the system, the statistical matrix p changes in
time according to the Schrodinger equation

F=Tr(pF). (12)

We have of course Tr(pF) =Tr(Fp). We must
give closer consideration to the physical sig-
nificance of formula (12). In v. Neumann's inter-
pretation of statistical mechanics it is assumed
that each individual sample of a collection is in
a definite pure state and that the performance of
a measurement results in another pure state
(usually different from the previous one). Now
we have shown in the first section that it is
necessary to build up statistical mechanics
without such a specialized assumption. Usually
we will not be authorized to assume that the
individual system is in a pure state, neither
before, nor after the measurement. We can and
we shall therefore regard the statistical matrix
as the appropriate physical description of the
individual samples as well as of the collection as

"P. A. M. Dirac, Proc. Camb. Phil. Soc. 25, 62 (1929).

It is easily seen from (11) that Tr(p) is a constant
of the motion. The same is true for the trace of
any function of p.

We consider, finally, measurements. Let F
be any physical quantity of the considered
system. If we measure its value on each sample
of the collection, then the average value or
"expectation value" of F in the collection is
given by

a whole. The relation between the samples and
the ensemble is then the same as the relation
between a physical system and its wave descrip-
tion in the theory of pure states: Unless new
measurements are performed, the wave function
or the statistical matrix represents the most
precise description of the system which is avail-
able with the given information.

A quantity F will in general have a statistical
dispersion in the ensemble p and we may for
instance measure the dispersion by the square
root of t (F—F)']A„. v. Neumann' has shown that
in a statistical matrix which is not a pure state
each quantity has a nonvanishing dispersion.
Suppose now we have measured F .on each
sample of our collection. The measurement will
have a certain margin of precision. Suppose this
margin is smaller than the dispersion of F in the
ensemble. The ensemble will then be called
separable with respect to the measurement of F.
We may divide the corresponding collection in

a number of part collections in such a way that
all samples of one part collection have the same
value of F within the margins of the measure-
ment. An ensemble in which the dispersion of F
does not exceed the margin of precision of the
measurement of F is called nonseparable with

respect to this measurement. In the same way
we can define nonseparability with respect to a
set of several simultaneous measurements. A
separable statistical matrix can be expressed as
a sum with positive coe%cients of nonseparable
matrices.

The concept of separability will be helpful in

formulating in a more precise way the results of
the first section. It is evident that if an ensemble

is nonseparable at a certain instant, this must not
hold for all time. Especially if the system under-

goes a strong perturbation, the nonseparability
will rapidly be lost. It has been pointed out above

that in such a case the statistical description is of
little physical value. Only nonseparable en-

sembles which remain so for a reasonable length

of time are useful in statistical mechanics. Non-

perturbing measurements are such measure-

ments which applied to a collection described by
a nonseparable matrix do not, for a reasonable

length of time, transform it into a collection

described by a separable matrix.
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We can in the future confine ourselves to the
consideration of nonseparable ensembles. The
breaking up of a separable ensemble into non-
separable ones and the reciprocal superposition
do not involve any features characteristic of
quantum mechanics. These operations are within
the realm of classical statistical mechanics. On
the other hand, if a collection can be represented
by a nonseparable ensemble, this means that the
samples have no individual features to distin-
guish them from each other. We said above that
the statistical matrix represents the individual
sample as well as the whole collection. We can
now state more precisely that this applies only
to nonseparable matrices.

If a number of measurements performed on an
individual system is given, we may ask for a
description of this system by a statistical matrix.
The statistical statements implied in the matrix
will express the behavior of a nonseparable col-
lection for which all the measured quantities
have the given values. Under these conditions
formula (12) represents also the results of a
measurement on the collection. If therefore a
number of measurements on a system are given
and a representative statistical matrix has to be
found, we may write conditions for this matrix in
the form (12), where on the left-hand side we
insert the results of the measurements. The
method of constructing such a matrix will be
considered in the following section.

It will be useful to ascertain that the definition

(12) of a measurement is a consistent one. By
this we mean a proof of the fact that the result
of a physical measuring operation can be given
in the form (12); this will be analogous to well-

known considerations about measurements in
the quantum theory of pure states. ' We shall

give a proof for arbitrary measuring devices,
assuming however that the interaction due to the
measuring process can be represented by a first-
order perturbation. The measuring operation
consists in a unique coupling between the quan-
tity to be measured and a macroscopic quantity
called the "pointer" of the measuring instrument.
From the position of the pointer we infer the
value of the quantity to be measured.

Consider first macroscopic quantities. From
Ehrenfest's well-known theorem on the move-
ment of wave packets it follows immediately that

if formula (12) is applied to any dynamical
variables, their average values will obey the
classical Hamiltonian equations

dp&/dt = BH—/Bq&,

whenever it is possible to express the Hamiltonian
II in a sufficient approximation as a function of
the variables p~ and g~. Formula (12) is therefore
an appropriate definition of the macroscopic vari-
ables of a system and is thus certainly justified
when the measured quantities pertain to classical
macroscopic mechanics. The general measure-
ment to be considered here need not be a non-
perturbing one. Let the Hamiltonian of the
measuring instrument be M(y), while the
measured object has the Hamiltonian H(x). Let
U be the interaction potential and let the repre-
sentation of the system before the measurement
be p = p

' p„'. Inserting this into the Schrodinger
equation (11) we have

z'PLBp/Bt = (IZ+3II+ V)p p„—p, p„(II+M+ V).

We are interested in the change brought about
in the measuring instrument by the interaction.
We find for this, if Tr, designates the trace taken
in the x space alone,

ihd p„/Bt = Il/Ip„' p„'Ill+ Tr.—( Vp, 'p„' —p 'p„' U).

Let Y be a macroscopic variable of the measuring
instrument, the one which characterizes the
position of the pointer. For the sake of simplicity
assume further that the pointer is at rest if no
interaction with the measured object takes
place; i.e.,

Tr(YMp„' —Yp„'M) =O.

We obtain for the displacement of the pointer

d Y/dt=Tr„(YBp„/Bt)
=(ik) ' Tr„(YTr,(Vp, 'p„' —p 'p„'V))
= (ih) ' Tr (Tr„(Y Vp „') p, ' —p, ' Tr„(Yp,

' V))
= (i') ' Tr, (p,

' Tr„(YUp„' —Yp„'V)).

The last expression is just of the form (12) with
respect to the variables x of the measured
object; on the other hand the left-hand side gives
the change of a macroscopic quantity to which
the expectation value thus determined is uniquely
related. This shows that within the limits of a
first-order approximation the result of a measur-
ing operation may be expressed by (12).
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We can in the same way write down the per-
turbation brought about in the measured object
by the measuring process. As pointed out above,
the latter perturbation determines whether a
nonseparable ensemble remains nonseparable
after the measurement. It seems appropriate to
use in this case not only a first order approxi-
mation but rather the general integral of the
Schrodinger equation say p(t). The perturbation
brought about in the measured object by the
measuring instrument may then be written

where p and p, refer to the Hamiltonians
H+M+ U and H, respectively. For nonperturb-
ing measurements this expression has to remain
small for a considerable length of time.

3. THE EXTREMUM PRINCIPLE

According to the considerations of the previous
section we will now mainly deal with non-
separable ensembles. Our problem is the con-
struction of a nonseparable statistical matrix
which represents a given system, the system
being characterized by a number of measure-
ments. The results of the measurements will

appear as conditions of the form (12) for the
statistica1 matrix p. These conditions do not
uniquely define p', the problem of determining p

is essentially an indefinite one. In a system with
many degrees of freedom there will be a large
number of eigenvalues r„of p which are all not
negligibly small; there will on the other hand
only be a restricted number of measurements.
Thus there is a very large number of statistical
matrices, all equally well compatible with the
given conditions. We can however try to make
the problem artificially a determined one by in-

troducing suitable assumptions. Such assump-
tions are suggested by familiar ideas of classical
statistical mechanics. A closer consideration of
the latter will show that we may distinguish two
main types of assumptions. The first type ex-
presses the equal a priori weight of all cells in
phase space, or, in quantum theory, of all non-

degenerate pure states. We might try to assume
that all pure states which are compatible with
the given measurements appear with the same
weight and all other states with weight zero. It
would be difficult to obtain in this way a simple

q= Tr(p log p) =Jr„log r (13)

will be called the mixture index of the statistical
matrix p. The r„, being the eigenvalues of p, are

"It is for instance not possible to give a prescription of
how to construct an infinite sequence in which the figures
0 and 1 appear with equal probability, but otherwise
"at random. "This however does not disprove the existence
of such sequences.

analytical expression for p and the expression
would moreover depend upon the frame of pure
states chosen and would not be invariant in func-
tional space. Although a similar condition seems
necessary, it ought to be introduced in an
alternate way.

A second assumption which is usually made in
statistical mechanics concerns the distribution at
random of certain phases of the samples. It
should be noticed that "distribution at random"
is an indefinite concept. By this we mean that its
significance is not expressible in terms of a con-
structive rule of operation. " Concepts of this
type occur frequently in statistical mechanics as
well as in probability theory in general and are
responsible for most of the paradoxa and com-
plexities which are so characteristic of this
science. The very fact that, in spite of the in-
definiteness of such assumptions, we arrive at
definite analytical expressions for the proba-
bilities shows that we have not so much used the
assumptions in a constructive way, as that we
have substituted analytical relationships which
agree sufficiently with the commonsense meaning
of these concepts.

Let us now recall that the problem of finding
a statistical matrix representing the system is
essentially an indefinite one. In view of the dif-
ficulties just mentioned, it seems appropriate to
introduce from the beginning an assumption of
an analytical character which yields definite
values for all the probabilities. In quantum
theory this can be done in a fairly simple way by
means of a variational principle. If we introduce
such a principle as a postulate, all statements
about the system take the form of definite
analytical expressions for the probabilities. It
is readily seen that the expectation value of

p log p is closely related to the entropy. '' For
a canonical ensemble it will just be equal to the
negative of the entropy divided by Boltzmann's
constant. The quantity
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all positive fractions smaller than unity and
therefore q is an essentially negative quantity.
We take now as the fundamental assumption

rt =Tr(p log p) = Min. (14)

The minimum has to be chosen in such a way as
to account for the given measurements. Let

Pp log p —Tr(p log p). (9')

This shows that for any given set of diagonal
elements the minimum mixture index is assumed
if all nondiagonal elements vanish, for only in
this case the equality sign will hold. This being
true for any set of p, it holds also for the one
which minimizes Pp log p„under the condi-
tions (15) and (6). Thus our theorem is proved.

T'here are certain limits for the application of
(14). According to the previous section, it is
necessary that for all the measured quantities
A ~Am the dispersions in the ensemble p
obtained by (14) come out to be smaller than
the respective margins of the measurements.
Measurements refer primarily to individual
systems; instead we can consider a collection of
systems in which the measurements have'all
yielded the same results within their respective
margins. Such a collection is represented by a

Tr(A)p) =ar, Tr(A2p) =a2, (15)

stand for the measurements where a&a~. are
the respective results of them. The minimum
(14) has to be found under the conditions (15)
together with the normalization condition (6).
We shall show later on that the problem has in
many cases a unique solution. Therefore, by (14),
all probability statements concerning our system
become definite.

An important special case of (15) is the one in
which all the operators A~A2 ~ commute with
each other. We shall prove the following the-

orem; If all the operators A~A2 commute
with each other, the matrix p which has a
minimum mixture index commutes with all of
them. Since A~A2 commute, we can transform
them simultaneously into diagonal matrices. In
the corresponding system of reference the con-
ditions (15) and (6) will involve only the diagonal
elements p of p. On the other hand, from
Klein's lemma (9) we have by (13)

nonseparable ensemble. The condition just
stated means that the statistical matrix obtained
by (14), in order to have a physical sense, must
be nonseparable with respect to the given
measurements. In this' case the collection to
which it refers does not contain samples which
would deviate from the given measured values.

We may easily extend our method so as to
include separable collections. The expressions
(15) will then refer to average values of measure-
ments on the collection. This is just the case of
"classical" statistics. Let us now consider the
superposition of two ensembles, say p = np'+Pp"
where n+P =1 and the matrices are all normal-
ized. If p' and p" are determined by (14), their
superposition p will in general be different from
the matrix obtained when the two collections are
first superposed and then (14) be applied with
the expectation values of the combined collection
substituted in (15). Simple relations will hold if
p' and p" differ only very slightly from each
other. Since we deal with systems with many
degrees of freedom, we may neglect the variation
of log p if the variation of p is small and write

p log p = (np'+Pp") log p = np' log p'+ Pp" log p".

This formula refers to the superposition of two
collections which are suitably described by p' and
p" and it has nothing to do with measurements.
Let us on the other hand assume that p' and p"
have been obtained by (14) under conditions
(15). For the sake of simplicity let a2a& be
the same in both ensembles and let only a& be
different, its value being a' in the first and a"
in the second ensemble. The minimum mixture
index can be considered as a function of a~, now
since c' and a" differ only very slightly from each
other, we have identically

~(na'+Pa") =nn(a')+Pe(a")

This formula refers to the dependence of g (and
thus of p) upon measurements formally given by
(15) and states nothing about collections. Now
na'+Pa" is just the expectation value of a~ in
the combined collection. Comparing the two last
formulae we infer: If two collections differ only
very slightly from each other, we obtain the same
statistical matrix whether we apply (14) to
the collections individually and then superpose
the matrices obtained, or superpose the col-
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lections first and determine p from the expecta-
tion values of the combined collection.

We may close this section by a few remarks of
a general character. The difficulty which we
encountered above, namely to describe a system
with a restricted amount of information is of
course by no means characteristic of quantum
theory. We have merely to deal, under a par-
ticular aspect, with a general problem of proba-
bility theory, namely the problem of inverse
probabilities or of inductive inference By d.efi-
nition, inductive inference starts from premises
which are not sufficient to determine uniquely
the results to be reached and its application has
therefore to be based upon appropriate general
principles. "

Now the fact that in our problem we deal with
a form of inductive inference may so far be
taken as a rather trivial point of terminology.
However, in statistical mechanics one may give
to the term "induction" a specific physical sig-
nificance. It has been pointed out above that
the quantum theory of pure states does not
exhaust the problem of giving a quantum repre-
sentation of complex systems. If we obtain such
a representation by means of (nonseparable)
statistical matrices we proceed essentialty from
the macroscopic features of a system towards the

microscopic features This is .quite in contradis-
tinction to the naive classical picture of an
object where it is usually silently supposed that
the macroscopic features of a system are deter-
mined in function of its microscopic ones. We
may therefore term as "physical induction" the
method outlined here in which all elements of
the description are determined by their relation
to the macroscopic quantities characterizing the
system. The theory of measurements has been
briefly treated above and it may now be seen
that a measurement constitutes the limiting case
in which inductive inference concerning the
microscopic features tends towards certainty.
In this case, of course, the state is uniquely
determined without an additional assumption
like the minimum principle (14). Quantum sta-
tistical description of a system represents more
precisely a mixture of inductive and deductive

"For a discussion of this problem from the viewpoint
of probability calculus see for instance R. A. Fisher,
Proc. Camb. Phil. Soc. 26, 528 (1929); 28, 257 (1932).

elements, the latter arising from the fact that
the Hamiltonian of the system is usually as-
sumed as given a priori

We may apply this idea to explain a specific
aspect of quantum indetermination in the theory
of statistical matrices. Approaching the situation
naively we might be tempted to say that our lack
of knowledge concerning the microscopic vari-
ables of a system is of two different types. The
one is that necesso, ry lack of knowledge which
results immediately from the uncertainty rela-
tions and which cannot be eliminated from the
quantum theory of pure states. The second type
is the lack of knowledge of phases which is basic
in the classical theory of ensembles and which is
there accidental, since the knowledge can always
be gained by measurements on the individual
samples. In quantum theory, the corresponding
circumstance has to be expressed as the lack of
knowledge which is due to the superposition of
several pure states in an ensemble. Both types of
indetermination will enter into a prediction of
the future behavior of the system. Now it ensues
from our above analysis that in a nonseparabje
ensemble there will be no physical sense in dis-
tinguishing between the effects due to the specific
quantum indetermination and those due to the
accessory indetermination expressed by the su-
perposition of several pure states in the ensemble.

4. A,PPLICATION S

We shall confine ourselves here to the most
elementary applications of our principle (14).
As a first example we shall consider the canonical
ensemble. "It results under the conditions

Tr(Hp) =Z, Tr(p) = 1.

From the theorem proved in the preceding
section we see that p commutes with II and this
means according to the Schrodinger equation
(11) that the ensemble is stationary. Let W„be
the eigenvalues of H; for the eigenvalues r of p
we have the differential equations

(d/dr„)(r„ log r„+nW„r„+pr ) =0,

where a and p are Lagrangian parameters. Deter-
mining these from PW„r„=E and Pr„=1 we

"J.v. Neumann, GoQ&sgen Nachrichten, 1927, p. 273.
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obtain finally

r„=e vr„/eg(pe s "///)

where the constant 8 is defined by the equation

Q gT e
—wn/// —+Pe—wa/8

We may also write the result in the invariant
form"

//
—e II////Tr —

(e H///)—

The properties of the canonical ensemble are
familiar and need not be considered here.

We pass now to a second application. Let two
separate systems be given; we may then either
have a common representation of them by a
statistical matrix and may ask for the representa-
tion of one system which does not refer to the
other; or we may be given a statistical matrix for
each system and may be required to find a
common representation of both.

We begin with the first problem. Let (x) and

(y) designate the coordinates of the first and
second system, respectively. According to v.
Neumann a consistent definition of the "projec-
tion" of p upon the part spaces (x) and (y) is
given by

p, =Tr„(p), p„=Tr (p). (16)

The projection of a statistical matrix upon a part
system is therefore equal to the expectation value
of the unit operator in the complementary part
system. From the fact, proved in the second sec-
tion, that a sum of definite matrices is again def-
inite it can be deduced that the projection of a
definite matrix upon a part space is also a definite
matrix. Suppose now the system is in a pure state.
A wave function of the whole system will be a
product of the wave functions of the part
systems. If, however, the two systems have
previously been interacting and have then been
separated, the common wave function will no
longer be a product. It can easily be verified from
(16) and (5) that the projection of the pure state
which represents the total system upon a part
system will in general be a mixture. " Einstein,

"This fact may for instance be used to obtain the
canonical ensemble by projecting a pure state with respect
to the energy of a very large system upon a small part
system —quite in analogy to classical statistics.

Podolsky, Rosen" and a number of other authors"
have thoroughly investigated this case and have,
in particular, brought out an interesting paradox
concerning the influence which a measurement
performed on one part system has upon the
quantum mechanical representation of the
other. For our present purpose we are not so
much concerned with this difliculty as with the
elementary fact underlying it, namely, that the
systems after interaction have phase relations;
measurements performed on one system will
enable us to draw inferences about the state of
the other.

Consider the inverse problem of the previous
one: Given two separate systems and two
statistical matrices p, and p„representing them;
find a common representation by one statistical
matrix p. It is easily seen that the problem is far
from being uniquely determined, it has in general
a large number of solutions. If, however, we
choose as the representation that for which the
common mixture index is a minimum under the
conditions (16), the solution will become unique.
If the mixture index is to be made a minimum,

p will be the so-called outer product of p, and p„.

p= p~+pv~

meaning (myI pInv) =(/r/I p, In)(pI p„I v).
(17)

for p, ~ v and mAn, respectively.

~7 A. Einstein, B. Podolsky and N. Rosen, Phys. Rev.
4V, 777 (1935).

"N. Bohr, Phys. Rev. 48, 696 (1935); E. Schrodinger,
reference 9; W. M. Furry, Phys. Rev. 49, 393 (1936);
H. Margenau, Phys. Rev. 49, 420 (1936).

Since p and p„are defined in independent
spaces and therefore commute we can transform
them simultaneously into diagonal matrices. We
can show that the matrix p which has a minimum
mixture index is diagonal in the same system of
reference. This follows in the same way as the
theorem about commutative matrices given in
the preceding section: By Klein's lemma (9')
the minimum mixture index compatible with a
given set of diagonal elements is obtained if all
nondiagonal elements are zero. These values
fulfill identically the nondiagonal part of the
matrix Eqs. (16), namely,

2 (m& I //
I
m v) =2 (~/M I // I

&~) = o
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PPmv =Pvvr Zpmv = Pxm. (18)

Let p „and p, and p» designate the diagomf2l

elements of p and p, and p„, respectively. The
diagonal part of the conditions (16) reads now

for all values of a and P. From this we derive
easily

(&'p'I p I
I'")—(I 'I p. I

I') (p'I p, I ")
p (rn'p'Ipln'v') —(m'Ip ln')(p'Ip„lv')

—p-cry —Pm—&

Inserting this into (18) we obtain

e ~ =e~p», e—P —g&
—

vp

where y is a real constant. Therefore, 6nally
p „=p, p». Now formula (17) is invariant if p,
and p„undergo a transformation of the type (7)
in their respective part spaces. We m.ay therefore
bring them back in their original form, if the
latter was nondiagonal; thus (1'I) holds generally
true when the mixture index is minimized.

If we measure the expectation value of any
operator R in (x) and of any operator 8 in (y),
then the simultaneous expectation value of both
is according to (17) equal to R S. Now this is
just the formula for the simultaneous occurrence
of independent events; therefore no correlations
between pairs of measurements performed sepa-
rately on each of the part systems do exist. This
excludes also the occurrence of the Einstein para-
dox referred to above. We can show on the other
hand that if (17) does not hold, such correlations
can always be found.

If again p, and p„are given, there will then be
at least one element of p, say (m'p'I pin'v'),
which is not equal to (m'Ip,

l
')(np'Ip„lv'). , Let

E ~ ~ be an operator in the x-space whose
matrix element m =ps', e =e' is unity, all other
elements being zero, and let EI, ~ be another
operator of this kind. Consider the linear com-
bination nZ ., +PZq v, in order that all expec-
tation values in system (y) be independent of
the particular choice of 0. and P in (x), we must
have

(p'ITr. (p(~& ~ +P&i i)) I
v')

=(~E- +PE~«v)(p'I pvl v')

The minimum is determined by the diEerential
equations

(d/dpmv)(pmv log pmv+~vpmv+Pmpmv) =0

which have the solutions

where the denominator does not vanish according
to hypothesis. This relationship can evidently
not hold identically for all values of n and P and
therefore, if a pair of measurements involves
essentially the matrix elements (rn'I p ln') and
(p'

I p„ I
v'), respectively, their results are not

independent of each other.
We may thus state: There exist no correlations

between measurements performed on two sepa-
rate systems if and only if their common repre-
sentation, subject to the conditions (16), is of
the form (17) corresponding to a minimum
mixture index. From this we see that a repre-
sentation which is unique will remain unique if
any number of d.imensions are added to the
phase space of the system, so that there is no
interaction between the newly added part and the
old one. We may therefore expect that the
representation induced by the minimum prin-
ciple (14) will in many cases be unique.

We make now an application of the last
results. The mixture index of a combination of
two systems fulfills the inequality

The case of equality follows immediately from
(17) and (13);if (17) does not hold the inequality
sign applies, since then q will be larger than its
minimum value. We may use this relation to
prove the quantum equivalent of Boltzmann's
H theorem in a case which, although not the
most comprehensive one, is rather general. The
first application of Boltzmann's method to
quantum theory has been given by Pauli' who
used a semiclassical method. An entirely quan-
tum mechanical treatment is due to Klein. ' He
considers the change in time of the diagonal sum

Pp log p in a fixed system of reference. How-
ever the selection of this quantity as representing
the entropy might seem arbitrary, and we shall
here give a slightly different presentation of
Klein's result.

Let us first remark that, just as in classical
mechanics, any representation p will in course of
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time come back arbitrarily close to its value for
t=0. Indeed we have in the system of reference
in which IZ is diagonal

where the p „' are constants. After a possibly
very long time all the exponentials will simul-
taneously be again arbitrarily close to unity.
Therefore, in order to obtain statements about
irreversibility, it is, just as in classical theory,
necessary to introduce "disorder" assumptions or
an equivalent hypothesis. Now since such
assumptions are implied in our variational
principle, we may in many cases avoid a repeated
introduction of them.

We know that drt/dt =0 for any closed system.
But this is not true for the mixture index
referring to the projection of a statistical matrix
upon a part system. It seems therefore appro-
priate to use such projections in the statement
of the H theorem, particularly since they have
frequently an immediate physical significance.
Let us write rt, =Tr(p, log p ), etc. We presume
that

where (x), (y), (s) refers to any division of
the system in part systems. Whereas the mathe-
matical statement can be made generally, the
division, in order to be significant should be
established by nonperturbing measurements.
Since g g„~ come after a certain long time very
closely back to their initial values an actual
decrease mill only take place if the period is
shorter than this.

It will be sufficient to consider two part
systems (x) and (y). We shall confine ourselves
to the important special case that for t=o the
representation is of the form (1'/), s having its

minimum value. By this we anticipate disorder
assumptions. The equality sign holds then in
(19) for t=o, but while the left-hand side is a
constant of the motion, the right-hand side must
decrease in time. This follows from the straight-
forward fact that after some time has elapsed,
p will no longer be a product (17) and therefore
the inequality sign applies in (19) and conse-
quently in (20).

The mixture index q of a system is a function
of the performed measurements (15). If we add
new measurements to a given set of conditions
(15), the result will in general be an increase of s.
There is thus no sense in saying that the mixture
index of a system will in general decrease in time.
We have instead to refer to the same set of
measurements made at two successive times.
Then the mixture index resulting from the
second set will be smaller than that resulting
from the first set.

We may express our result in an alternate way.
If by (14) we have obtained a representation of
the system by a statistical matrix, we may cal-
culate the representation p(t) at a later moment
by the Schrodinger equation (11). Inserting this
in the conditions (15), the expectation values
a~an ~ become functions of the time. But under
new values aia2 ~ the previous q will no longer
be the minimum mixture index. We may state
that these expectation values change always in such
a way that the minimum g to be calculated from
them decreases in course of time. This is a direct
expression of the second law of thermodynamics.
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for a number of stimulating discussions which he
had with him some time ago, and wants to
express particular thanks to Professor J. R.
Oppenheimer for his continued interest and most
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