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A resumé of the theory of the ultrasonic interferometer is given and adapted for use with liquid
media where the term pv is very large (approximately 10%) in comparison with that occurring in
gases (approximately 40). The differences of the observed phenomena due to this factor are dis-
cussed together with a method of obtaining the coefficient of absorption of ultrasonic waves in
liquids, and the “effective” coefficient of reflection of the waves at a liquid-metal boundary.
Measurements at 2.79 and 8.37 megacycles yield for the “frequency-free’ coefficient of absorp-
tion in water approximately 19X 10717 while the coefficient of reflection varies from 0.7 to 0.9

at boundary surfaces of monel metal and brass.

INTRODUCTION

EARLY investigators using the acoustic inter-
ferometer developed by Pierce! assumed
that the observations used in computing the
absorption coefficients could be interpreted as
though produced by a single reflection. Although
multiple reflections take place before the energy
is entirely dissipated, few such reflections occur;
and in gases, where the absorption is large, the
effect of successive reflections is small even when
the path length is short, and becomes negligible
as the path length is increased. This assumption
was confirmed by comparing the results obtained
by interferometry with those secured by measure-
ments with a torsion vane.?

Hubbard? developed the theory of the acoustic
interferometer to include measurements over the
entire range of path length, emphasizing -es-
pecially the importance of the variations occur-
ring when the path length is short (several
half wave-lengths of the sound in a gaseous
medium) and the part played by the coefficient
of reflection between the reflector and the gas.
His measurements of the absorption of ultrasonic
waves of frequencies in the neighborhood of 500
kilocycles brought out the interesting fact that
the coefficients of reflection were much further
removed from unity than would be expected.

The investigations of Quirk* indicated that the
absorption of ultrasonic waves inliquids can be

* Part of work done in fulfillment of the requirements
for the Degree of Doctor of Philosophy at the Catholic
University of America.

1 Pierce, Proc. Am. Acad. 60, 27 (1925).

2 See Pielmeier, Phys. Rev. 34, 1184 (1929).

3 Hubbard, Phys. Rev. 38, 1011 (1931); 41, 523 (1932).
¢ Quirk, Doct. Diss., Cath. Univ. Am. (1934).

detected by the interferometric method. In his
analysis, however, no attempt was made to
include the effects of the many reflections that
must occur in most liquids over an observable
interferometric path length, nor to discuss the
role of the coefficienit of reflection in the phe-
nomena observed.

Following the theoretical method of Hubbard,
the present paper seeks to develop a method of
determining the coefficient of absorption in
liquids, and includes the results of measurements
made with distilled water by means of which the
coefficient of absorption together with the coeffi-
cient of reflection between the water and the
reflector were obtained at frequencies of 2.79
and 8.37 megacycles.

THEORY OF THE LIQUID INTERFEROMETER

Hubbard® has extended the theory of an
electromechanical resonator, consisting of a
piezoelectric resonator driven by an independent
source, to include the effect of a fluid column
mechanically coupled to the piezoelectric plate
in such a manner as to set up longitudinal
vibrations in the fluid column. In his treatment
it is shown that the coupled fluid column can be
represented by modifying the equivalent re-
sistance and piezoelectric capacity of the equiva-
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F1G. 1. The electrical and equivalent electrical network of
the pick-up circuit and interferometer.
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lent electrical circuit of the quartz resonator.
He then considers such a circuit in conjunction
with a driving electrical circuit, solving for the
current flowing in the associated electrical
resonant circuit as a function of the electrical
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and equivalent-electrical constants, including
constants and variables dependent on the
acoustical behavior of the coupled fluid column.
For the equivalent circuit of Fig. 1 he obtains
the expression :

<P1Z{ 22+ [q+K'/(Cl+K1)]2}

2 —

gif=

where L, R, C: are the inductance, resistance,
and capacity of the pick-up electrical resonant
circuit; K, K’, R’ and L are the corresponding
equivalent electrical constants of the quartz
resonator with a coupled fluid column, K; being
the dielectric capacity of the resonator, while K’
is its modified piezoelectric capacity, and

p=1—(Ci+K1)Lie?,
g=1—LK'?
¢1=R1(C1+K1)w,
¢:=R'K'w,
o=1/I,,

i=current in the L;R; branch. Iy=Ey/R,, the
maximum current in the resonant circuit when
the interferometer branch is disconnected, E,

{p0— 12— (1= p)K'/(C:+ KD } 2+ { op+ e:[g+ K/ (C1+ K1) ]}*

[ema=—v%e—atr=2] cos (wx/v) +y[e~*(2r—) —g=aCr+)7] cos [w(2r—x)/v]

(1)

being the maximum induced voltage in the

inductance L.

The terms R’ and K’ include the modifications
introduced by the coupled fluid column, thus:

R'=R+ABwP, 2)
1/K'=1/K+ABpwwQ, 3)

where R is the equivalent resistance of the
quartz resonator near its response frequency;
K is its equivalent piezoelectric capacity; 4 the
effective area of the resonator face exposed to
the fluid column; B a piezoelectric constant of
quartz; p the density of the fluid; » the velocity
of sound in the fluid; and w is 27 times the fre-
quency of the voltage induced in L;.
P and Q are further defined:

P,

: 4)

1—2ye?r2 cos [2rw/v) 24

Q=

[emes4-y%eetr=a ] sin (wx/v) +-y[e?—9 - e~2@r+a ] sin [w(2r —x)/v]

©)

1—2ye % cos (2r¢i/v) +y2e—4re

In these expressions « is the attenuation factor
of particle velocity in the fluid (one-half the
intensity coefficient of absorption); v is the
coefficient of reflection at the distant boundary
of the fluid column, and 7 is the length of the
fluid column. The P and Q terms are in general
valid for any position x in the fluid column, but
interest us only at the position x=0, i.e., at
the quartz face exposed to the fluid. Here they
take the form:

1 —_ 726—-47'01
-Pz=0= ’ (6)
1—2ve~?r2 cos (2rw/v) -+l 4re
2ve~?re gin (27w/v)
Qz=0=

1—2ve~?re cos (2rw/v) +72e‘4'°"

Since Eq. (1) has been discussed by Hubbard
(and a somewhat similar equation by Dye?)
this need not be repeated here, but by imposing
certain experimental conditions a much simplified
expression is obtained which is used by Hubbard
for the case where the fluid is a gas, and by
means of which his determination of the coeffi-
cients of absorption and reflection in gases was
carried out. We repeat in substance the dis-
cussion of the expression for the case where the
fluid is a gas in order to contrast the behavior in
liquids with that in gases.

As the frequency is varied ¢? rises to the
familiar resonance maximum where p is zero at

¢ Dye, Proc. Lond. Phys. Soc. 38, 399 (1935).
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the resonance electrical frequency of the L;C;
circuit. If the constants of the electrical resonance
circuit are adjusted so that p is zero in the region
where [¢+K'/(Ci+K1)] is zero, which occurs
at the response frequency of the quartz resonator,
there is a very sharp dip or ‘‘crevasse’ in the
resonance curve. By adjusting C; and o it is
possible to find the value of the frequency for
which p and [¢+K'/(Ci+K1)] are zero at the
same time, that is, the crevasse divides the peak
of the electrical resonance curve, since the re-
sponse frequency is the same as the resonant
frequency of the L,C, circuit. These adjustments
are ideally made with the quartz vibrating in
vacuum where there would be no modification
because of the fluid column. Practically they can
readily be made in air in the manner described
by Hubbard. A crevasse is obtained while the
reflector has any random setting, and the \/2
spacing is determined by observing the change
of the crevasse minimum as a function of the
reflector displacement, a sharp rise occurring
where the reflector is set at #\/2 positions. The
reflector is then set midway between two such
positions, and under these conditions C; and the
frequency may be adjusted as outlined above
since Q is zero and P is zero to a very close
approximation. Under these restrictions the
simplified form of ¢? is obtained as a function of
the reflector displacement.

=[A+SP)+(SQ)*1/
LA+SP+CP+(SQ*,  (8)

where the current ratio ¢ is given in terms of
electrical and equivalent electrical constants, and
constants depending on the fluid and the re-
flector displacement, since in Eq. (8)

C= 1/Rw¢1(C1+K1) and S=ABp’U/R, (9)

while P and Q vary periodically with 7.

The adjustments outlined above, in which
p=¢=Q=0 and P is approximately zero, de-
termine the constant C. Calling the value of ¢
under these conditions o,

C=(1—0q)/00.

We now discuss Eq. (8) as a function of the
reflector setting in order to show the striking
differences that occur when a liquid medium is
used instead of a gas. With a gas the P and Q
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terms are small for the greater portion of the
\/2 spacing of the reflector, becoming large
only near the \/2 setting of the reflector. The
value of pv that characterizes gaseous media is
of the order of 40, R is of the order of a thousand
ohms, while C may have values from 1 to 10
depending upon the electrical circuit and the
quartz resonator. The terms SP and SQ are thus
very small compared to C for all reflector
settings except in the immediate neighborhood of
an #A/2 position, so that the value ¢y is nearly
constant as the reflector is moved away from
the resonator, but rises sharply to peak values
at the n\/2 positions.

When a liquid such as water is used the term
ov is 1.48X10% so that it is evident that for
reflector positions where neither P nor Q is
zero, although small, SP and SQ will have large
values that keep ¢ very close to unity, and only
in the immediate neighborhood where Q=0 and
P is a minimum will there be any large departure
of ¢ from unity. This is made evident from the
P and Q curves for liquid media. This dip occurs
at the (2n+1)A/4 setting of the reflector where
both C and SP determine the minimum value of
o, and as the reflector is moved from such a
setting the growth of the Q term quickly causes o
to rise. Thus in gases we find sharp peaks in the
o curve at N/2 reflector setting, while in liquids
the characteristic phenomenon is a rather
narrow dip at (2z-41)\/4 positions, the depth
and width of the dip depending upon the

experimental constants used.®

6 The effect of liquid loading on the ‘‘crevasse’ curves of
a quartz resonator may also be seen from a consideration
of the ¢? curve as a function of frequency. We may write
Eq. (8) in the form:

o= {14+[(¢+5Q)/(1+SP) 1}/
it {%H—C/(l+SP)]’+[(6’+SQ)/(1+SP)]’}.

¢=li- —Lzlng+K/(cl+K1) 1/RKew;
C=1/[RiR(Ci+K )]

by assuming that the frequency variation is not far from
the response frequency of the resonator in a vacuum, and
that during such variation p does not change greatly from
zero. For an unmounted resonator in a vacuum, C may be
of the order of 10, while for one mounted for use in liquid
interferometry C may be 2.

In gases for any reflector setting (¢+.S5Q) may be made
zero, but if Q is not zero the 1 in the denominator is
increased by the fraction C/(1+SP), say 10/(1+16)
or 0.6 in a typical case, and for the frequency where
(€4S5Q)=0 there i is still a dec1ded departure of ¢? from
unity to form the ‘‘crevasse’” at the response frequency
of the combination of resonator and column, regardless of

where
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There is another factor that contributes to
this behavior in the values of P and Q that
occur when the reflecting boundary is water-
metal, or water-glass instead of air-metal. With
the liquid case the values of the coefficients of
reflection are correspondingly smaller than those
occurring in the gas case, and this prevents the
minimum values of P from ever becoming
negligibly small. Under certain conditions when
C is small, as often happens in liquid inter-
ferometry, the minimum value of P may still
be so large that only a slight dip is obtained in
the measured current as the reflector is moved
through a critical setting, while under the
optimum conditions the dip will hardly take ¢
under 0.5. The behavior of the curves is shown
in Fig. 2 for typical cases over a wave-length
variation of 7, together with the corresponding
P and Q curves. The values of the constants, etc.,
for gases are taken from Hubbard’s papers,
while those for liquids are computed from values
measured during this investigation.

DETERMINATION OF 7 AND a FOR LIQUIDS

To deduce the values of v and « from a series
of current readings 4 as a function of the path
length 7, Eq. (8) is used. Knowing the resonant
frequency of the quartz plate, values of L; and C,
are used that will give a resonance peak in the
pick-up circuit at about the same frequency.
The driving oscillator is then coupled loosely to
the system and its frequency adjusted till a
crevasse is observed. The reflector is then set at

the reflector setting. Of course the deepest crevasse is
obtained when Q and € are zero simultaneously. Since
the frequency making € zero is the response frequency of
the resonator and its electrodes, and the response fre-
quency of the combination including the fluid column is
that making (¢ 4.SQ) go to zero, the well-known fact that
a vibrating quartz crystal may have its response frequency
changed by the presence of a coupled gas column is here
brought out. At the same time it is seen that each such
shift of the response frequency (from that at which ¢ =0)
by tuning the vibrating column results in increased
damping.

When liquid columns are used .S is much larger and C
is usually smaller so that when the reflector is set at
random, (¢ 4+SQ) may still be brought to zero by changing
the frequency but SP may be so large (and except for
reflector setting where P and Q are very small, this is
always so) that the denominator term 2/(14SP) is
roughly 2/(3004-1) and o does not depart appreciably
from unity. Thus a ‘‘crevasse’’ in the o2 curve as a function
of frequency variation can only occur for a limited range
of reflector settings near a (2n+1)\/4 setting of the
reflector.

FRANCIS E.

FOX

7l

30—

| | [
2M4 3V SN+
(@)
| |
2N4 N4 N4
(b)
(2
09— . ™~ /
08
26 il v ."u;
04
3
0
a1 —=
-
1 i 1 { |
2M/4 3A/4 M4 5)\/4
(©)

F16. 2. (a), (b), (c). Typical P, Q and ¢ curves for gases
(full line) and liquids (broken line). Constants for the curves
for air: A=0.05858 cm, y=0.96, vy=0.11, C=9.2, $=0.33.
Constants for water: A=0.0525 cm, v=0.862, a=0.0015,
C=1.89, S=19.0.

a (2n+1)\/4 position, determined as outlined
above, the fluid column being air. The value of
C, is then adjusted till the crevasse as a function
of frequency appears at the center of the
resonance peak of the pick-up circuit, and is
symmetrical about the minimum ¢4 This fre-
quency which causes 42 to fall to the bottom of
the crevasse is also the response frequency where
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[¢+K’'/(Ci+Ky)] is zero, and is then held con-
stant throughout the rest of the readings. The
interferometer is disconnected and C; adjusted
to determine the resonance maximum Iy?, after
which the interferometer is reconnected and Ci
restored to the original value for the symmetrical
crevasse. From the reading of 7, at the bottom
of the crevasse in air with the reflector at a
(2n+41)N/4 position ¢y, and therefore C, is
obtained. The liquid is placed in the inter-
ferometer, the reflector adjusted parallel to the
resonating surface, and a series of readings of 2
as a function of reflector settings is taken.
Enough points are recorded in the neighborhood
of the first dip to graph it accurately and then
the reflector is moved from the face of the
resonator until a change is noticeable in the read-
ing of 4,? at the bottom of the dip (3%,;). From
the width of the first dip the coefficient of
reflection is determined and this together with
the observed ¢.,; enable one to compute the
coefficient of absorption.

v—THE COEFFICIENT OF REFLECTION

In order to determine 4, we confine our
attention to a dip occurring when the reflector
displacement 7 is very small, for example, at the
first dip. At the minimum sin (2rw/v)=0,
cos (2rw/v)= —1, giving 0=0, and

P=Pm%(1~ve‘2“’)/(1+76‘2”‘), (10)
on=(14+SP,)/(1+SP,+C), (11)
SPm:[C(”'m)_(l_a'm)]/(l_am); (12)

if now 7 is small any term ye?"® departs from
unity almost entirely by the factor «, since « is
very small in liquids. Writing e~?"=1 we obtain

P=(1—+4%/[1-2v cos 2rw/v)++*], (13a)
Q=[2y sin (2rw/v)1/
[1—2v cos (2rw/v)+~%]. (14)

From the 7 readings the values of ¢ are ob-
tained, and plotted for the dip against the
reflector displacement, and the width of the dip
is thus measured for a value of ¢; about halfway
between o, and 1. Calling this width 2Ar, the
argument of the circular functions occurring in

INTERFEROMETRY
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P and Q are computed from 2rw/v=4rAr/\
where 7 is the displacement of the reflector at o;
from the setting at o,. A value of v is chosen
arbitrarily and P, computed which in turn
determines a value of S from the knowledge of
C and o, This value of v is then used to compute
P; and Q; for the displacement Ar, which to-
gether with S yield a computed ¢;. Of course
this is in general different from the observed ¢;.
If the computed value of ¢; is greater than that
observed a smaller value of v is chosen to yield
a lower value of the computed ¢; until one of
the computed values falls below that observed.
The computed ¢; are then plotted as ordinates
against assumed +y as abscissa and where the
curve intersects the value of “‘o; observed” the
corresponding v is taken as an approximation.
By this method the value of ¥ may be obtained
by successive approximations to any degree of
accuracy justified by the accuracy of the experi-
mental data.

a—THE COEFFICIENT OF ABSORPTION

Knowing S we can obtain « from a series of
omi? readings at various reflector displacements.
The reflector is moved from the resonator till a
measurable difference is observed in the 7,2
values, readings being made over as long a
path length as is compatible with the assumption
of a plane wave front. For all such values of ¢,
we have Q=0, and placing y=¢"#

Pwm;= [1 _e—(2ria+ﬁ)]/[1 +e—(2ria+ﬂ):|
=tanh [(2r;a+8)/2]. (15)

As (27;a+8)/2 is small compared with unity
we expand tanh [(27;a+48)/2] and obtain

Poi=(2ria+B)/2— (2ria+B)*/24,

of which we need only take the first term.
From Eq. (12)

ria+B/2=Coni/S1—0om:)—1/S
or rioa= Com/S(l—am)—(Z—i-BS)/ZS (17)

(16)

From this we can most conveniently determine
a by setting (om:)/(l—om;)=9y: and plotting v;
as a function of 7, which should be a straight
line of slope M such that a=CM/S.
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F1c. 3. Interferometer with quartz resonator exposed
directly to the liquid column.

EXPERIMENTAL PROCEDURE

During the early part of these investigations
the interferometer was used as described by
Quirk and Rock,” the ultrasonic wave being
transmitted into the liquid by means of a drop
of oil placed on the vibrating quartz plate, the
oil being in contact with a thin diaphragm, and
the liquid resting on the diaphragm. Although
it was possible to measure changes in ¢,;* under
these conditions, the dips themselves were very
small as indicated by the thermogalvanometer
and the term ¢,/(1—0,) is therefore ill-condi-
tioned for the determination of a. But a greater
difficulty lies in the failure of such an arrange-
ment to approximate the assumption made :in
the analysis that the quartz plate gives to the
first liquid layer its own periodic motion by
direct coupling, since there are in reality two
intervening media each having boundary con-
ditions which were not considered. The inter-
ferometer was accordingly modified as shown in
Fig. 3 to approximate the assumptions made in
the analysis. The quartz plate was sputtered
with platinum, the lower face before cementing
to the metal diaphragm, and the upper face
after the quartz was fixed in position, this face
being maintained at ground potential, together
with the rest of the interferometer. This method
of mounting the resonator changes of course its
equivalent electrical constants from the values
obtaining when the resonator is vibrating freely
in air or vacuum, but these are redetermined
experimentally before each run as indicated
above in the measurement of the constant C.
With this method very efficient transmission into
the liquid is obtained, and not only is the assump-
tion embodied in the analysis fulfilled, but the
‘current dips are increased to such an extent that

7 Quirk and Rock, Rev. Sci. Inst. 6, 6 (1935).
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variations in ¢,? are measurable by the thermo-
galvanometer (a General Radio vacuum thermo-
couple and a critically damped GM 2551A
galvanometer provided with a number of shunts
to change the sensitivity). In order to make this
more direct procedure practicable it was de-
sirable to work at high frequencies, since the
absorption will be expected to increase with the
square of the frequency. A resonator with a
fundamental frequency of 2.79 megacycles was
finally chosen from among the plates available
in this frequency range, it being the only one
having an isolated response frequency far enough
removed from any small neighboring response
frequency to be used confidently in this investi-
gation. The importance of using a crystal having
but a single response frequency over a fairly
large range of frequency excitation is obvious
from a consideration of the fact that the presence
of the liquid greatly widens the crevasse curve
of the crystal, so that neighboring crevasses that
would normally be completely separated if the
crystal were vibrating in air, merge into a single
widened crevasse when the crystal has a face
exposed to a liquid column. This is strikingly
illustrated in the dips of the ¢% curve as a function
of the reflector setting, the maximum dip
occurring for the main response frequency when
the reflector is set at a (2n+1)A/4 position
corresponding to the \ of this frequency, but as
the reflector is displaced the ¢ curve rises, until
the setting of the reflector corresponds to a
(2n+1)N\/4 setting for the neighboring response
frequency, where a small dip occurs on the side
of the main dip. If the frequencies are sufficiently
close, as often happens, the result is a single dip,
but wider than would be the case if a single
frequency response were contributing to its
formation. The values of v and « are accordingly
modified, such unsuitable resonators exhibiting a
periodic variation in ¢, values depending upon

TABLE 1. Observed values of the current (i) in the pick-up
circuit, expressed in arbitrary units with the reflector set for
mintmum of the first dip, as a function of ‘added R in the
pick-up circuit.

R (ohms) ‘ Io? l Im? om y
S0 44.70 25.50 0.756 3.105
10 24.75 15.70 0.808 4.219
20 16.05 11.40 0.843 5.376




ULTRASONIC INTERFEROMETRY

the (2n+1)M/4 spacings for the response fre-
quencies involved. The need of a careful investi-
gation of the resonator’s response spectrum is
obvious and it was the result of such investiga-
tions that governed the choice of the crystal
used. The same crystal was found to vibrate
vigorously when excited by the third harmonic of
its fundamental response frequency, giving a
20 percent dip in the ¢ curve when in the liquid,
while the variation in ¢, with increasing path
length is easily measured on the galvanometer,
so that measurements of the absorption made
at this frequency are considered to be the
most satisfactory obtained thus far in the
investigation.

EXPERIMENTAL RESULTS

The first experimental objective was to check
the constancy of the term .S which depends upon
the characteristics of the coupled liquid column.
At the minimum of a dip, P=P, and 0=0, and

on=(1+SP)/{14SP+1/[Rwe:(Ci+K1)]} (18)
or on/(1—0m)=[(14+SP)Ru*(C:+K,)2]R;, (19)
where R; is the total effective resistance of the

TaBLE II. Observed values of 1* in arbitrary units as a
function of reflector settings ‘‘v’ (in divisions—arbitrary
2er0) in the neighborhood of the first dip, and at the minima
of the dips denoted under *‘d.”

I 11 II1
Reflector Monel Brass Monel
Frequency 1076 2.79 2.79 8.37
Wave-length (divs) 104.8 105.0 34.92
Io? . 50.00 50.00 50.00
02 15.4 6.00 15.30
v 12 v 2 7 72
85.0 | 39.45 | 42.0 | 40.50 | 36.0 | 43.90
86.0 | 35.05 | 43.0| 38.70 | 36.5 | 41.60
87.0 | 29.40 | 44.0 | 35.20 | 37.0 | 38.30
88.0 | 25.50 | 45.0 | 30.40 | 37.5 | 35.60
88.1| 2540 | 46.0 | 23.70 | 37.8 | 35.05
89.0 | 28.75 | 47.0 | 18.00 | 38.0 | 35.30
90.0 | 37.40 | 48.0 | 15.65 | 38.5 | 37.65
49.0 | 16.40 | 39.0 | 40.95
50.0 | 20.50 | 39.5 | 43.25
51.0 | 28.00
52.0 | 33.50
53.0 | 37.00
54.0 | 40.50
d im? d im? d im?
1| 2540 1 15.65 1 35.00
51| 25.60 | 101 16.10 | 101 | 35.60
101 | 26.00 | 201 16.60 | 201 | 36.05
151 | 26.10 | 301 16.95 | 301 | 36.60
201 | 26.35 | 401 17.30 | 401 | 37.05
251 | 26.65 501 | 37.50
301 | 26.90 601 | 38.00

Note.—1 division reflector setting = 0.0005 cm. All current values
are expressed in arbitrary units (gal. def. in cm).
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F16. 4. Variation of y for the same dip as a function of
resistance added to the pick-up circuit,

pick-up circuit. As R; is easily varied by adding
resistance to this circuit, values of ¢, were
observed for various values of ‘‘added R (AR).
If we now place o/(1 —0,) =y and plot v against
AR we should obtain a straight line provided S
remains constant during the measurements.
Table I gives the results of a series of such
observations, and Fig. 4 shows the straight line
obtained, the intercept on the AR; axis giving
the initial resistance of the pick-up circuit, and
indicating that the factors in the expression
(1+SP)Rw?(C1+K,)? are essentially constant at
reflector settings giving the minimum of the dip.

In order to test the theory as the reflector
setting varies, many curves of ¢ plotted against

TABLE III. Results: computed from data of Table II,
giving the values of the constants C and S, the computed
and theoretical values of the coefficient of reflection, the slope
of the line determined by the change in o, with increasing path
length, the coefficient of absorption for the frequency used and
the frequency-free (a/v*) coefficient of absorption.

I II IIT
C 0.800 1.890 0.805
S 19.80 19.0 18.50
v (computed) 0.906 0.862 0.710
v (theoretical) 0.928 0.910 0.928
M 0.0344 | 0.0154 0.309
a 0.00139| 0.001534 | 0.0134
a/v?X 1017 17.9 19.7 19.2

NoTeE.—Case I fitted for v at 2Ar/X =0.04 where o; =0.857. Case II
fitted for v at 2A7/\ =0.06 where o; =0.774. Case III fitted for v at
2Ar/\ =0.07 where o; =0.906.
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FiG. 5 (a). Case II. Change in o as a function of the
reflector setting in the neighborhood of the first dip.

reflector setting were made in the neighborhood
of a dip. The constants S and v were then
determined by fitting these constants to a point
corresponding to about (14¢,)/2, or a ¢; value
about half way down the side of a dip as de-
scribed before, and then computing the rest of
the dip from Eq. (8), this curve being compared
with the one experimentally obtained. Fig. 5 (a)
gives an example taken from the data for case II
where the curve is fitted for the ¢; value indi-
cated by the horizontal line, the curve being
theoretical, the points experimental. Again the
close agreement shows the essential constancy
of S.

Figure 5 (b) shows ¥..: plotted against 7;a, i.e.,
omi/(1—0om:) as a function of reflector displace-
ment, the 7; value of the first point being some-
what in doubt due to the fact that the reflector
cannot be brought into direct contact with the
resonator itself, but is of no importance since
only the slope of the line need to be known to
obtain «. The experimental points lie, as well as
could be expected from the accuracy of the
measurements, on a straight line.

Measurements made using different resistances
in the L;C; circuit, different types of crystal
mounting and different reflectors indicate the
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F16. 5 (b). Variation of y at the dip minima as a function
of the path length. The abscissa is given as the dip number,
the distance between dips being the half wave-length
spacing for the frequency and liquid used.

essential validity of the assumptions made in
the analysis. A table of the measurements made
for two different reflectors (the liquid being
distilled water in all cases) at 2.79 X108 cycles
and one at 8.37X10° cycles.

DiscussioN OF RESULTS

These values of @ and «/»* must be doubled to
give the intensity attenuation factor. Although
they are several times the value to be theo-
retically expected from a consideration of vis-
cosity (8.0X10717) as ordinarily measured, they
are smaller than those observed by other
investigators. Quirk’'s® value of 8.5X107% for
intensity absorption factor at 1459.5 kilccycles
gives a/»2=200X10""". Biquard’s® observations
give 26.8 X 10717 for a/v? at 7.96 kilocycles and at
20°C as obtained by an optical method, and from
31.5X10717 to 27.2X107'7 in the same region
using a torsion pendulum to measure the change
in pressure exerted by the ultrasonic radiation.
Sorenson!?® at 950 kilocycles and at 18.5°C gives
0.011 as intensity absorption coefficient or
a/»*=610X107"", It is to be noted that in the
last mentioned case the driving voltage was of

8 Quirk, Doct. Diss., Cath. Univ. Am. (1934).
9 Biquard, Theses Univ. de Paris (1935).
10 Srenson, Ann. d. Physik 26, 120 (1936).
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the order of several thousand volts, and both
Sérenson and Biquard mention an increase of
measured absorption with the amplitude of the
ultrasonic waves used. In the present investiga-
tion the power used was very low, the voltage
applied to the crystal being of the order of one
volt as measured by a vacuum tube voltmeter
across the crystal faces. It is possible that some
factor such as this may be responsible for the
wide range of values obtained by different
observers.

It is difficult to arrive at an estimate of the
accuracy of the measurements obtained. From a
consideration of the measuring devices used one
would expect the variation to be within 10
percent and a consideration of the agreement of
a/v? as determined using different frequencies
seems to justify this. It is to be noted that the
measurements at the higher frequency are by far
the most accurate set obtained in the investiga-
tion. No effort was made to measure the fre-
quency with accuracy greater than 1.0 percent,
the only precaution being that during an experi-
mental determination the frequency did not
change. This was insured by heterodyning some
harmonic of a Standard Signal Generator with
the driving oscillator so that a 1000 cycle beat
note was produced and compared with a 1000
cycle electrically driven tuning fork. Any change
in the beat note is detected immediately as the
frequency of either oscillator varies. I was
measured before and after each set of readings
and if either this or the frequency changed
during the run, the readings were discarded.

With the coefficient of reflection it is even more
difficult to account for the variation of the
observed values from those to be theoretically
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expected (at a brass-water boundary about
0.910, and for monel-water about 0.928). There
is some indication that the mounting of a crystal
may change the ‘‘effective coefficient of re-
flection”’ measured. It might be more correct to
say that the measured coefficients are due to
energy losses not only at the reflector boundary
but also to surface losses at the resonator itself,
e.g., where it is attached to the support. Then,
too, the fact that the reflector itself is not
infinitely thick probably cannot be neglected,
and there is a possible explanation of the de-
parture from expected values, suggested by such
an assumption, because of the chance of the
reflector thickness being near to some integral
number of quarter wave-lengths of the sound in
the reflector itself. This departure from expected
values was also noticed by Hubbard in gaseous
media, where the departure from expected values
was relatively much larger. A further analysis of
the reflector system might help to clear up the
difficulty, but for the present one simply classifies
the results as “‘effective coefficients’ of reflection.

No attempt was made to maintain the tem-
perature of the water constant since the effect
to be expected from small temperature changes is
certainly masked by the experimental errors.
In all the determinations ordinary distilled water
was used, the only additional precaution being
that of heating to drive out absorbed air.

In conclusion the author wishes to acknowl-
edge his indebtedness to Dr. G. D. Rock of the
Catholic University for assistance at all stages
of the problem, and to Dr. K. F. Herzfeld of the
Catholic University, and Dr. J. C. Hubbard of
Johns Hopkins for many theoretical suggestions,
to Drs. Talbott and Ward of the Catholic
University for counsel and encouragement.



