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In this paper the effect of similarity of particles on gas
kinetic quantities (coefficient of viscosity, thermal con-
ductivity, and diffusion) is studied. The symmetrization
of the wave function is complicated by the presence of all
degrees of freedom which though dynamically unim-

portant distinguish the particles from each other (orien-
tation of the angular momentum of rotation, electronic
and nuclear spins). The theory is applied in detail to the
determination of the coefficient of viscosity and thermal
conductivity of the ortho- and para-modifications of
hydrogen. Marked differences are predicted depending

upon the relative concentration of the ortho-para forms.
Evaluation of so far uninterpreted measurements of
thermal conductivity coefficients lead to good agreement
with the theoretically predicted values. It is furthermore
found that in the determination of the coefficient of dif-
fusion no symmetrization of the wave functions has to
enter. The theory allows in certain favorable cases a deter-
mination of nuclear spins of isotopes from viscosity ob-
servations, the method being independent of a possibly
present magnetic moment. As an experimentally promising
example the case of neon is calculated in detail.

INTRQDUcTIQN show how the influence of exchange can be
ascertained in such cases by considering the
statistical weights of the various molecules. In
particular we shall deal with the coefficients of
viscosity, heat conduction and diffusion, giving
explicit calculations for hydrogen and neon.

'T has been shown by Massey and Mohr' that
-- the wave mechanics of collisions has to be
taken into account in kinetic theory calculations
of the coefficients of transport phenomena. An
interesting feature of these calculations is the
part depending on the symmetry of the colliding
particles. If a gas consists of molecules which are
identical in the sense of quantum theory the
the principle of exchange will operate at ever
molecular encounter.

Massey and Mohr assumed that two collidin
atoms or molecules being neutral particles ar
in all cases to be described by eigenfunction
which are symmetrical in the coordinates definin
the distance between the centers of gravity o
the atoms (molecules). They therefore describ
uniformly the collisions between helium atom
and between hydrogen molecules. It is at thi
point that in our opinion an important chang
and refinement of the theory has to be intro
duced. In most actual gases owing to the presenc
of spin states of the electrons and the nuclei
excited states, ortho and pure-states-, or isotopies
the molecules are not all identical and conse
quently the exchange principle will apply onl
to a certain fraction of the total number o
collisions. It is our purpose in this paper t

I. VISCOSITV

' Cf. J. Chem. Phys. 4, 229 (1936); also Phys. Rev. 51,
596 {i937).

~ H. S. W. Massey and C. B. O. Mohr, Proc Roy Soc.
A141, 434 (1933).

We require first a knowledge of the effect of
symmetry in the special case of a gas composed
entirely of indistinguishable molecules. Such a
gas will be said to consist of similar molecules.
We imagine a second gas to consist of dynami-
cally equivalent but dissimilar molecules, i.e. ,

molecules which are mutually distinguishable.
The calculations for these two gases will differ
solely in that the wave functions describing
collisions between molecules of the first gas must
be symmetric in the coordinates of the colliding
molecules.

The problem of finding the effect of the
symmetry in a gas containing pairs of similar
and dissimilar molecules reduces to the problem
of finding in what fraction of the total number of
molecular encounters the colliding molecules are
similar. This fraction will obviously depend on
(A) the probability that two molecules selected
at random in the gas are similar and (B) the
cross section for encounter between these mole-
cules. Through this difference there arise two
distinct cross sections for any specified kind of
collision between gas particles, vi». , Qs which
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1/n= (1/C) J'(DQn+SQs)~d&, (2)

m now being the classical weighting function.
Since D and S do not depend on v, we have

1/q =D/qn+S/qs (3)

applies to collisions between similar particles,
and Qn which applies to the dissimilar particles.
The method of the calculation may be illustrated
in the case of the coefficient of viscosity, the
formula for which we write (see (12) and (13)
below),

g = C/t'wQdv,

in which C is a constant for a given temperature
and m is the statistical weight of the cross
section Q. The integration is over the relative
velocity of the colliding particles.

For the gas under consideration there are two
cross sections, vis , Qn. for dissimilar and Qs for
similar molecules. The probabilities that two
molecules selected at random are similar arid
dissimilar shall be denoted respectively by S
and D. Thus in place of (1) we may write

The corresponding probability for two ortho-
molecules is

1 (ng) 2

S(0)—3+J
~ ~

~ J odd.
2J+1 &N)

The factor one-third appears in the latter by
virtue of the three nuclear spin states which
the orthomolecules possess at all temperatures.
The nq/N depend on the concentrations of
ortho- and parahydrogen and on the Boltzmann
factors corresponding to the values of J and the
temperature.

In Table I the dependence of the coefficient of
viscosity on the parahydrogen content at several
temperatures is shown by values of

(1—Si.100 i~. 1OO,
&1+S~)

in which q is the coefficient of viscosity for the
concentration of parahydrogen indicated in the
table. 6 100 is taken from Table II and the
quantity S is given by

in which gD and ga represent the coefficients of
viscosity respectively of the totally dissimilar
and totally similar gases. Using the relation

D+$=1,

S=S(p)+S(0).
The formula for the Boltzmann factor n~ is

g .g
—Eg(kT

ng ——X
g .s sg/kT— (10)

and setting qn (1+6——)ps,

we obtain n=(1+~)/(1+S&)ns (4).
It remains to determine S. We shall do this

first in the case of hydrogen, in view of the
importance of the result for the theory of ortho-
and para-modifications of this gas. Let the gas
contain N molecules of which ng are in the
rotational state J. For even J these are para-
molecules. There are 2J+1 states, corresponding
to the orientations of the vector J, so that
nq/(2J+1) of the paramolecules are in each of
these states. Hence the probability that two
paramolecules are in the same specified state is

[ng/(2 J+1)N]'

It is to be observed from the first column of
Table I that when the gas is pure parahydrogen
an effect of dissimilarity is present. It will be
seen that this dissimilarity becomes appreciable
at ordinary temperatures causing the viscosity
of pure parahydrogen at 273'K to differ from
that of a gas of entirely similar particles by
3.3 percent.

We shall now turn to the quantum-mechanical
evaluation of the cross sections required in the
theoretical calculation of the coefficients of

TARLE I. Percentage differences between the viscosities of
actual hydrogen and anideal gas of purely similar particles.

PERCENTAGE OF PARAHYDROGEN

1 (equi '
S(p) —Q J

)

—[, J even.
2J+1 (S) (6)

The probability that two paramolecules are
both found in any one of the states is therefore

ABSOLUTE
TEMPERATURE

273
170
90
70

100

3.3
2.3
0.2
0.1

3.5
2.7
0.7
0.8

43

4.7
5.6
5.8
5.9

25

49
6.0
6.5
6.7
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viscosity qz and pD. As is shown in the paper of
Massey and Mohr, the collision cross section
effective in viscosity is given by

4m ~ 4n'+6n' —2n —2
sin' 8

k =0 (2n —1)(2n+ 3)

and make use of the rapid variation of the phases
in the region bo to 8 -,'by assigning to sin' 8„,
sin' b„+2 and sin 2b„average values -'„2 and zero.
Thus the contributions to the cross sections
from this range of the summations are:

7r eb arm'

2(n+2) (n+1)
cos (8n Bny2) sin Se sin ~n+2

2n+3

—2 (&—-') =
k' o 2k'

for dissimilar particles, and

(15)

in which k=3K/2k, M is the mass of the mole-
cule, v the relative velocity in collision, and the
b„are the phases of the wave functions of the
scattering. When the molecules are similar the
phases of odd order are omitted in the summation
which is then multiplied by two. These cross
sections are related to the coefficient of viscosity
by Chapman's formula, '

5 (2~$ & 1+@

4m' & a~i Z

Here j=1/2kT, k is Boltzmann's constant, and

2x' ~/2—P (2n 2')-= (m2+m)
k' o 2k'

(16)

for similar particles. To obtain the terms of the
summation for n )m it is necessary to know the
8„. For an attractive central field with potential
V= D/rs Ma—ssey and Mohr4 have calculated
the phases using Jeffreys' approximation. Re-
placing summations over n)m by integrations
and letting sin b„=6„one gets for either the
similar or dissimilar particles the contribution

(13)

7r m2

2k' S—2
(17)

The quantity e involves the interaction of the
molecules, but as it does not exceed 0.017 in
classical theory, its quantum theory correction
is unnecessary. We are here interested not in the
absolute value of the viscosity but the changes
in it due to exchange. We shall base all numerical
work on the hard sphere model of the molecule
as this model allows exact determination of the
phases 6„. It will be seen that the model gives
values of g which, except at low temperatures,
are in sufficient accord with experiment for
present purposes. Approximate estimates of Q„
for central forces between the molecules show
that, as long as many phases enter the summa-
tion, the exact nature of these forces has small
effect on the ratio of the values of Q„ for similar
and dissimilar particles. To demonstrate this we
may write (11) approximately

4~
Q„=—P I(n+ ,') sin'8. -

k2 n=o

—(n+~3)(sin' b„sin' 8 +2

+ ~ sin 28„sin 28 +2) I (14)
~ S. Chapman, Phil. Trans. 216A, 279 (1915).

to the cross section. This expression is obtained
by neglecting the coefficients of (n+3/2) in (14)
and therefore should represent an upper limit
for the effect ascribable to the special form of
the field. For the ratio of similar and dissimilar
cross sections we have

Q„(S) S—2 1
=1+ (18)

Q„(D) S—1 m

As a test of this approximation a potential
V= —6.04X10 ' /r' for hydrogen was used to
compute the ratio for a particular velocity. The
value given by (11) using phases of Jeffreys'
approximation was 1.075 whereas (18) gave
1.064. The corresponding exact value for the
hard sphere is 1.080 for which (18) gives 1.087.
We see from the foregoing estimate that the
differential effect calculated under unfavorable
assumptions amounts to 1.1 percent while the
hard sphere model gives 0..7. Our assumptions
are the more unfavorable since we did not try to
fit the field to the observed viscosity and since

' H. S. W. Massey and C. B. O. Mohr, Proc: Roy. Soc.
A144, 202 (1934).
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the averaging effect and the dropping of the
term proportional to (n+3/2) only tends to ac-
centuate the effect based on the first calculation.

If 0 is the diameter of the hard sphere, the
classical value of Q„ is 2s.o'/3. The quantum
theory values of Q„are always somewhat larger,
becoming largest as v—+0 and tending to the
classical value in the limit v—+ ~. Over the range
from 3 to ~ of the parameter ~0. the values of
Q„may be represented by

2m a b

Q =—s' 1+—+
3 ka (ko)'

(19)

in which

5 (MkTi: 1.016

16 E. m. J o-'
(21)

is Chapman's classical formula for the coefficient
of viscosity based on the hard sphere model. '

In Table II are shown values of (18) in
micropoise for a hard sphere model of diameter

TABLE II. Theoretical viscosities of gases composed of
dissimilar molecules (qD) and similar molecules (q8).

EXPERIMENTAL
ABSOLUTE VALUE OF FOR

TEMPERATURE HYDROGEN 6 .1GO

in which @=2.10, b= 1.50 for similar particles
and a=1.00, b=4.00 for dissimilar particles.
This formula has been obtained by a least square
fitting of the constants a and b to tables of Q
in the range of ~0- from 3 to 30. We are not
justified in using the hard sphere for ko (3 since
in this region only a few phases contribute to Q„
which is then sensitive to the field of the mole-
cule. In the case of hydrogen this implies that
our calculations become unreliable at tempera-
tures lower than about 70'K. For other molecules
the corresponding temperatures are somewhat
lower.

Putting (19) in (13) and integrating, we obtain
finally .

5ak( s $' b(k12 1
~=a. 1+—-] I +-] —I, (»)

16 0. E.MkT) 3 Eo) MkT

2.75A and mass equal to that of the hydrogen
molecule. q~ is for dissimilar particles and qq
for similar particles. In the last column the
quantity in which we are interested is defined
by &=(gD ns)—/gs.

i'r =A Xd T,
Tp

(22)

A being a geometrical constant for the cell,
Tp the wall temperature and ) the coefficient of
thermal conductivity of the gas. Examination of
Chapman's theory of heat conduction shows that
the formula

1
X=—(3.758+C"') ii

M
(23)

.II. THERMAL CONDUCTIVITY AND VISCOSITY

We have not been able to find in the literature
experimental data giving information about the
relative viscosity of different mixtures of ortho-
and parahydrogen at temperatures of interest.
The effect expected by us is comparatively large
and should be easy to detect. We are, on the
other hand, of the opinion that the effect already
has been observed in a somewhat indirect
manner but that the data which contain it have
not yet been properly evaluated. We are referring
to measurements of the thermal conductivity of
ortho- and parahydrogen at different tempera-
tures; these observations can be linked up by a
simple theoretical reasoning with the viscosity
calculations presented above.

A method for determining the ortho par@-
concentration in hydrogen has been based on
measurements of the heat given up in a thermal
conductivity cell. ' In this method a wire heated
by a constant current passes through the cell
containing the hydrogen. The walls of the cell
are maintained at lower temperature than the
wire. The temperature reached by the wire
depends on the conductivity of the surrounding
gas. If i is the current in wire and r its resistance
at temperature T, then it may be shown that
the heat given up per second by the wire is

273.1
170.2
89.6
70.9

84.2
60.9
39.2
31.9

77.8
60.0
41.6
36.2

73.8
56.2
38,7
33.6

54
6.8
7.5
7.7

is corrected for quantum theory through the
corrections of the rotational specific heat C"'

~ K. F. Bonhoeffer and P. Harteck, Naturwiss. 17', 182
(1929).
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normal hydrogen. Let q'= g(1 —s) over the range
of integration To to T' and assume q ~ T~. Then
the last expsession may be written

and g. In the formula R is the universal gas
constant and M the molecular weight of the gas.
Observations of ) therefore should give us
information about q and thereby offer verifica-
tions of our theoretical predictions.

Since the rotational specific heat is greater in

parahydrogen, it is expected that X for this gas
should be greater than for orthohydrogen and
consequently the temperature reached by the
wire in the thermal conductivity cell should
decrease with increasing parahydrogen content
of the inclosed gas. It may be seen from Table I
that the variation in viscosity will tend to offset
this change. For temperatures which have been
investigated experimentally the effect due to the
specific heat has preponderated, although we
shall show that in certain temperature ranges
the viscosity may become the more important
factor thus causing an increase in T with increase
in para-H2 concentration. It is to be observed
that, while the change in Tdue to that in C"' will

depend linearly on the percentage of para-
hydrogen present, the change in T due to p is
not linear with respect to this percentage. An
experimental test' was made to confirm the
linear dependence of T on the parahydrogen
content, but as this test was confined to para-Hn
concentrations less than 48 percent, it did not
involve the region (see Table II) in which there
are large and nonlinear variations of q.

Table III shows data obtained with thermal
conductivity cells which may be analyzed to
show the presence of variation in q due to
change in para-H& concentration. In every case
the walls of the cell were maintained at the
temperature of liquid hydrogen.

The ratio of the heat given up in the cell
when filled with hydrogen of given parahydrogen
concentration to that given up when it is filled

with normal hydrogen (25 percent para-Hm) is

by (22) and (23)

r'/r = (1 z) I'/—I, (24)

T

I= (3.75R+C"')T&d T,
TO

(25)where

TABLE III. Data on thermal conductivity which ysay be
analyzed to show a variation in q due to Parahydrogen
concentrati on.T'

(3 75R+C .Oe. )rjidT.
I

To

r T

(3.75R+c"')qd T
To

RESISTANCE OF
CELL WIRE IN

OHMS

TEMPERATURE
OF WIRE

ocPERCENTAGE OF
PARAHYDROGEN AUTHORITY

203.9
291.6
173.0
270.0

111.85
106.27
135.3
134.0

25
99.7
25
43

where the unprimed quantities refer to the

6 A. Farkas, Zeits. f. physik. Chemic Blo, 429 (2930).
(A) Bonhoeffer and Harteck. s

(B) Farkas. 6

and z is the value of s averaged with respect to
the integrand of I. The assumption q~ T~ for
the computation is made because the empirical
values of the thermal conductivity of normal
hydrogen are best represented by this variation
in q. The values of z are insensitive to choice of
the law of this variation provided the latter is
between q ~ T& and g ~ T. The value z =0 would

correspond to identity of the viscosity coefficient
for ortho- and parahydrogen.

In Table IV the third and fourth columns
show, respectively, the values of z computed
directly with (24) from the data of Table III
and computed according to the present theory
for the variation of g using the values shown in
Table I. The fact that z is different from zero
reduces the inHuence of the difference of the
specific heat of the ortho and para modifications
to almost —,

' in the first observation.
As already remarked, the thermal conductivity

of parahydrogen is greater than that of ortho-
hydrogen, owing to the greater rotational specific
heat of the former. The viscosity tends to reduce
this difference. On the basis of the values given
in Table I it is found that the conductivities of
the two modifications should become equal at
about 80'K and at lower temperatures the
conductivity of the orthohydrogen should be
the greater.
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Effects of symmetry of the kind that have
been discussed above for hydrogen will be
present in the modifications of deuterium. The
effects will be very much smaller in magnitude,
mainly because of the multiplicity of nuclear
spin states which exist for either of the modifi-

cations. The deuteron has spin unity and there
are consequently 3 nuclear spin states for the
para- and 6 for the orthodeuterium. The ex-
pressions for 5(p) and S(o) will be correspond-
ingly reduced making the number of collisions
of similar molecules too few to produce appreci-
able effects. Moreover, since the total effect of
the symmetry depends nearly inversely on the
square root of the mass of the molecule, there
will be a reduction in the case of D2 due to its
larger mass.

In the foregoing consideration the contribution
of inelastic collisions to the viscosity has not
been taken into account. Apart from the fact
that no simple general rule can be given for the
symmetrization of the wave function in processes
where the internal condition of the system is
changed it should be remembered that these
inelastic collisions become of negligible impor-
tance at low temperatures where the calculated
effects become marked.

III. THE CQEFFIcIENT oF DIFFUsIoN

The theoretical derivation of the coefficient
of diffusion is usually presented in analogy' with
the derivation of viscosity or thermal con-
ductivity coefficients but needs modification as
far as the symmetry properties are concerned.
Massey and Mohr have symmetrized the wave
functions in the calculation of the coefficient
of diffusion in the same way in which they
symmetrized them for obtaining viscosities. They
therefore obtained curves for the coefficient of

PERCENTAGE OF
PARAHYDROGEN

100
43
25

1.010
0.993
1.000

0.946
0.988
1.000

i from (24)

0.063
0.005
0

r. from
theory

0.050
0.006
0

TABLE IV. Values of S, measure of variation of coegcient
viscosity with ortho para concentration, as calculated directly
from the data of Table III and as computed from the present
theory.

diffusion of similar and dissimilar particles
(coefficient of self-diffusion). In our opinion no
symmetrization has to be used for the calculation
of the coefficient of diffusion or even "self-
diffusion. "Our reasons are as follows:

The processes of diffusion of two gases consist
in the change with time of the relative composi-
tion of the gases at different parts of space.
For this process of diffusion collisions between
identical molecules are immaterial because they
do not lead to mass transport in toto. Only if
the particles contained in the gas show some
feature by which they can be distinguished can
there be any meaning ascribed to the term
diffusion. By self-diffusion in the classical theory
a process was understood in which particles of
almost identical physical properties (e.g. iso-
topes) exchange places with each other. This
example alone shows that there cannot be any
justification for symmetrization of the wave
function since isotopes obviously are not identical
particles. If on the other hand the particles are
identical in every respect then no diffusion
process can occur.

To make this even more clear we consider
the microscopic description of the phenomena
using wave functions of all particles in the gas
instead of the macroscopic description which
refers only to densities of the particles. Any
state of the gas composed at N particles of which
n; might all be identical among each other and
said to belong to the ith sort will then be de-
scribed by a wave function in the 3N dimensional
configuration space; the wave function will be
symmetrical (or anti-symmetrical) with respect
to permutations of each of the n; particles in
each sub-group among each other. Forces be-
tween the particles will determine the collisions
and also the change with time of the wave
function. The symmetrization refers only to the
sub-group but interactions between these par-
ticles do not change the relative composition as
far as two sub-groups are concerned.

We therefore conclude that there is no place
in the process of diffusion for the symmetrization
of the wave functions and that the curve which
was obtained by Massey and Mohr by symmetri-
zation and which differs from the classical
curve even in the limit of infinitely small wave-
lengths lacks physical significance.
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IV. VIscosITY oF A GAsEQUs MjxTURE-
APPLICATION TO NUCLEAR SPINS OF ISOTOPES

Application of the ideas presented in the
preceding paragraphs to other gases besides
hydrogen will only in exceptional cases lead to
experimentally discoverable results. The reason
for this is to be found in the fact that most of
the gases at temperatures which allow con-
venient experimentation are genera11y composed
of particles (atoms and molecules) in so many
different states that interaction by similar
particles becomes comparatively a rare event.
This holds true primarily for molecular gases
(apart from hydrogen) where due to the many
rotational states present the best approximative
description could be obtained by not symme-
trizing the wave function. Monatomic metallic
vapors would be more promising but they mostly
allow observations only at so high temperatures
that due to the small wave-length the symmetri-
zation effect becomes unimportant. Many of
them furthermore possess an electronic, orbital or
spin angular momentum which leads to a weight
factor 2J+1 increasing the percentage of "dis-
similar particles. " Their high mass also makes
experimentation with them disadvantageous.

The noble gases are in an exceptional position
in that they are free of rotational states and
have a singlet electronic term in the ground
state. The only degeneracy which therefore can
arise is due to a possibly present nuclear spin.
We shall show that measurements of viscosities
of noble gases with varying isotope content will

give information about the nuclear spin of the
isotopes. It is important to point out that this
information is completely independent of the
magnetic nuclear moment which might be
associated with the nuclear spin. The method
can therefore be applied even if this magnetic
moment should be too small to give hyperfine
structure splitting.

For a gaseous mixture of two components,
Chapman~ gives the formula for the coefficient
of viscosity,

5kT ave +2bviv2+cv2

7rX]2 u'v] +2b'vgv2+c'v2

where vi and v2 are the concentrations of the

' S. Chapman, Phil. Trans. 21'7A, 115 (1916).

two gases. The coefficients are given by:

3 my X/2" 3 m2X]2'"
e=1+——

) c=1+——
10 m2 Xy2( ) 10 mi Xi~")'

~„(2)
16 = 'C,

(2)
C =&t ' C1

~„(2)

3 K&2&'& 3 (m&+mm)'X»&'&+%22('&
b=1 —— +-

10E (') 40 mm X
3 (m&+mm)' X»&'&E'»&'&

b'= 2+—
40 mmmm~ Ei2("Eim(')

8 (m;+m;)2&&, T &

+.,(~)—
7rt p7rmimj

y2((+1)11

e-&'Q "&'&dy (27)

and Q, "=mt(1.—cos' 8;;)pd p.
~ p

(28)

In these expressions the m's are the masses of
the molecules,

mm

(m;+m;) 2k T

E,;&"=D~;,'2&(D)+S;Z;&'&(S), (29)

v;; is the relative velocity, 8;; the angle turned
through by this velocity in collision, and p is
the perpendicular distance between the asymp-
totes of the orbits of the colliding particles.
The quantities affected by exchange are the
Q; " which represent cross sections. For t=i.
these are the "cross sections effective in diffu-
s&on." Quantum theory values for the hard
sphere have been given by Massey and Mohr. '
The question of exchange does not arise for
these cross sections and the corrections due to
quantum theory are negligible except for light
elements at low temperatures. For t=2 the
Q;;"' take the form of the "cross sections
effective in viscosity" and are represented for
the hard sphere by (19); the effect of symmetry
being accounted for by the values assigned to
a and b. As the colliding molecules can only be
identical when they are of equal mass the
exchange influences the X;;(') alone, and it
follows from the form of the latter that they
may be expressed
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Fro. 1. Viscosity of a mixture of the isotopes of neon 20
and 21 relative to neon 20. The abscissa gives the concen-
tration of neon 21. Curves 1 and 2 correspond respectively
to the assumptions that neon 21 has nuclear spin 0 and —',.

Sg ——1, D] 1 SJ 0z

since only the nuclear spin states will be present
at ordinary temperatures. The diameters of the
isotopes may be taken equal. Kith spin i& for
the neon isotope 21 we will have:

Sz ——1/(2iz+ 1), Dz ——2zz/(2zz+ 1).

In Fig. 1, corresponding to a temperature of
O'C and atomic diameter 2.55A, curves based
on the above formulae (19), (26), (27), (28), are

where D; and S; have the meanings given them
in the discussion of a simple gas, and E;,"'(D),
Z;,(S) are obtained by using the appropriate
cross sections QD, Qs.

We shall now apply these results numerically
to the isotopes of neon which, as mentioned,
should allow of experimental verification and
offer information as to the spin of the nucleus.
In a mixture of the neon isotopes of atomic
weights 20 and 21 we may assume neon 20 has
zero nuclear spin and therefore the neon 20
atoms are identical among themselves so that
in (29) we will have:

FIo. 2. Viscosity of a mixture of the isotopes of neon 20
and 22 relative to neon 20. The abscissa gives the concen-
tration of neon 22. Curves 1, 2 and 3 correspond respec-
tively to the assumptions that neon 22 has nuclear spin 0,
y and 1.

drawn to represent the coeffIcient of viscosity of
the mixture of the neon isotopes 20 and 21
relative to neon 20. Curves 1 and 2 are based
on the assumptions of 0 and -', for the nuclear
spin of neon 21. In Fig. 2 analogous curves are
given for a mixture of the neon isotopes 20 and
22; the curves 1, 2 and 3 are respectively for
spins 0, -,'and 1 for neon 22. Our knowledge of
the constitution of nuclei leads us to expect the
spin of zero or possibly unity. The curve re-
ferring to spin —, is shown for illustrative pur-
poses. For the isotopes of argon the effect will
be reduced due to both the larger mass and
radius of the argon atom. Approximately (as
may be seen from (19)), the total effect due to
symmetry varies inversely as the molecular
diameter and inversely as the square root of the
mass of the molecule. The effect in the case of
neon is susceptible to test by any of the standard
experimental methods of measuring relative
viscosities inasmuch as these methods easily
secure an accuracy somewhat better than 1 part
in 1000.


