
I NTE RF ERENC E O'F M ULTI POLE RAD IATION 937

1/50, 000 As"; As", 1/20, 000 As"; As", As",
and As", 1/100, 000 As".

Iodine
Aston" showed that iodine consisted of a

single isotope of mass 127. This, too, is confirmed

by the present investigation. Iodine vapor was
admitted into the apparatus and a search was
made around the 127 and 254 peaks. It was
possible to set the following upper limits for the
abundances of other isotopes relative to I"':
I"' 1/25Q, QQQ; I"' 1/120, 000; I"' 1/40, 000;
828 1/15 000 ' I"' 1/25 000 I"' I"4 and I"'
1/50, 000.

Caesium

Caesium was found to be single by Aston. "
Bainbridge" searched for other isotopes, but was

IQ Aston, Mass SPectra and IsotoPes, p. 154.
"Aston, Mass Spectra and Isotopes, p. 111.
"Bainbridge, Phys. Rev. 36, 1668 (1930).

unable to find any. Because of the much higher
sensitivity of the present apparatus it seemed
worth while to search further. Caesium was
introduced in its vapor form into the apparatus.
No new isotopes were found. The following upper
limits can be set for the abundances of hypo-
thetical isotopes relative to Cs"': Cs"' and
Cs"' 1/100, 000; Cs"', 1/50, 000; Cs"4, 1/6000;
Cs"' 1/4000; Cs"' 1/20, 000; Cs"' and Cs"'
1/100,000.

The construction of" the large electromagnet
used in this work was made possible by a grant
from the Milton fund. The author wishes to ex-

press his appreciation to Professor Kenneth T.
Bainbridge for his encouragement and assistance,
to Mr. H. L. Leighton for his design and con-
struction of the glass parts of the apparatus, and
to Mr. David Mann for his suggestions and aid
in the construction of the electromagnet.
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The paper presents a discussion of wide-angle interference phenomena and their dependence
upon the nature of the light. Formulas are derived representing the interference pattern for vari-
ous geometrical arrangements and for arbitrarily composed sources. It is shown that the co-
herence properties of beams emerging from a point source should depend in a marked manner
upon the type of poles which compose it. Special discussion is given for dipole, quadrupole, and
octopole sources. The treatment is limited to the use of ideal mirrors; extensions are indicated.

I. INTRQDUcTIoN

HE coherence properties of light rays
emitted from a point source under a finite

angle were first investigated to some extent in
the well-known experiment of Schrodinger' on
wide-angle interference. This experiment was
originally undertaken to decide between the
concepts of unidirectional and spherical emission
of light; it was thus primarily concerned with a
side of the question which today possesses only
historical importance, since the new quantum
theory has reinterpreted the apparent conflict
between the two old points of view.

' E. Schrodinger, Ann. d. Physik 61, 69 (1920).

Schrodinger observed that the two rays which
passed through two holes in a screen produced
an interference pattern on the other side. In the
final interpretation given to his results he
remarked that this observation follows alone
from the assumption that the interference
phenomenon can'be described with the help of the
Huygens-Kirchhoff principle by the assignment
of proper values to the light vectors in the
two holes: such a description, according to
Schrodinger, leads with necessity to an inter-
ference pattern behind the screen.

It is at this point that our opinion differs.
We believe that even at the present state of
theoretical physics extended importance can be
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given to interference experiments with beams
diverging under a sizable angle from a point
source.

Whether interference patterns will be ob-
servable or not depends, as far as we can see, on
the phase relations between the components of
the electric and magnetic vectors of the two
beams in their corresponding holes. Whether or
not we should expect phase relations to be
present will depend on our theoretical view
concerning the emission of light. According to
quantum optics the phase relations for solid
point sources can be calculated in the same way
that the classical wave theory would prescribe.

We shall show in the following that the phase
relations in equivalent experiments, which allow
of a simple ideal treatment, will depend both on
the angle between the rays emerging from the
point source and upon its nature, i.e. , whether
it is composed of dipoles, quadrupoles, or higher
multipoles. Interference experiments should thus
allow us to obtain information, by observations
on the /ight rays only, as to the nature of the
emitting light source.

Before proceeding to the mathematica1 treat-
ment it might seem advisable to present a short
physical picture which will allow us to verify
qualitatively the statement made above. Let us
first imagine a single dipole with arbitrar y
direction of oscillation and let us fix our attention
on two rays sent off in two definite directions.
As these two rays come from a single dipole
they will be coherent by hypothesis, but as they
make in general different angles with the
direction of oscillation they will show different
polarization and different intensities. Since our
point source of light is supposed to emit in every
direction an equal intensity of unpolarized light,
we have to picture it as the superposition of an
ensemble of dipoles with random directions of
oscillation. A second dipole arbitrarily chosen
will emit, in the two fixed directions, light which
will also be coherent, but which will again show'

different states of polarization and intensities,
etc. The two rays emitted by the ensemble will
have equal intensities, but as the contribution
of each individual dipole will in general be
different for the two, they will not in general be
completely coherent. The amount of coherence
will depend on the angle which the rays make

with each other and also, as we shall see; on
the nature of the source. This is physically
plausible because dipoles and quadrupoles, for
example, show a different functional dependence
of energy and polarization on the angle made by
the "axis of the atom" and the direction of
emission.

The mathematical treatment can be carried
out in either of two essentially equivalent ways.
We might, in the first place, determine the
radiation emitted by a multipole of definite
orientation in two fixed directions and then
average certain intensities over all orientations
of the multipole. This process is straightforward,
but becomes somewhat cumbersome for higher
poles. On the other hand we can, according to
well-known methods of quantum optics, char-
acterize the field of the multipole (2' pole) by
2l+1 complex amplitudes. We can then obtain
a comprehensive model for a point source
emitting unpolarized light of equal intensity in
all directions by assuming that the average
values of products of these amplitudes vanish
whenever the two amplitudes refer to different
states of oscillation, and are equal to one and
the same constant when they refer to the same
state of oscillation. This second method of
presentation follows closely a paper of W.
Heitler' on the angular momentum of light, and
will be employed in the following.

II. DEFINITION OF THE INTERFERENCE
PARAMETER

Let 8 and 8' represent the two interfering
beams, and let Jand J' represent their individual
intensities at the center of the interference
pattern, i.e., at a point of zero difference of
optical paths; finally let J~ represent the in-
tensity of the superposed beams at this same
point. It is then clear that if we define

Q= Jsy(J+ J') —1

the illumination in the pattern will be propor-
tional to 1+Q cos 8 so that the value of ~Q~

may be taken as a convenient measure of the
visibility of the fringes. For ~Q~ =0 no fringes
will be visible, and for ~Q~ =1 they will have
their maximum sharpness; the central fringe
will be light or dark according as Q~~O.

' W. Heitler, Proc. Camb. Phil. Soc. 32, 112 (1936).
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become in turn 8, 8' on passing, without
deflection, through ideal Nicol prisms N, N'. We
shall find it convenient to employ three sets of
axes: Oxys, Ogpu, 0123 (01'2'3'), of which the
respective orientations are clear from the figure.
It is important to notice that 03 is parallel to I
(03' to I') and Ot to I3 (and 8'); also that Oy
is parallel to 02 (and 02').

If H and H' correspond to the beams I, I'
then it is obvious from the assumptions just made
that H~, H~' will be linear vector functions of
H, H', respectively, with H~'=H', H~"=H', .
The mathematical statement of this fact may,
because of the transversality, be put in the form:

H]~ ——aHg+ be
H„= cbHg —caH2

Hg~' ——a'Hg '+b'Hp '

H„= 6 b Hy —6 a H2

a2+b2 —1

a"+b"=1,

Fro. 1. General interference arrangement.

The intensities will be proportional to the
average, over the time and the constituents of
the source, of the square of the magnetic vector.
Thus Q may be calculated by the general for-
mula:

Q+1= ((H'+H')')A. /((H")" +(H")A) (2)

III. GENERAL INTERFERENCE ARRANGEMENT

Our point source is located at 0 (Fig. 1)' and
emits unpolarized spherically symmetrical radia-
tion. , from which two beams I and I' are de-
limited. These beams are then made parallel to
become eventually the 8, 8' of Section II. To.
simplify the treatment we suppose that I, I'
first become R, R' by a process (such as reHection
at an ideal metallic mirror') which involves no
polarization or absorption, ' and that these

3 The authors are very grateful to Dr. Frank E. Myers
for preparing the figures accompanying this article.

'See Section V.
~ If, by an absorptive process that involves neither polar-

ization nor change of phase, the intensities of the beams are
brought into the ratio 1:a', the value of Q will simply
suffer a reduction in the. ratio 1+a~ . 2n.

2' = (1+cos y)&@+sin xH

2H,s =sin XHP+ (1—cos y)H„s
(4)

and an analogous relation involving x' connects
H~' and H"'.

We must finally remark upon the relation
between H and H' as functions of 8. In the
following section we shall show how H(8) is
defined for the range —x (8~m. From our
construction it is then clear that H' =H( —8);
furthermore, because of the way the triples
0123, 01'2'3' have been defined: Hi ' ——Hi( —8),
H'2' ——H&( —8). These lead at once to the for-
mulas:

Hg ——Hg++Hg

H2 H'2++H2——
Hg. ——Hg+ —Hg

(3)
H '=H —H

in which the inferior index "+"or "—"indicates
the part even or odd in 8, respectively.

It is now a lengthy and tedious, but essentially
simple and straightforward matter to introduce
(3), (4), and (5) into (2) and so express Q in
terms of averaged products of the type (Hi+H, )»,

We suppose the Nicols N, N' set so that the
planes of polarization of 8, 8' (i.e. , the planes
containing the vectors Hs, Hs') make angles
x/2, x'/2 with the $f plane. The relation
between H~ and H~ is then:
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etc. Marked simplifications will arise from our
idealized assumptions, viz :. (H ')„„=(Ha')A„
= (H')Ave (H ')Av —(H ")A,———,'(H')A„., and also
from the fact, which will be obvious as soon as
the explicit formulas are written down, that for
multipole radiation:

where

2l+1 & (l —m)! i (2l)!
~l, m= sin 8

2 (l+m) ! 2'l!
dl+m(A12 1) l

X

(Hl+Hl —)Av (Hl+H2+)Av (Hl+H2 —)Av

(H1H2+) Av (H1H2 —)Av

= (H2~2P)A, =O.

From these, and from the relations

((Hl++Hl )')Av = ((H2++H2-) ')Av =
2 (H')Av,

there also follows immediately:

I (Hl+')A„+ (Hl ')A, ]/(H' )A„

= L(H2+')A+(H2 —)A]/(H')Av 2 ~

Finally, it will be convenient to set

is the associated Legendre function (p—=cos 0)
normalized and defined also for negative ns as

(6) indicated. 2 Pl, is customarily employed for
the range 0~8—m', we, however, shall remain in
the xs plane and may therefore without am-
biguity extend the range to —m-(8~~.

The magnetic vector H at a point on the
xs plane in the wave zone of an oscillating
2' pole may now be described by:

f7% +
( ) H —QGt jeevvivl Q e a mH l, m}

(s=2:, y, z; e, =e,=i, e„=1), (12)
Dl = C(H1+')"—(Hl-')A. ]/(H')A.

D2 I (H2+ )Av (H2—)Av]/(H )Av.

(8)

In the manner indicated we then obtain the
fundamental formula:

and in case no Nicols are employed:

Q = (Dl+ ee'D2) (aa'+ ee'bb') (10)

IV. THE FIELD QF A MULTIPQLE

It will be convenient to introduce the abbrevi-
ations:

H ' "=L(l —m+1)(l+m)]&P1, „1
+ [(i+m+1)(l—m)]~Pl, „~1,

H„' "=—L(l —m+1)(l+m)]'Pl, „1
+L(i+m+1)(l —m)]'Pl,

~ l, ~ —2m+

'We here employ the field of the electric 2' pole. The
field, in the wave zone, of the magnetic 2' pole can readily
be obtained from it by writing E for H (reference 2).
Since, moreover, II1———E2, II2 ——E1, it is at once evident
that for multipoles of the same order: (D&)m&g (D2)etect2
(D2)mag —(Dl)elect

2Q= (Dl+ ee'D2) $(aa'+ ee'bb') (1+cos (x —x'))

+(ea'b —e'ab') sin (y —g')]+(Dl —ee'D2)

&& [(aa' —ee'bb') (cos x+cos 1')
+(ea'b+e'ab')(sin y+sin g')], (9)

(a,"*al"')A„——8 „kl,
TABLE I.

(14)

2e=0
28= m.

l=i
l=2
l=3

D1

21( 1)E
1
2

2(2u'-1)
—21(~~4—5~2+1)

Dg

( 1)l
—,'(2' —1)

-,'(8&4—8&2+ 1)
-'(30'' —45''+ 17'' —1)

~See Bethe's treatment of spherical harmonics in the
IIandblch der Physik, Vol. 24.

For points on the xz plane our relations (12) are iden-
tical with Heitler's formulas (22 a, b), reference 2.

where C depends upon the radius vector r, but
may by us be treated as a constant. ' Since,
further, I'l, is an even or odd function of 0

according as m is even or odd, we may obtain
from (12) the formulas:

II(~ = csc e~z+

Cg [z2vvvvvg~( 2 csc g)a mH l, m]

Cg [&2~ivlpaa mH l, m]

~here Q+, Q signify summa, tions over only even
values and only odd values of m, respectively.

In the relations given above the al are the
complex amplitudes referred to in Section I;
according to the assumptions there stated we
have for averages taken over the constituents
of the source:
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where ki is independent of m. Relations (6)
may now be verified at sight, and relations (8)
may be expanded to give:

2l(l+ 1)(21+1)Di

=csc2 8[+—II l, m~ P+~ l, sPj
(15)

2l(l+1)(21+1)D2——Q H„™—Q+H ™
We shall show in the Appendix that the

evaluation of the four summations in (15) may,
with the help of a recursion formula, be reduced
to the carrying out of the single simpler sum-

mation P+P'i, . Here we shall merely give the
results for arbitrary multipole for 20=0 and
28=m and for arbitrary angle 20 for the dipole,
quadrupole, and octopole.

R'

CASk A

z, f

V. DISCUSSION OF SPECIAL CASES

The value of Q will depend not only upon l
and 0 but also upon the way in which the
original beams I and I' are made parallel, i.e. ,

upon the values of the coefficients a, b, a', b'.

Let us now suppose that R is obtained from I
by a single reflection at an ideal metallic mirror
3II. The boundary conditions at such a mirror
show that Hs=H —2(n H)n where n is a unit
vector normal to it. The simplest vector algebra
then gives:

—c„„—c~, sin 0+c~ cos 0
1

1 —c~, sin 8—c~, cos 8

CASa C

FIG. 2. Particular interference arrangements.

c~„—c„,sin 0+c„,cos 9

1 —c~, sin 0 —ct .cos 8

t= +1q

result:
(16) 2Q=(D +D.)(1+cos (x-x'))

+(Di —Dm)(cos x+cos x'); (17)
Q=Di+Dm (without Nicols).

where the c's are elements of the matrix (c„)of
direction cosines relating the Opsy and Obeys

axes. If I' is reflected into R' at M', the corre-
sponding formulas for a', b' may be obtained
from (16) by setting —8 for 8.

In case A (Fig. 2), I and I' are reflected to
become parallel to Oz. It is here possible to
choose the Ogrli axes identical with the Oxys

(1 00)
axes so that (c„)=~ 0 1 0 ~. Formula (16) then

(0 0 1)
gives: a=a'= —1, b=b'=0, c= e'=+1, and
substitution into (9) and (10) gives as a final

In case B, I and I' are reflected to become
parallel to Oy, i.e. normal to their plane. Here

(1 o 0)
we may take (c.,) = 0 0 —1

~

so that (16) gives:
(0 1 oj

a=a'=cos 8, fi= —b'=sin 8, a=e'=+1 and our
general formula becomes:

2Q = (D i+Dm) [cos 2 8(1+cos (x —x') )
+sin 28 sin (x —x') j
+(Di DR)(cos x+cos x ); (18)

Q= (Di+D~) cos 28 (without Nicols).
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DIPOLE f t=/g

QUAORUPOLE ( l ~ 2j

In case C, I' is not reflected at all so that
H~'=H'. If we take Og parallel to Oy the axes
01'2'3' and Ogtfi will become coincident, so that
c' = 1, b' =0, e' = —i. With this determination
of Og we have

(c.,) =
r

cos8 0 sin 0

0 1 0

l —sin 8 0 cosa

whence if I is now reflected to become parallel
to I', we find a= —i, b=0, &=+i. Finally:

2Q= (Ds —Dt)(i+cos (x—x'))
—(Dt+Ds)(cos x+cos x'); (19)

Q=Ds Dt (without Nic—ols).'

Having given these examples to demonstrate
the nature of the dependence upon experimental

~ In this case, according to reference 6, the interference
patterns for the electrical multipole and the magnetic
multipole of the same order will be complementary. In
case A (without Nicols) they will be identical.

OCrOPOLZ (8=3)

Fzo. 3. Polar graphs of ~Q~ as functions of 28 (case A).

l=2, Q=4p4 —3p'

I =3, Q = 15ps —20p4+6@'.

(20)

Fig. 3 shows most clearly how Q behaves as 28
is varied from 0' to 180'. For dipoles Q falls off
monotonically and the fringes do not disappear
until 28= 180'. For quadrupoles Q falls off much
more rapidly, and the fringes already disappear
for 20=60'. They then reappear with a dark
central fringe (Q(0, hatched in the figure) and
attain a maximum sharpness (~Q~ =0.56) for
28=105'. For octopoles the fringes disappear at
28=35', and again at 28=95'; a maximum

(~Q~ =0.46) with dark central fringe occurs at
28=67' and a slightly greater one (~Q~ =0.52)

arrangement, we proceed to discuss case A in
greater detail. For vanishing angle between I
and I', the insertion of the values given in Table
I into our formula gives Q=-', (1+cos (x—x'))
and this is entirely in keeping with our expecta-
tions since it means that Q=1 for parallel and
Q=O for crossed Nicols. Without Nicols Q=1
for 28=0. If, on the other hand, no Nicols are
employed for 28=tr then Q=O; and this seems
at first somewhat surprising since we should ex-
pect such rays to be capable of producing fringes.
They will do so as soon as properly oriented
Nicols are inserted, for then Q= ——,'( —1)'(cos x
+cos x'). Let us now set the Nicols parallel at
an arbitrary angle xs/2 (=x/2 = x'/2) and denote
the corresponding value of Q by Qs. It is im-

mediately evident that if, keeping the Nicols
parallel, we turn them through tr/2 to make
X=X'=xs+s-, then the new value of Q will be
—Qs. This means that the two patterns of
fringes will be of the same intensity, but will be
complementary, the light fringes of one falling
on the dark fringes of the other so that if they
were superposed, no fringes would be visible.
The absence of fringes when no Nicols are em-

ployed may be explained by such superpositions.
The results just stated are independent of the

order of the multipole radiation; however a
strong dependence on / will become immediately
evident as soon as we study the values of Q for
intermediary angles. Without Nicols, our for-
mulas give for dipoles, quadrupoles, and octo-
poles:

/=1, Q=lu',
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with bright central fringe at 20=128'. These
examples show clearly how strongly the con-
stitution of the source can affect the qualita-
tive characteristics of wide-angle interference
phenomena.

In the treatment given it has been assumed
that the reflections occur at the surface of ideal
mirrors. For nonideal mirrors additional polari-
zation effects would have to be considered which
in some arrangements might appreciably alter
the results as stated. The effects would then
depend upon the angle of incidence as well as on
the optica, 1 constants of the mirrors and might
in turn. throw light upon the numerical values
and dispersion of these constants. It is intended
to present a treatment of nonideal reflections in
a separate investigation. The theory would thus
also be brought into closer proximity with
actual experimental conditions.

TABLE II.

S)+ Si- Sg Tl

0 for m+0 0 1 —$l(l+ 1)

p =0 0 for l —m odd 0 for l odd Ofor l even ( —1) ( —1) 2,l(1+1)

APPENDIX

It will in the following be convenient to employ the
notation:

l

Si~ = g ~P'g, ~, Tg~ = P~m'csc' HP'i ~. (21)2l+1, ' ' 2l+1

Each harmonic component of H is transverse, i.e.

sin 8H, '~+cos 8H, ~ ~=0,

a fact which may easily be checked by the usual formulas
for expressing sin 8P~, and cos 8Pg, . If, now, (11) be
introduced into the equivalent relation

H l, et2+H l, sn&+H l, fn& H l, m2+ csc 8H

1 2 H„™= (1+1)'S(~—T~(~&.
4 2l+1 (23)

Comparison of (22) with (23) gives at once the recursion
formulas:

T~t+j.= (1—p') Ti~ +p'Tt ~+ (l+1)St~ ~

If we now introduce the quantities

Si=S&+—S~; Ti = Ti+—T~

(24)

(25)

we can write our fundamental formulas (15) in the form:

l(l+1)Dg = —T]., l(l+1)D2 ——(l+1)'S)+T)+g. (26)

Combination of (24) with (25) leads at once to:

T)+g = (2p,'—1)T)—(l+1)S), (27)

which, together with the fact that Tj = —1, gives a ready
method for calculating the T~ once the S~ are known.

Finally
Sl++Sl =1; Tl++Tl = Ql(l+1}; (28)

the former being a well-known theorem, and the latter
readily demonstrable from (24) by its aid. Combination of

(25) with (28) gives

$)——2$)+—1 = 1 —2S),
which together with (27) and (26) gives all the relations

needed for the calculation of D& and D2 by performing the
summations Sl+ (or Sg ) alone.

As an illustration we show the order of calculation for
28.=0 and 28 =2t. in Table II.

there results

2(l —m+1) (l+m)P'l, ~+2(i+m+1) (l—m)P'~, +~
+4m'P'~, ~ ='H ' ~'+4m~ csc' 8P'~

from which in turn follows, on alteration of the summation
index in certain terms:

1 2
Q ~H ' "'=l(1+1)S(

4 2l+1
—sin' 8'~ —cos~ 8T~~. (22)

We can, on the other hand, again by the usual formulas,
show that

2m(2l+1) & csc 8Pg+i,
=(21+3)&}L(1+m+1)(1+m)]&P&,~ g

+Dl —m+1)(l —m)g&P(, „+g}

and by employing the square of this obtain also:


