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The determinantal equation for the continuity
condition may be set up in the usual way and
reduced to'®

26(141/2%" )+ (o —m)2 X2}/ ¢’
tan? ru=— . (15)

(r+¢/2%")(146/0)

This is to be compared with the equation

tan? ru= —26/7(8/0+1), (16)

which is obtained in the absence of tangential
boundary conditions. Due to smallness 1/¢’,
w/¢’ and ¢/¢’ for energies in the first zone, the
new expression is equivalent to the old. In the
second zone, however, the results, shown in
Fig. 4, using the first f function (¢'= —21X2%)
are actually worse than the old. From a suitable
linear combination of the two f functions any
desired value of ¢’ can be obtained. The arbi-
trarily chosen value 10.8 gives the curve which
fits the correct parabola fairly well.

VII. CoNcCLUSIONS

The results of the cellular method of finding
wave functions are probably quite good for-the
occupied states of the metals so far calculated.

16 The reader is referred to references 2, 5 and 6 for the

general method of setting up the determinantal equations
of the cellular method.
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For excited states, however, very large errors
are to be expected. This cannot be overcome by
such simple expedients as adding a few more
joining conditions to those already in effect.
It appears that the number of new conditions
necessary to take care of higher energies would
make the labor of calculation prohibitively
difficult. However, a new method of attack has
been proposed by Slater and it is to be hoped
that it will circumvent these difficulties.

Finally it should be remarked that this work
has been concerned with only one aspect of the
electronic theory of solids. Although accurate
solutions of the wave equation in the crystal
would be very valuable they suppose that each
electron sees a static potential field in which the
influence of the other electrons is represented by
an average. Actually relative positions of the
electrons, correlation effects, must be considered
in order to explain many properties, for example
the binding energy of the alkali metals!® and the
phenomenon of excitation in insulators.l”

The writer would like to express his gratitude
to Professor Slater, under whose direction work
on this problem was commenced, and whose
continued interest has been instrumental in its
completion.

16 E, Wigner, Phys. Rev. 46, 1002 (1934).

17J. C. Slater and W. Shockley, Phys. Rev. 50, 705
(1936).
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If an x-ray beam is selectively reflected from more than two crystal surfaces in succession it
is shown in this paper by a simple method of graphical analysis that it should be possible to
obtain resolving power considerably superior to the best obtainable with present two crystal
x-ray spectrometers. This extension and generalization of the two crystal spectrometer principle
in one of its forms (the three crystal spectrometer) should permit the study of the asymmetric
diffraction patterns predicted by the theory of Prins but heretofore considered to be completely
beyond experimental investigation. In another form (the four crystal spectrometer) a distinct
improvement in spectral resolving power is anticipated. The new method of graphical analysis
invented for the purpose of discussing these more complicated cases of polycrystalline x-ray
reflection is conspicuously useful and clear as a help to understanding the two crystal spec-
trometer also. An experimental test of these new methods is now in progress.



THEORY OF POLYCRYSTALLINE X-RAY REFLECTION

INTRODUCTION

T is generally believed that the high resolving
power of the two crystal x-ray spectrometer
permits of no substantial improvement by any
extension of its principle of operation. The author
here proposes to show by a simple analysis of
the action of repeated successive x-ray crystal
reflections occurring at or near the Bragg selec-
tive angle that this is not the case.

Let us distinguish two classes of x-ray prob-
lems and correspondingly two kinds of resolving
power which latter we shall call angular resolving
power on the one hand and speciral resolving
power on the other hand. In the first class come
studies of the diffraction patterns of crystals.
Darwin,! Ewald,? Prins® and von Laue* have
contributed to the theory of such diffraction
patterns while on the experimental side the
widths of ‘‘rocking” curves in the ‘‘parallel
position”’ have been studied by Ehrenberg and
Mark,” Bergen Davis and H. Purks,® Allison
and Williams,” and many others.® Von Laue has
shown® that the two crystal spectrometer in the
parallel position is incapable of revealing any
asymmetry in the single crystal diffraction
pattern if such asymmetry exists as the theory of
Prins predicts. One of the purposes of the present
paper is to show that by an extension to the use
of three successive crystal reflections the asym-
metric diffraction patterns of Prins can be experi-
mentally studied. In the second class of problems
come refined studies of spectral line shapes and
spectral distributions in general such for example
as the shape of the foot of the continuous x-ray
spectrum. Here spectral resolving power is the
essential consideration. In the first class of
problems we aim to study how the reflecting

1C. G. Darwin, Phil. Mag. 27, 325, 675 (1914).

2P, P. Ewald, Ann. d. Physik 54, 519, 577 (1917);
Zeits. f. Physik 2, 232 (1920); 30, 1 (1929); Physik. Zeits.
26, 29 (1925).

3 J. A. Prins, Zeits. {. Physik 63, 477 (1930).

4 M. von Laue, Ergebnisse der Exakten Naturwiss. (Julius
Springer, Berlin, 1931), Bd. X, pp. 137-158.
(1;21§]})1renberg and Mark, Zeits. f. Physik 42, 807, 823

¢ Be;‘gen Davis and H. Purks, Proc. Natl. Acad. Sci. 13,
419 (1927).

7 Allison and Williams, Phys. Rev. 35, 1476 (1930).

8S. K. Allison, Phys. Rev. 41, 1 (1932); L. G. Barratt,
Phys. Rev. 41, 561 (1932); Mark and Von Susich, Zeits. f.
Physik. 65, 253 (1930); Kirkpatrick and Ross, Phys. Rev.
43, 586 (1933). No attempt is made at an exhaustive list

of this literature which is very extensive,
® Von Laue, Zeits. f. Physik. 72, 472 (1931).
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power of a crystal for an ideal monochromatic
parallel beam varies with slight deviations of
grazing angle near the Bragg angle. In the second
class of problems we aim to study how the
intensity associated with a given wave-length in
a beam of x-rays varies with the wave-length.

With a single crystal spectrometer the finite
natural breadths of x-ray lines prevents the
study of most crystal diffraction patterns almost
entirely while the finite size of the crystal
diffraction pattern would even with extremely
fine slits place a serious limitation on the accurate
study of spectral line shapes. To some extent
the invention of the two crystal spectrometer
removes these limitations and permits a partial
separation of the dependence of reflected in-
tensity on the two variables 6 and A\. We propose
to show here how a generalized extension of the
two successive crystal reflections can be made
to yield an even more complete separation.

GRrAPHIC METHOD OF ANALYSIS

The author has found that purely analytic
expositions of the physical optics of the two
crystal spectrometer are so involved and difficult
that an extension of the problem to the case of
more than two successive reflections has led him
to invent the following simplified graphic method
of thinking. Unquestionably the exact solution
of any given configuration of crystal reflections
can still best be obtained by writing down the
integrals involved but before this point is reached
the graphic method here described has great
heuristic value as a help in the choice of configu-
ration to be analyzed and as an aid to intuitive
prediction of the interesting or uninteresting
character of the result. The author believes also
that the exposition of the physical optics in the
simpler case of the two crystal spectrometer is
greatly simplified by the use of this graphic
method. The reader is urged to familiarize him-
self with its use as a tool in his thinking without
which the present paper will be unintelligible.

Figure 1 represents a plot of the Bragg equa-
tion

(1)

the ordinates and abscissae being N and 6,
respectively. The individual curves correspond
to the different orders # of reflection. Now the

nA=2d sin ¢
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Fi1c. 1. Illustrating how the reflection properties of a
crystal at various angles 6 for various wave-lengths A may
be visualized as a function distributed over a plane car-
tesian coordinate system. The function will be nearly zero
(black) save in regions close to the curved loci. As an aid
to clarity we plot the regions of 100 percent reflection
completely transparent and represent intermediate reflec-
tion coefficients with intermediate degrees of partial trans-
parency. Such a graph we call a transparency graph. The
striped effect seen in the magnifying glass is an effort to
indicate the smooth gradation from almost complete trans-
parency to opacity which cannot be otherwise indicated in
a line drawing.

more refined physical optics of x-ray reflection
teaches us that the connection between \ and 6
is not quite rigid. For a given N reflection at a
crystal surface occurs over a small range of 9 in
the vicinity of the Bragg angle with varying
degrees of intensity (diffraction pattern of the
crystal) so that in a strict sense we must regard
N and 0 as independent variables. The x-ray
intensity reflected by the crystal is then to be
thought of as a function of both N\ and 6 regarded
as independent of each other. We must think
now of a variable representing the intensity of
reflection distributed all over the surface of the
N\, 0 plot of Fig. 1, but with values differing
appreciably from zero only in the close vicinity
of the lines on this plot. It will soon be apparent
that the most helpful way to think of this
intensity distribution over X and 6 is to represent
it as a transparency. Regions of the plot where
the reflecting power is unity are to be conceived
as perfectly transparent while regions of zero
reflecting power are opaque, with intermediate
values grading between complete transparency
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and complete opacity. If then we examine a
magnified cross section of one of the transparent
traces along a line for which N equals a constant
as at C on our plot we would obtain the curve
shown at D representing the transparency as a
function of 6 on this line. The shape of this
curve is the diffraction pattern of the crystal for
the wave-length and angle region indicated on
the plot. We shall here make the assumption
that a plot such as we have just described gives
a complete description of the properties of a
single crystal x-ray reflection. _

This latter assumption is admittedly not
rigorous. The author is well aware that more
than two independent variables N and 6 are
rigorously required to represent completely the
intensity of reflection of a given crystal for a
plane monochromatic beam of wave-length X\
incident at angle 6; because the reflected beam
may, in general, with reduced intensity, have a
direction other than that required by geometrical
optics so that a grazing angle 8; not necessarily
equal to 6, and an azimuth ¢ measuring the
departure of the plane of the angle of reflection
from the plane of the angle of incidence are
required. Thus strictly the intensity of reflection
is a function of four independent variables, A,
01, 05, and ¢. In this paper however we are
making the assumption that the one-to-one
correspondences represented by the relations
61=0; and ¢=0 are fulfilled so much more
rigorously than is the one-to-one correspondence
between N and 6; represented by the Bragg
Eq. (1) that the description in terms of A and 6,
alone is sufficient for our present purpose. All
the conclusions of the present paper stand or
fall according as this assumption is justified or
unjustified. Of the two assumptions that of the
one-to-one correspondence between 6; and 6, is
by far the most important. There are good exper-
imental reasons for hoping that this assumption
is justified for good crystals of ‘‘perfect” type,
chief among which is the extreme angular
narrowness of the two crystal spectrometer
rocking curves of good calcite in good accord
with the theoretical predictions and their nearly
triangular shape in cases where the single crystal
diffraction pattern required by theory approxi-
mates a rectangle.
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CasE oF Two SUCCESSIVE REFLECTIONS,
ANTIPARALLEL POSITION

With this understanding then a transparency
plot such as Fig. 1 gives a complete description
of the intensity of a single crystal reflection for
all possible values of A and 6. Consider now for
the same beam of x-rays two such reflections
occurring successively at two crystal reflecting
surfaces. There will exist two similar plots like
Fig. 1 for these two reflections. (We shall discuss
here only the case where all crystals have
identical transparency graphs though this graph-
ical method handles the case of crystals having
different graphs with equal ease.) Referring to
Fig. 2 the two successive crystal reflections are
denoted by 4 and B. It is evident that with the
crystals stationary in the antiparallel position
here shown an increase of the angle 04 corre-
sponds to a decrease in the angle 6z of equal
magnitude. If the dihedral angle is w between the
faces of the two crystals then when 6,=0; =0
and when 05=0; 84=w. Also the final intensity
after two reflections is the product of the
intensity of reflection at each one. With the two
crystals at a fixed angle w the bicrystalline
reflection still involves only two variables X and
either 64 or 6p=w—04. The entire situation can
thus be represented by superposing the two
transparency graphs with their 6 coordinates
mutually reversed and displaced so that where
04=0; 0g=w and where 03=0, 04=w. It is
evident that with such a reversed superposition
the two graphs together will be everywhere
opaque save in the small quasi-quadrilateral
regions where the transparent traces on the
individual graphs mutually intersect. An attempt

to illustrate this situation in these pages would

result in a black rectangle with a few small,
symmetrically disposed, isolated, white patches

F1G. 2. Geometrical relationships in the two crystal
spectrometer, antiparallel position.
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F16. 3. Action of the two crystal spectrometer in the
antiparallel position analyzed by the method of trans-
parency graphs. The two systems of traces here shown in
black lines must be imagined as if on two separate sheets
of paper with the lines transparent and the background
opaque so that light can only penetrate at the inter-
sections of the transparent traces. A spectral line is repre-
sented as a horizontal line source of light immediately
behind the charts at a height corresponding to its wave-
length. Rocking the crystals corresponds to sliding one
sheet over the other horizontally so that the ‘“‘window”
formed by an intersection moves vertically and explores
the shape of the spectral line.

dotted about on its surface, so the reader is
requested to accept, instead, the graph of Fig. 3
in which the entire set of traces on each of the
two reversed superposed graphs appears as black

lines. The reader should however mentally

substitute for this figure the picture of the two
reversed superposed transparency plots in which
light can only be transmitted through the inter-
sections of the transparent traces. It may be
even helpful for the reader to construct two or
more such plots and actually superpose them.
It will then be apparent how the transparent
intersections move up and down along the wave-
length scale when the upper plot slides hori-
zontally over the lower plot corresponding to
variation of w the dihedral angle between the
crystals. This illustrates the action of the two
crystal spectrometer when exploring a spectrum
in the antiparallel position. A spectral line can
be thought of as a uniform horizontal line source
of light directly behind the two superposed
graphs at a height on their vertical wave-length
scale corresponding to the wave-length of the
spectral line to be represented. Sliding one graph
over the other then causes the small transparent
intersection or window to travel vertically over
the spectral line and by plotting the total trans-
mitted intensity as a function of the displacement
of the transparency graphs the ‘‘shape’ of the
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line is explored (the more faithfully the more
restricted the window). What we may «call
rather freely the area of each window formed
by the intersection of two graphs of order (un, m)
is a measure of the total x-ray intensity which
can be transmitted through the bicrystalline
reflection in the (#, m) order. This “‘area’ is in
fact a surface integral of the product of the two
intensity functions on the two superposed graphs
since the quasi-quadrilateral transparent region
in general has no sharp boundaries but fades off
gradually on the sides into complete opacity.
That such an integral really measures the total
intensity transmitted through the bicrystalline
reflection can be seen from the fact that on the
graph it consists of weighted elements of exten-
sion d\ in the vertical direction and of extension
df in the horizontal direction and these on the
two crystal spectrometer are precisely the ele-
ments that determine the total intensity since
the solid angle under which the source can send

radiation into the ion chamber is proportional

to df and the spectral range which can be used
in the source is proportional to dh.

It is usual in the two crystal spectrometer to
introduce lead stops so disposed as to place
rough limitations on the horizontal angles of
incidence and reflection at the two crystal
surfaces. The effect of these can roughly be
introduced into our superposed graph concept
by including in the discussion only that part of
the graph between the two vertical lines, such as
S: and Se Fig. 3 which limit 64 and 65 in a way
roughly similar to the lead stops. Two or more
intersection points in the same wvertical line
however are thus active simultaneously in spite
of this stop limitation. This superposition of the
(2, 2) order spectrum upon the (1, 1) order is a
pitfall which is well known and can be avoided
usually by appropriate choice either of filters or
of the voltage used to excite the x-rays so as to
suppress the unwanted order.

F1G. 4. Geometrical relationships in the two crystal
spectrometer, parallel position.
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F1G6. 5. Action of the two crystal spectrometer in the
parallel position analyzed by the method of transparency
graphs. The graphs are here shown mutually displaced
from the position corresponding to complete parallelism
so that they can be distinguished separately in a drawing.

Throughout the present paper the vertical
divergence of the x-ray beam is supposed to be
held constant and sufficiently small so that it
need not be discussed.

CASE oF Two SUCCESSIVE REFLECTIONS IN THE
PARALLEL PositioN

In Fig. 4 two crystals are shown in the
“parallel’” position. It is evident here that with
the crystals fixed at or near parallelism an
increase of 64 produces a corresponding equal
increase in 8p. It is therefore evident that we
must superpose our transparency graphs with
their 6 scales increasing in the same sense (say
from left to right). In Fig. 5 again we substitute
a black line graph of the situation and request
the reader either in imagination or in reality
to construct the corresponding directly super-
posed transparency graphs. The use of lead stops
and shields will again place a rough limitation
on the angle 6 indicated by the two vertical lines
S1 and S: so that only the narrow region on the
plot between these limits will be under discussion.
By the appropriate choice of voltage on the tube
and the use of a target with strong emission lines
whose wave-lengths are selectively reflected in
the desired order (say the first) at angles included
in the region between S; and S; the entire x-ray
intensity can be restricted to one small region
of say the first order branch of the transparent
loci, such as the regions F4, G4 and Fg, Gp in
Fig. 5. Now if we slide the two transparency
graphs horizontally until the arcs F4, G4 and
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Fi1G. 6. Enlarged profile of the intensity of reflection
taken along the horizontal line C in Fig. 5. where it cuts
the two arcs F4G4 and FpGp.

Fg, Gp coincide identically a maximum intensity
can pass through the elongated window formed
by the complete superposition of these trans-
parent traces. All spectral lines and all of the
continuous spectrum falling in the region tra-
versed by the arc F, G can shine through the
window whose ‘‘area’ is seen to be far greater
than the small quadrilateral areas of windows
formed by intersections in the antiparallel
position (Fig. 3).

Let us take a horizontal section as at C Fig. 5,
and plot the transparency across each of the
traces at this section. Fig. 6 shows these two
cross sections or diffraction maxima from the
two traces, the shape illustrated being the
prediction of the theory of Prins for Mo K-
radiation reflected in the first order on the
cleavage planes of calcite.!® Over the small range
F, G, a horizontal cross section through the

10 The profile here shown is taken from Compton and
Allison’s book X-Rays in Theory and Experiment, page 386.
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traces taken at any point whatever will have
substantially the same shape as that shown in
Fig. 6 since the shape of the diffraction pattern
does not in general vary rapidly with wave-
length. Therefore when the transparent graphs of
Fig. 5 are displaced horizontally so that these
graphs pass through complete coincidence (exact
parallelism of the crystal reflecting planes) the
behavior of the intensity transmitted through
the graph as a function of the displacement can
be readily inferred by displacing the profiles of
Fig. 6 across each other and plotting the product
integral over the two overlapping curves as a
function of their displacement as indicated in
the successive positions 4, B, C, D and E, Fig. 7.
The curve so obtained is the familiar rocking
curve in the parallel position of the two crystal
spectrometer and it is immediately apparent
why, even with asymmetric single crystal diffrac-
tion profiles, the rocking curves are necessarily
symmetrical since the paired configurations on
either side of the coincidence point C are
identical.

THE PRINCIPLE OF SHARPENING BY SLIGHTLY
DiISPLACED SUPERPOSITION OF
DIFFRACTION PATTERNS

Suppose now that the transparency graphs of
Fig. 5 are only slightly displaced away from the
position of exact coincidence so that a horizontal
cross section of the two transparency graphs
looks like the case B or D of Fig. 7. The super-

E

C

D E

F1G. 7. Illustrating the variation of reflected intensity with various degrees of overlapping
of the diffraction patterns of crystals 4 and B as the crystals are rocked through the parallel
position. The values of the product integrals plotted as ordinates in the lower curve cor-
respond to the total superposed transparency ‘‘area’” available with different degrees of over-
lapping of the transparent traces F4G4 and FpGp as the graphs of Fig. 5 slide over each other.
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F16. 8. The principle of ‘‘sharpening” by appropriate
displaced superposition of diffraction patterns. The shaded
profile is the product of multiplying the ordinates point
by point on the two unshaded curves.

position of these two transparent traces in this
fixed position will yield a composite trace whose
horizontal profile we obtain by constructing the
point by point product of the ordinates of the
two slightly displaced curves to yield the heavy
shaded profile shown in Fig. 8. If the displace-
ment is judiciously chosen it is evident that this
resultant product will be a very much narrower
curve than either of the factors while retaining
almost the original maximum height because the
maximum heights of the Prins traces correspond
nearly to unity. Thus under these conditions the
beam of x-rays after two reflections, though it
is neither monochromatic nor unidirectional
possesses a much sharper relationship belween
direction and wave-length than did the beam after
only one crystal reflection. It may thus be regarded
as a sharpened tool with which to explore the diffrac-
ton pattern of a third crystal. This leads to the
application of our transparency charts to the
theory of the three crystal spectrometer for the
study of the asymmetric diffraction patterns of
Prins which up to the present have been thought
to be undetectable.

Bollman and Bailey have found experimentally
with three calcite crystals reflecting Mo K-
radiation on their cleavage planes and have
subsequently verified by graphical integration
with the theoretical diffraction patterns of Prins
that the simple application of the principle of
displaced superposition of diffraction patterns is
not enough to give a ‘“‘tool” adequate satis-
factorily to reveal the Prins diffraction pattern
of a third crystal. When the core of the com-
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F16. 9. Geometry of the three crystal spectrometer
(parallel case), its triple transparency graph and the
profiles of tool and object to be explored.

posite diffraction pattern of the two crystals
constituting the tool has been narrowed down by
displaced superposition the importance of the
side fillets or wings is relatively so much increased
as to necessitate a special procedure to remove
their distorting effect. The details will be given
in a paper describing the experimental results.

THE THREE CRYSTAL SPECTROMETER

Figure 9 shows the disposition of x-ray beams
and crystals 4, B, C to form the three crystal
spectrometer. With these crystals in fixed rela-
tion to each other and with their reflecting planes
very nearly in mutual parallelism it is evident
that increasing the angle 64 tncreases the angles
fp and 6¢ by exactly the same amount. Hence
the transparency graphs for the three reflections
must be superposed with their scales of 6 all
increasing in the same sense (say from left to
right) . If we displace crystal B say three seconds
of arc away from strict parallelism with crystal
A then transparency graphs 4 and B will be
displaced from exact coincidence in such a way
that the transparent trace formed by the super-
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position of the two graphs will be much narrower
than before. Crystals A and B are thenceforth
held in fixed relation to each other and the beam
which has been successively reflected from both
of them now has the sharpened relationship
between wave-length and direction represented
by the narrower trace on the transparency graph.
With this beam falling on the reflecting face of
crystal C the latter is now rocked through a
small angular range and the intensity after
three reflections is plotted as a function of this
rocking angle, a sufficient range being covered to
completely explore the resultant pattern. This is
equivalent to sliding the graph C over the fixed
displaced pair of graphs 4 and B and because
of the narrowness of the composite trace formed
by A and B it becomes a sufficiently sharp tool
to reveal with considerable fidelity the features
of the horizontal profile of the trace on graph C.
In this process reflections A and B furnish what
may be described as the exploring tool while
reflection C is the object studied. But it is
immediately evident from the concept of the
transparency graphs that amy pair out of the
three crystals may serve as the tool by giving
this pair the appropriate displacement from
parallelism and fixing its members in this dis-
placed position while the third crystal is rocked
and the intensity of the tricrystalline reflection
is plotted as a function of this rocking angle.
The pair of reflections constituting the ‘‘tool”
need not be an adjacent pair since the total
intensity depends simply on the product of the
intensities of reflection on the three graphs and
therefore obeys the commutative law of multi-
plication. Thus the three crystal spectrometer
affords a ready method of studying the diffrac-
" tion patterns of all three crystals separately with
equal ease. True, the results are only first
approximations to the true diffraction pattern
since the sharpened tool in each case cannot be
infinitely sharp and in practice will probably

never be less than say one-tenth the width of the -

diffraction patterns themselves. However there
is this immense advantage in getting these first
approximations to the diffraction pattern shapes
of all three crystals, namely that the approximate
profiles of any pair used as a tool can now be
applied to determine (by multiplying them
together) the approximate shape of that tool.
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The approximate profile of the third crystal can
then be corrected (by the solution of an integral
equation) since the shape of the tool with which
it was explored is known. This method would
give a second approximation to the profile of
each crystal and this can of course be obtained
for all three profiles. It is easy to see therefore
how by an iteration method it would be at least
conceptually possible to get, through repeated
approximations, an accurate, completely resolved
profile for all three crystals. We are not yet in a
position to say how practical such a scheme
might turn out to be. The solution of integral
equations with data of limited accuracy is
frequently disappointing, but the conceptual
possibility of an iteration process in the three
crystal case is worth mentioning since it is quite
impossible in the two crystal case.

It need scarcely be added that the rocking
profile, obtained by rocking any one of the three
crystals such as C with the other two crystals 4
and B in fixed slightly displaced nearly parallel
relationship, should be studied for several degrees
of displacement of the tool pair 4B. If any
asymmetry in the rocking profile appears then
that displacement of AB which yields most

[ A— /B

F1G. 10. Analysis of the other formal possibility in the
three crystal spectrometer in which one of the trans-
parency graphs is reversed with respect to the other two.
Either of the geometrical dispositions of crystals and x-ray
beams shown here falls in this class.
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F1c. 11. The most interesting of several possible dis-
positions of crystals and reflections in the four crystal
spectrometer.

pronounced asymmetry seems likely to be the
most favorable one for use as a tool.

So much for the three crystal spectrometer
with all three reflecting surfaces mutually parallel
so as to call for transparency graphs with angle
scales all increasing in the same sense. Much
less interest attaches to any other possible three
crystal configuration. Indeed the properties of
the only other arrangement of three crystals
which can be regarded as truly distinct from
the foregoing one are obviously obtained by
reversing the sense of the angle scale of one of
the transparency graphs. This leads to a situation
like the one shown in Fig. 10 for which the
author can see no especially interesting applica-
tion at present.! .

Thus the three crystal spectrometer gives an
improvement over the two crystal spectrometer
in angular resolving power offering the possibility
of studying the asymmetric diffraction patterns
predicted by Prins but no great improvement in
spectral resolving power can be expected from it.
New and interesting possibilities however enter
when we pass to the case of four successive
crystal reflections.

i The equivalent configurations of crystals and beams I
or II in Fig. 10 do offer the possibility of increasing the
wave-length resolving power to a small extent over the best
attainable in the two crystal spectrometer. Consider the
case where all three crystals are used in the same order.
Referring to the transparency graph of Fig. 10 it is easy to
see that the vertical extension of the window formed by
the intersection of the two partially overlapping traces 4
and B with the third trace C can never be made less than
half the vertical extension for two intersecting traces no matter
how thin the composite trace 4B is made by the judicious
choice of the displacement of its components. This limita-
tion is however removed in the four crystal arrangement
which we are about to discuss. It is possible that for special
cases even this slightly increased wave-length resolving
power which the three crystal arrangements of Fig. 10
afford coupled with the greater economy of x-ray intensity

available with three reflections as compared to four may
make this configuration of some utility.
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F1G. 12. Transparency gr;tph for the four crystal case of
1g. 11,

THE FourR CRYSTAL SPECTROMETER

Figure 11 shows the most interesting of several
possible dispositions of crystals and reflections
with four crystals 4, B, C, and D. With all four
crystals in fixed relationship it is apparent that
increasing 64 increases 6z but decreases 6¢ and
0p. Hence the transparency graphs are to be
superposed with one pair 4, B having the angle
scales of its members increasing in one sense
while the remaining pair C, D has the angle
scales of its members increasing in the opposite
sense. Each pair, by the method of slightly
displaced superposition already described, now
can be made to constitute a sharpened tool.
The members of each pair are therefore to be
held in rigid mutual geometrical relationship
but the pairs are rocked as a whole, the one
with respect to the other, so that a spectrum
can be explored. The result is easily understood
in terms of the transparency graphs. The black
lines of Fig. 12 are as before substituted for the
transparent traces, the pairs of traces whose
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Fi16. 13. Profile of the diffraction pattern of 2.3A x-rays,
unpolarized, reflected from a calcite cleavage face as pre-
dicted by Prins theory. Taken from Compton and Allison
X-Rays in Theory and Experiment,
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members lie closely adjacent representing re-
spectively the parallel pairs 4, B, and C, D.
The reader will understand of course that
although the members of a pair of adjacent
traces are shown in Fig. 12 as distinctly separated
he is to think of them as superposed in the
manner already described with only a very slight
displacement of such amount that the total
effect of this displaced pair is to give a much
narrower transparent trace than either member
alone would give.

The four crystal spectrometer is then in effect
a two crystal spectrometer with pairs substituted
for each of the two single crystals so that the
result is the same as though two crystals with
very much narrower diffraction patterns had
been used. On the transparency graphs the
narrow traces formed by the displaced pairs
cross to form windows of much smaller dimension
in the vertical (or wave-length) direction with a
consequent increase of spectral resolving power.

The reduction in the size of the quadrilateral
shaped window at the fourfold intersection on
the transparency graph means a serious reduction
in available x-ray intensity. It is unfortunate,
but apparently unavoidable, that an # fold
increase in resolving power by this method
results in diminishing the available intensity
through multiplication by a factor =2 An
increase in resolving power is thus paid for
rather dearly.

THE PRINCIPLE OF ‘‘SHARPENING’’ BY REPEATED
UNDISPLACED SUPERPOSITION OF
DIFFRACTION PATTERNS

So far we have described only‘one method of
sharpening or narrowing the traces on the
transparency graph, that of displaced super-
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_F16. 14. Showing how raising the ‘‘witch” equation to
higher and higher powers, #, progressively decreases the
half-breadth at half-maximum height of the resultant
curve.
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F16. 15. A simple method of applying experimentally the
principle of undisplaced superposition for sharpening the
traces on the transparency graph.

position of two traces. Now this method is most
appropriate the nearer the horizontal profile
section of a single trace approximates a rec-
tangular shape. For traces like those in Fig. 6
which depart insignificantly from being rec-
tangular by some asymmetry at the top and a
little transition “‘fillet”” on either side it is evident
that a strong sharpening effect can be obtained
by displaced superposition. On the other hand if
the trace profile more nearly resembles the curve
commonly known as the “witch,” y= (1+x?/a%)1
the author has verified mathematically that no
help can be expected from the use of displaced
superposition of such profiles. In point of fact
the Prins theory predicts that the trace profiles
do indeed become more and more witch-like for
longer wave-lengths, Fig. 13 being an example
for the case of 2.3A units reflected from a cleav-
age face of calcite. When two equal witches with
half-breadths, ¢ (at half-maximum height), are
superposed with increasing mutual displacement
26 it turns out that when é=¢ the product or
resultant of the two curves just begins to mani-
fest a double peak and is therefore thenceforth
an undesirable exploring ‘‘tool” for most
purposes. Restricting ourselves therefore to dis-
placements |3| < |a| it is easy to show that the
resultant curve is always broader at half of its
maximum height than is either one of the
component curves at half of its maximum height.
We must then in the case of such profiles fall
back on another and perhaps somewhat less
promising method of sharpening the trace. This
consists in superposing, in exact coincidence, a
number of similar witch-like profiles. The re-
sultant curve will be narrowed simply because
the wings of the curve have numerical values
considerably less than unity for the intensity of
reflection so that the product of multiplying
many such factors will be relatively more
strongly suppressed than will be regions of the
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F1G. 16. Method of applying the principle of sharpening
by undisplaced superposition to increase the angular re-
solving power in the three crystal spectrometer.

curve near the maximum where the values are
more nearly unity. Fig. 14 is a graph showing
how the half-breadth, @, of a witch at half-
maximum height diminishes as we raise the
analytical expression for the curve to higher and
higher powers, #. The process is one which yields
rapidly diminishing returns in x-ray intensity
because even the maximum of such witch-like
profiles is not unity and the area under the
profile therefore diminishes more rapidly than
the breadth. Fig. 15 shows a simple way of
realizing such a sharpening by repeated undis-
placed superposition of the transparency traces.
The crystals 4 and B must be of high quality
absolutely free from mechanical strain so that
the crystal planes will approach being mutually
parallel over their entire reflecting surfaces to
the highest degree. One plans beforehand how
many successive reflections are desirable and
knowing the Bragg angle to be investigated the
appropriate separation between the reflecting
faces can be computed to give this number of
reflections. The transparency graphs for all these
reflections evidently have their 6 scales in the
same sense. The state of parallelism of the two
crystals can be determined of course directly by
plotting the intensity of the x-ray beam after
the » parallel reflections as a function of the
rocking position of one of them with respect to
the other. It is scarcely necessary to point out
that this principle of sharpening can be applied
to the three crystal combination for the study of
diffraction patterns or to the four crystal
arrangement for improving spectral resclution.
Figs. 16 and 17 show the disposition of crystals
and x-ray beams appropriate to these two
applications.

DuMOND

F16. 17. Method of applying the principle of sharpening
by undisplaced superposition to increase the spectral re-
solving power in the four crystal spectrometer.

NOMENCLATURE

It is regrettable that the choice of notations
of Allison and Williams for the two crystal
spectrometer does not stand the test of general-
ization to more than two successive reflections.
If these authors had chosen the convention of
algebraic signs so that, for example, working in
the first order on both crystals in the anti-
parallel position was denoted {1, —1} instead
of (1,1) (with {1, 1} for the parallel position)
then this notation could have been generalized
very satisfactorily. It is clear that the prime
requisites of a notation are: 1. that equivalent
situations shall be denoted by equivalent sym-
bols, and 2. that different situations shall be
denoted by different symbols. Allison and
Williams’ notation only meets the second re-
quirement. It should be amply evident by now that
the essential character of a given configuration of
crystals and beams, both as to its properties for
resolving wave-lengths and its angular resolution,
turns uniquely on the type of trace intersection
(or cotncidence) required to represent that configura-
tion on the transparency graph. Hence a complete
specification of the situation is given by stating
the order number of each trace and assigning an
algebraic sign to each order number representing
whether the 6 scale on the transparency graph
for that particular trace increases from left to
right or from right to left. Reversal of all signs
in a given symbol in this notation leaves the
situation unchanged so that the arbitrary con-
vention of always writing the first-order number
in the symbol positive can be retained. In this
new convention the sequence in which the order
numbers are written is immaterial for the
complete description of the transparency graph.
Thus the configurations I and II of Fig. 10
which for both angular and spectral resolution
are entirely equivalent would in the new notation
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be denoted {1,1, —1} and {1, —1, 1}, respec-
tively. Their equivalence is thus immediately
apparent in their symbols. To avoid confusion
with the notation of Allison and Williams the
author suggests the use of braces for the new
notation.!

OTHER POSSIBILITIES

Some four years ago Paul Kirkpatrick sug-
gested to the author the possibility of obtaining
increased x-ray resolving power by the use of a
number of similar crystals standing on an arc
of a circle arranged in a succession like that
indicated in Fig. 18, the crystals being so
orientated that all the dihedral angles between
any two adjacent crystals are equal. It was his
idea to provide a mechanism so that this dihedral
angle common to all adjacent pairs could be
varied for all the crystals at once, their centers
of rotation being simultaneously shifted so that
the reflected beam would never leave the face
of any crystal. In Fig. 18 two positions assumed
by the arrangement as the angle is varied are
shown.

2To avoid all confusion we state below the rules for
determining algebraic signs in Allison’s notation and in
our new proposed notation and a rule for transforming
either notation into the other.

In Allison’s notation the order number of the first
reflection is always given the positive sign. As we proceed
along the beam in the direction of propagation each suc-
ceeding reflection is called positive or negative according
as the reflecting crystal is on the same side or the opposite
side of the beam as is the first reflecting crystal.

In the new proposed notation the order number of the
first reflection is always positive. As we proceed along the
beam in the direction of propagation each succeeding
reflection takes a sign opposite to its immediate predecessor
if the crystal is on the same side of the beam as was the
crystal in the immediately preceding reflection; or if the
crystal is on the opposite side of the beam to its immediate
predecessor its reflection takes the same sign as the imme-
diately preceding reflection.

To transform either notation into the other reverse the
signs of the second, fourth, sixth, etc. reflections and leave
unchanged the signs of the first, third, fifth, etc. reflections.

POLYCRYSTALLINE X-RAY REFLECTION

883

F1c. 18. Paul Kirkpatrick’s suggested extension of the two
crystal spectrometer.
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