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The Empty Lattice Test of the Cellular Method in Solids*

W. SHOCKLEYt
Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received August 7, 1937)

The cellular method of constructing wave functions for electrons in crystals developed princi-
pally by Wigner and Seitz and Slater is tested by applying it to an artificial crystal in which
the potential is constant. Knowledge of the exact solutions for this case, plane waves, shows that
the cellular method is quite accurate in the first Brillouin zone but may be in error by a factor
of two in the second. Hence calculations of occupied levels in Li and Na are probably quite
good; for Cu, Ca, diamond, LiF, and NaC1 the errors will be larger. Calculations of excited states
are likely to be very much in error. The accuracy of the cellular method is shown to improve
very slowly with increasing number of continuity conditions.

I. INTRODUCTION

HE cellular method of constructing lattice
functions, developed principally by Wigner

and Seitz' and Slater' has now been applied
to a large number of.cases. However, no critical
evaluation of the rigor of the method has as yet
been presented. A new exact method has been
developed by Slater, ' but since this has not
been applied to any problem, a comparison with
the results of the cellular method is not pos-
sible.

In order to obtain lattice functions by the
cellular method the lattice is partitioned into
Wigner-Seitz cells within which the potential is
taken to have spherical symmetry. The lattice
function in one cell is then expanded in spherical
harmonics times solutions of the radial part of
the wave equation. The wave function in other
cells is obtained by translation and multiplication
by exp (27rik R) where R is the translation
vector and k is a vector analogous to the mo-
mentum for a plane wave divided by h. By the
cellular method one obtains a functional rela-
tionship between k and the energy E(k) of the
lattice function.

There is only one obvious exactly soluble case
to which the cellular method can. be applied.
This is the trivial case of the "empty lattice"—
the spherically symmetrical potential becoming
a constant. The radial functions needed in the

cellular method are known and the exact solu-
tions are those for the free electron. Hence it is
possible to compare cellular solutions with exact
solutions and thus gain an estimate of the
accuracy of the method.

II. EMPTY LATTICE TEST FOR THE FACE-
CENTERED LATTICE

with energies

/=exp 2trik r

E=4m'k'.

Now suppose that an artificial face-centered
lattice is inserted in space with lattice vectors
0~-,'~-'„etc. The cell appropriate to this lattice
is rhombic duodecahedron bounded by planes
bisecting the above set of vectors. The wave
equation inside the cell may be separated in
spherical coordinates and has solutions' of the
form

$~=$„~(8, y)f, (r), (5)

The Schrodinger equation fear one electron
when expressed in atomic units is

VP+(E U)$=0. —

For the empty lattice it becomes

V'P+EP =0

and has solutions

* Reported at the Atlantic City meeting of the American where S & is a tesseral harmonic of degree l and
Physical Society, Phys. Rev. 51, 379A (1937). f&(r) satisfies the equation

f Now with the Bell Telephone Laboratories.
r E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933) and

40, 509 (1934).' J. C. Slater, Phys. Rev. 45, 794 (1934). r' f(r)+ E————;—f(r) = o (6)
3 J. C. Slater, Phys. Rev. 51, 846 (1937). r' dr dr r'
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Since the solutions of this equation are the well-
known functions4

I J~+~(&'r)
(2Z&r&

P», q(x) =exp (2»ik r) exp (2»iK r), (9)

E»(k) =4 '(K+k)'
TABLE I. Classificati on for the six lo'Nest branches of the

Z&(a) curves.

E000(u) =4~23u2
E I I 1(u) —4~23(u 1)2

Elll(u) =4~23(u+1)2
El-I-1(u) =4m2 2(u —1)'+(u+1)2]
E 111(u) =4~2 2(u+1)2+(u —1)2]
E 200(u) =42r2 [2u2+(u —2)2]

F2

P =$000
$ =f—1-1—I
P =$111
f =$1—I—I +f-II—I +4'-1-11
f =f-111+$1-11+$11—I
IP =f—200+$0—20+$00-2

has no representations for energies as low as
those considered here.

where J„(r) represents a Bessel function, the
procedure of setting up cellular lattice functions
may be carried out. The expressions arising from
this procedure involve the ratios s'/s = o.

, p'/p =~,
d'/d=l, f'/f= y' where s, P, d, and f are the
radial wave functions for /=0, 1, 2, and 3 and s',
P', d' and f' are their derivatives in respect to
increasing r. These quantities are evaluated at
the midpoints of the intercellular boundaries,
r = ro= 21/4. Hence the ratios take the form

~=&'/&=&i'o'(&'«)li o(&'«).

The cellular method supposes that the lattice
wave functions are expressed in the form
exp (2~ik x)y(x) where q(x) is a periodic func-
tion of position in the lattice; the energy E(k)
of the wave functions is calculated as a function
of k. It is most convenient to suppose that k is
in the first Brillouin zone of k space. The energy
and wave function are then multivalued func-
tions of k. The corresponding exact plane wave
solutions will be

where K is a vector of the reciprocal lattice and
is a sum of vectors of the form ~1~1~1.

The test described in this work is carried out
by calculating Z(k) from the solutions worked
out by Krutter' and comparing them with the
exact E»(k). This comparison is complicated by
the fact that both sets of functions are multi-
valued. For principal crystallographic directions,
however, segregation into noncombining types
is made possible by symmetry considerations.
When k lies in the 111 direction, whose sym-
metry is Ca„ it is possible to group the wave
functions into three diferent types 2 F1, functions
which are unaltered by the symmetry operations
of the three fold rotation and reflection axis in
the 111 direction; F2, functions which are
unaltered by rotation but change sign on re-
flection; F3, functions occurring in pairs which
transform as do e+'& and e '& where y is the
angle measured around 111 as an axis. The
classification for the six lowest branches of the
E»(k) curves is given in Table I. For brevity
only one component of k=u, I, I is given;
P» p(r) =P», and (ug ——e' '", (o2=&og'.

The classification of the results of the cellular
method is given in Table II. The notation is
that of reference 5. The energy was computed
as a function of u from these relationships. The
work is slightly simplified by the fact that all
the expressions are homogeneous of zero degree
in the quantities 0., m, etc. , hence no error is
made by omitting the factor E& which occurs
in Eq. (8).

The results of the work are shown in Fig. i.
For energies below 30 units on this scale, we see

TABLE II. Classification of the results of the cellular method.

FI
tan' m.u+20. 8/7 (o+b) =0

1(u) —4Ir2 [2(u —1)2+(u+1)2]

E 111(u) =4rr2 [2(u+1)2+(u —1)2]

E 200(u) =4m.2 [2u2+(u —2)2]

IP =pl —I—I +Culf-11-1 +2P-I —11
and

P =$1-I-I+2$-11 —I +1$ —1-11
p =f-111+rulfl-11+ru2$11-I

and
f =f—111+072/1-11+COIQII If =f—200 + 1/0—20 +Co2/00-2

and
4' =0-200+2/0 —20+r01$002 111' and 111,

111'and 111,

F3

tan' mu+48/(m. +3p) =0
u arbitrary for 5=0

r2
111' u arbitrary for q = ~.

(No solutions in the energy range considered. )

4 Excellent tables of these functions are given in Uibra-
tion and Sound by P. M. Morse, to whom the writer is
indebted for their use in advance of their publication.

'The notation used in this paper, especially in regard
to the face-centered solutions, is that of W. Shockley,
Phys. Rev. 51, 130 (1937). 2r means 3.14 . when it mul-
tiplies k or its components.

6 H. M. Krutter, Phys. Rev. 48, 664 (1935).
~ Group theoretical classifications into symmetry types

for many crystallographic directions have been given by
Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 63
(1936).The character scheme for this case is given in their
Table I II.
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CENTER OF ZONE
6=000

EDGE OF ZONE
111
22 2

F(6. i. Comparison of cellular and exact solutions for
the face-centered lattice, 111 direction. Cellular solutions,
dashed lines; exact solutions, solid lines. Solutions of the
same symmetry type should be compared.

that both the cellular method and the exact
solution give only one energy value and that the
two agree extremely well. The agreement is still
fairly satisfactory up to about 80 units. If the
method were exact we should find that the Fi
curves for the cellular method would coincide
with the F~ curves of the exact solution and a
similar situation would hold true for the F2
curves. It is readily seen, however, that the
results of the cellular method become notably
faulty above about 90 units.

For other directions in the face-centered
lattice similar results are obtained, the agreement
for the lowest curve being nearly but not quite
as good.

III. EMPTY LATTIcE TEsT FoR THE BQDY-

CENTERED LATTICE

A similar process can be carried out for a body-
centered lattice. For this lattice the translations
are composed of vectors of the form ~-', ~-', +-',
with corresponding reciprocal vectors 0&1+1.
The ce11 is a truncated octahedron and the
midpoints of the faces between nearest neighbors
are at &—,'&-,'&~. From these we find ro 3i/4, ——
in terms of which 0, 7r, etc. , are found by equation
8. Taking the 100 direction for test purposes, we

classify our wave functions according to the
symmetry C4„of this direction. There are five

classifications F&, single functions unaltered by
the symmetry operations; F2, single functions
which change sign when rotated 90' or when

' Reference 7, Table II.

reflected in the 011 or 011 planes; F3, single
functions which change sign. when rotated 90'
or reflected in the 010 or 001 planes; F4, single
functions which change sign when reflected in
either 010, 001, 011, or 011 planes; F4, pairs of
functions which transform as do e'& and e '&.

With this classification and with k =@00 the
energy curves of Fig. 2. and Table III were
constructed. All energies less than 150 units
are included;

Not all of the symmetry types are represented
in the cellular solutions' (Table IV). We see
that F2, which gives several energy contours
below 150 units, is not represented in the
cellular method. Due to the complexity of the
curves the symmetry types are compared on
separate diagrams.

The curves for the 111 direction of the face-
centered lattice and the 100 direction of the
body-centered lattice are quite typical. For
other directions the agreement is similar on the
whole. Being worse in some respects, better in
others.

IV. REAsoN FQR THE DIscREPANcIHs

The reason for the good agreement in the first
zone and poor agreement in the higher zones is

easily understood by considering the expansion of
a plane wave in spherical harmonics. This expan-
sion involves zonal harmonics of all orders; how-

ever, if we are interested in the expansion within

only a fraction of a wave-length about a certain
point only the first few terms are large. This is
the situation met with in the first zone for which

the radius of the cell corresponds to less than 4

wave-length, and the first three or four harmonics
give a good expansion. However, the number of
terms needed increases rapidly when the region
of expansion is doubled —center of the second
zone —and not enough harmonics are present in

the cellular formulation. Hence the agreement
becomes bad.

V. APPLICATION OF THE RESULTS

It is natural to apply these results to calcula-
tions previously made with the cellular method
with a view to estimating the error arising there.
In order to do this it is necessary to compare
lattices of the same size. From considerations of
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but the energy scale will be modified by a
factor 1/u'. It is, however, more convenient to
reduce the results for the actual lattice to those
of the unit lattice by multiplying by a'.

A diagram indicating the error of the cellular
approximation was constructed as follows: For
various diferent computed values of the energy,
the corresponding correct energies were found;
of these the two lying farthest above and below
the computed energy and the two lying nearest
the computed energy were chosen. These values
were taken as liberal and conservative estimates
of the error in the method, errors greater than
those of the liberal curve or less than those of
the conservative curve being regarded as
unlikely.

The results of the above analysis are shown in
Fig. 3. The energy distribution for some of the
crystals for which calculations have been made
are also shown reduced to the same scale.
Energy values normally occupied are shaded,
and in two cases energy gaps between filled and
empty bands are shown. It is seen that calcula-
tions for the alkali metals, ' for which the first
zone is only partly filled should have quite small

TABLE III. RePresentations for the body-centered lattice
with the wave functions classified according to the symmetry
C4, of the 100 directi on. Energies less than 150 units are in-
cluded.

100

50

Eooo(u) =4~2u2
E 2pp(u) =4+2(u —2)2
E 1p1(u) =4m2 [(u —1)2+1]
E 0 (u) =4 2 (u+1)'+1]
Eo11(u) =4~2(u2+2)

E 211(u) =4~2 [(u —2)'+2]

E 1p1(u) =4~2[(u —1)2+1]
E1p1(u) =4n2 [(u+ 1)2+ 1j

f =$000
P =$200

0-101+0—110+0-10-1+4'—1—10f =$101+$110+$10—1+$1—10

f =$01/+$01—1+$0-1-1+$0—11
0-211+0-21-1+4-2—1-1+/-2-11

r2

f =f-101+/—10-1 f—110+/-1-10
$ =$101+$10-1 i(110 $1—10

CENTER OF ZONE
K=000

EDGE OF ZONE
6=100

Ep11(u) =4m2(u2+2)
E 211(u) =4~2 [(u —2)2+2]

0 =$011+$0——1 1 $01—1 $0-11
4-211+0-2-1-1 f-21-1 f-2-11

(c)
has no representations for energies as low as

those considered here.

Fio. 2. Comparison of cellular and exact solutions for the
body-centered lattice 100 direction. (a), F1 type cellular
solution, . dashed line. All exact solutions, solid lines, with
energies less than 150 units are shown. An energy curve
will originate at point marked "14 point fitting" if con-
tinuity conditions are introduced on cubic faces. (b), F3
type. Cellular solutions, dashed line, exact, solid line.
(c), F& type. Cellular solution, dashed line; exact, solid line.

Eqs. (8) and (10) it is readily apparent that

E 1p1(u) =4~2[(u —1)2+11

E101(u) =4%2[(u+1) +1]

Ep11(u) =4~2(u2+2)

E211(u) —4~2 [(u —2)2+2]

f =f-101+fan—110 f-10-1 $f—1-10
and

1P =$-101 2$-110 f—10-1+$P-1 10

f =$101++'110 $10—1 &$1—10
and

f =$101 2/110 $10—1+4/1—10

f =$011+2/01—1 $0-1—1 ~$0-11
and

f =$011 $/01—1 $0—1-1+&$0-11
1P =$211+1/21—1 P2—1-1 $/2-11

and
f =$211 tf21-1 $2-1-1+2/2-ll

ith a lattice constant of "a" rather than unity 9 Na: Reference 1 and 2. Li: F. Seitz phys. Rev. 47 400
the shape of the curves in figures will be unaltered (1935);J. Millman 47, 286 (1935).
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ALKALI COPPER CALCIUM DIAMOND ALKALI
METAL HALIDE

EDGE OF IST ZONE CENTER OF 2ND ZONE

errors due to the defects of the cellular method.
For copper' and calcium" somewhat larger
values are expected. For diamond" and the
alkali halides" it is debatable whether the
comparison should be made on a basis of lattice
constant or spacing between neighboring atoms.
From considerations of the number of expansion
functions used per unit volume it appears more
reasonable to use the lattice constant and the
energy values are compared accordingly. We
see that the band separations for both diamond
and the alkali-halides are so large that we can
feel certain of their independence from the
particular approximations made. We see, how-

ever, that calculations of excited states, such as
are needed in the theories of photoconductivity,

TABLE IV. Symmetry types for Se cellular solutions.

Wave functions Equation

s, (x/r)P

(yz/«')d, (~yz/r')f

tan' ~u/2+0/w =0

tan' mu/2+&/y =0

CALCULATED ENERGY~

Fir. 3. Estimated error of the cellular method. For an
energy calculated by the cellular method, the actual
energy probably lies between the limits set by the liberal
curves and outside those of the conservative curves. Com-
puted energies for some solids reduced to the same scale
are shown. Shaded regions represent occupied levels.
Approximate band separations are shown for insulators.

optical absorption, and fluorescence, cannot well
be accurate.

It is interesting to compare the energy curves
computed by Slater for Na with those of the
empty lattice test. It is found that the two
nearly coincide. From this we can deduce that
exact solutions for Na will be very much like
plane waves and that the energy discontinuities
will be much smaller than those calculated.
Slater has proposed a physical explanation for
this phenomenon. "He points out that the wave
function in a lattice may be regarded as a solution
of a scattering problem, each ion in the lattice
acting as a scatterer. The less the scattering
power of the ion, the nearer the wave function
will be to a plane wave. Now the Na+ion has
the same electron configuration as neon, and it
is well known that the rare gas atoms have
abnormally small scattering cross sections for
low velocity electrons —Ramsauer effect. Thus
Slater concludes that the remarkably close
approximation to plane waves of the Na wave
functions can be regarded as the consequence of
a Ramsauer eA'ect in the crystal field.

In some cases, other information may indicate
that the results of the cellular method are more
accurate than indicated by Fig. 3. In Cu, for
example, five d bands whose width is appreciably
less than the entire occupied width are calcu-
lated. Since this is to be expected on the basis
of the atomic energy levels, we can have more
confidence in the structure of the d bands than
if they came as unheralded results of the cellular
method.

The energy scale of Fig. 3 should, of course,
be compared in general with band widths rather
than spacings between bands. Thus the energy
scale of the x-ray levels would be enormous in
the figure, however, the breadth of the levels
would be extremely small. For this case then,
where the Bloch method can be used with very
satisfactory accuracy, we should expect the
cellular method to give good results.

r,
(xy/r')d (xz/r')d, (y/r) p, (z/r)p tan' ~u/2+8/~=0

VI. CONCERNING IMPROVEMENTS IN THE

CELLULAR METHQD

~' M. F. Manning and H. M. Krutter, Phys. Rev. 51, 761
(1937)."G. E. Kimball, J. Chem. Phys. 3, 560 (1935); F.
Hund, Physik. Zeits. 30, 888 (1935).

&2 LiF: D. H. Ewing and F. Seitz, Phys, Rev. 50, 760
(1936); NaCl: W. Shockley, Phys. Rev. 50, 754 (1936).

The cellular method of joining was originally
proposed as a simplification of the problem of

'3 Comments by J. C. Slater at the Symposium on the
Structure of Metallic Phases at Cornell University, July 1,
2, 3, 1937.
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constructing continuous lattice functions. Rather
than requiring the function and its derivatives
to be continuous over the entire intercellular
boundaries, continuity of value and normal
derivative at the midpoint only were demanded.
In the body-centered lattice, in fact, only the
eight octahedral faces of the cell were considered,
no conditions being placed upon the six cubic
faces. It is thus natural to seek improvements by
imposing further continuity requirements.

Work on the body-centered lattice including
the six cubic faces in the joining scheme has been
undertaken by Manning and Chodorow. '4 The
six new conditions require the introduction of six
additional surface harmonics. Elementary con-
siderations indicate strongly that these should be
the two d functions, (x' y')—/r', (y' —s')/r', the
three f functions (x' ,'xr') /r', (y—' —,'yr')—/r-',

(s' —5sr')/r' and the one cubically symmetrical

g function. No detailed tests with these new
functions have been carried out, however, the
following considerations show that no great
improvement will result from their use. For
4 =0, we see that a triple solution is still obtained
from old d functions which vanish on the cubic
faces. The new d functions vanish on the octa-
hedral faces and satisfy the boundary condition
8 =0 on the cubic faces. The function 2x' —y' —s'
gives the point marked "14 point fitting" on
the Fig. 2a. The other y' —z' gives a zero width
band of type F2, a missing type for the previous
work. If calculations for other values of k were
carried out these points would become energy
curves; and the old curves, but not the end
points for k=0, would be changed. It is readily
seen that the resultant curves could not approxi-
mate the exact solutions with much improved
accuracy.

For the face-centered lattice it is more natural
to seek improvement by requiring continuity
conditions in tangential derivatives at the mid-

points of the faces. This gives four conditions
for each pair of midpoints:

Value
TQg Nu =0.

Normal derivative

(8/Br) u, +T(8/8r) u„=0. (12)
"M. F. Manning and M. Chodorow, Phys. Rev. 50,

399A (1936).

50

CENTER OF ZONE

V =000
EDGE OF ZONF

111"-222

FIG. 4. Result of requiring continuity of tangential
derivatives at midpoints of intercellular faces for the 111
direction of the face-centered lattice. Solid line, exact
solution; dashed line, old cellular solution; dotted line,
new cellular solution using zonal f function; dashed and
dotted line, new cellular solution using arbitrary f function.

Tangential derivative

(8/88)u, +T(B/88)u„=0.

Tangential derivative

(8/8p) u, +T(8/8 y) u„=0.

(13)

(14)

8 and q are polar coordinates whose axes
may be chosen according to convenience and
T= tan 2m' r where r is the radius vector to the
midpoint of the face. The functions and deriva-
tives are evaluated at the midpoint.

For the 111 direction, it is convenient to let
0=0 for 111 and y=0 for 100. Due to the
symmetry of 111, it is sufficient to satisfy the
boundary conditions for any given symmetry
type only upon 011 and 011 that is cos 8= (-,')'*,

p=x and 8=m/2, y=m. /2. For I'i which is the
simplest symmetry type u„, Bu, /88, Bu, /Bq and
T vanish on 011, so that all but the normal
derivative conditions are fulfilled trivially. On
011 the derivatives in respect to y vanish but
those in respect to tsar do not. Thus only one new
condition arises. In order to satisfy it we must in-
troduce one additional function of type F&. There
are two such f-functions: (cos~ 8 —3 cos 8/5)f
and sin' 8 cos 3'. It is most natural to choose
the first function since it is the one which occurs
in the expansion of a plane wave in the 111
direction. It is readily verified that both func-
tions have the same value for (BP/Br)/P=y at
the joining point and values of —21X2& and
+3X2l respectively for y' = (8$/88)/P.
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The determinantal equation for the continuity
condition may be set up in the usual way and
reduced to"

28(1+1/21'') + (io —~)2 && 2&/p'
tan' 7ru = —— . (15)

(~+y /2&q ') (1+5/o)

This is to be compared with the equation

tan' iru= 28/—ir(8/o+1), (16)

which is obtained in the absence of tangential
boundary conditions. Due to smallness 1/q',
m. /&p' and

pj's'

for energies in the first zone, the
new expression is equivalent to the old. In the
second zone, however, the results, shown in
Fig. 4, using the first f functio'n (p = —21X2*)
are actually worse than the old. From a suitable
linear combination of the two f functions any
desired value of q' can be obtained. The arbi-
trarily chosen value 10.8 gives the curve which
fits the correct parabola fairly well.

VI I. CQNcLUsIoNs

The results of the cellular method of finding
wave functions are probably quite good for the
occupied states of the metals so far calculated.

"The reader is referred to references 2, 5 and 6 for the
general method of setting up the determinantal equations
of the cellular method.

For excited states, however, very large errors
are to be expected. This cannot be overcome by
such simple expedients as adding a few more
joining conditions to those already in effect.
It appears that the number of new conditions
necessary to take care of higher energies would
make the labor of calculation prohibitively
di%cult. However, a new method of attack has
been proposed by Slater and it is to be hoped
that it will circumvent these difficulties.

Finally it should be remarked that this work
has been concerned with only one aspect of the
electronic theory of solids. Although accurate
solutions of the wave equation in the crystal
would be very valuable they suppose that each
electron sees a static potential field in which the
influence of the other electrons is represented by
an average. Actually relative positions of the
electrons, correlation effects, must be considered
in order to explain many properties, for example
the binding energy of the alkali metals" and the
phenomenon of excitation in insulators. "

The writer would like to express his gratitude
to Professor Slater, under whose direction work
on this problem was commenced, and whose
continued interest has been instr'umental in its
completion.

"E.Wigner, Phys. Rev. 46, 1002 (1934).
'7 J. C. Slater and W. Shockley, Phys. Rev. 50, 705

(&936).

OCTOBER 15, 1937 P H YS I CAL REVI EW VOLUM E 52

Theory of the Use of More Than Two Successive X-Ray Crystal Reflections to
Obtain Increased Resolving Power

JEssE W. M. DUMOND

California Institute of Technology, Pasadena, California

(Received April 23, 1937)

If an x-ray beam is selectively reflected from more than two crystal surfaces in succession it
is shown in this paper by a simple method of graphical analysis that it should be possible to
obtain resolving power considerably superior to the best obtainable with present two crystal
x-ray spectrometers. This extension and generalization of the two crystal spectrometer principle
in one of its forms (the three crystal spectrometer) should permit the study of the asymmetric
diffraction patterns predicted by the theory of Prins but heretofore considered to be completely
beyond experimental investigation. In another form (the four crystal spectrometer) a distinct
improvement in spectral resolving power is anticipated. The new method of graphical analysis
invented for the purpose of discussing these more complicated cases of polycrystalline x-ray
reflection is conspicuously useful and clear as a help to understanding the two crystal spec-
trometer also. An experimental test of these new methods is now in progress.


