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A variational method employing orthogonal (Hermite)
functions in linear combination is used for calculating the
binding energies of H' and He4, with the following choice of
nuclear corlstants:

A =35.60 Mev a=2.25&&10 "cm; g=0.20,

and an error function potential, Two types of coordinates
are used for H3; (1) normal, (2) individual particle coordi-
nates. Their advantages and disadvantages are discussed.
With the use of a certain limited set of functions of normal
coordinates the energy has been depressed from —6.21 Mev
in zeroth approximation to —7.21 Mev, while a suitable set

of functions involving only individual particle coordinates
reduced it from —6.16 Mev to —6.84 Mev. The second
Schrodinger perturbation is less effective than the latter
scheme by 0.22 Mev. Functions of different symmetry,
called into play by the Heisenberg operators, are found to
contribute 0.07 Mev on the basis of p. modified variation
method. He4 has been treated only with the use of indi-
vidual particle coordinates (Hartree method). A similar

group of functions lowers the energy from —24.81 Mev in
zeroth approximation to —25.85 Mev, which is better than
the effect of Schrodinger's perturbation theory by 0.25 Mev.
General estimates of convergence limits are given.

'HE theory of nuclear forces appears to have
reached a stage in which it allows most of

the details in the interaction of nuclear particles
to be understood in a reasonably quantitative
manner, so that there can be but little doubt as
to its essential correctness. The chief obstacle in

the way of exact formulations lies in the mathe-
matical diAiculties surrounding the quantum-
mechanical many-body prcblem. These obstacles
are bound to become more serious as theories
become more refined. It is in an attempt at
understanding the limitations of the various
methods designed to treat the three- and four-
body problems, if not at the partial removal of
these limitations, that &e present calculations
w'ere undertaken.

The list of papers which deal with applications
of the variational method to the problem at
hand, starting with the publications of Wigner'
and of Feenberg, ' is already long. In the papers
just mentioned an elegant and simple scheme for
estimating the energy of the lowest state of
many-body systems, known as the "equivalent
two-body method, " has been designed, a scheme
which has proved very useful in the evaluation
of probably universal nuclear constants. ' It is
clearly desirable to provide as refined as possible
a variational basis for the use of the equivalent
two-body method, an objective which has

inspired the work to be described. We feel that
the results are such as to strengthen confidence
in the abbreviated two-body procedure.

The most adequate and extensive variational
calculations have been applied to the three-body
problem by Present, 4 and by Rarita and Present. '
Their method, while probably superior to the one
here developed in several points —particularly
the rapidity of convergence —has the serious
disadvantage of being very difficult to apply to
more than three particles. It seems important,
how'ever, to have a method which permits appli-
cation without change in principle to any
number of particles, and it is perhaps a further
point in favor of the present line of attack that
it starts with Feenberg's' elementary procedure
as a first approximation. Rarita and Present'
reach the conclusion that the values of nuclear
parameters which will yield correctly the mass
defect of H', while satisfying experimental data
of neutron-proton scattering and the mass defect
of H', give too large a binding energy for He4.

This result stimulates reinvestigation by another
method. In our work we find, employing the
usual values of nuclear parameters, an apparent
convergence of the energy of H' to —7.21 Mev,
1 Mev above the experimental value. If this
value were near the true convergence limit, the
present results would support the conclusions of

' E. Wigner, Phys. Rev. 43, 252 (1933).
2 E. Feenberg, Phys. Rev. 47, 850 (1935). 4 R. D. Present, Phys. Rev. 50, 635 (1936).
3 E. Feenberg and J. K. Knipp, Phys. Rev. 48, 906 ~ W. Rarita and R. D. Present, Phys. Rev. 51, 788

(1935). (1937).
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Rarita and Present and require considerable
revision of the present theories. On the other
hand we know, from an application of the
methods of this paper to H', that there occurs a
similar semblance of convergence toward an
energy value which is not at all near the true
energy, if an analogous, limited set of functions
is used. Because of this circumstance we suggest
that there may be no necessity for seriously ques-
tioning the usual values of nuclear parameters.

Schrodinger perturbation theory has been
applied to light nuclei by Inglis. ' Nothing is
known with certainty about the convergence of
this method for nuclei, and the best way to test
it is to make a variational calculation with the
same functions as those used in the perturbation
scheme. This was done for He4, and it was found
that the two methods do not differ very much in
their results, the present method being slightly
better. Such a coincidence is not trivial or in

general predictable. While it might be expected
in cases where the variation functions approx-
imate the correct ones reasonably well, so that
the unperturbed eigenvalues are nearly equal to
the diagonal elements of the correct operator, it
is somewhat of an accident in the nuclear prob-
lem; for here the oscillator eigenvalues employed
by Inglis are often quite different from the cor-
responding H;; which enter in the variational
calculation, sometimes by 100 percent. The coin-
cidence is therefore not without interest. 'For H'
the variation method also gives, with the use
of the same functions, a slightly lower energy
than the perturbation theory, as will be shown.

I. OUTLINE oF METHQD

The simple variation functions of the Gauss
type in relative coordinates, used by Feenberg'
and by Bethe and Bacher' represent the lowest
member of a complete set of functions, the
Hermite orthogonal functions. It is therefore
natural to inquire what the effect of an inclusion
of the higher members of this set will be. Since
all these functions have the wrong asymptotic
behavior one might. expect the convergence to
the energy limit to be none too rapid, and a

' D. R. Inglis, Phys. Rev. 51, 531 (1937).
' H. A. Bethe and R. F. Bat=her, Rev. Mod. Phys. 8, 82

(1936).

special investigation of this point is necessary.
This we have carried out by applying the method
to the case of the deuteron where the correct
limit is known. The results, together with
certain findings regarding the use of different
types of coordinates and their adequacy for
nuclear calculations, will be published in a sub-
sequent paper.

Having once chosen n orthogonal and normal
functions in a suitable set of coordinates, and
having ascertained the correct form of the
Hamiltonian operator H in these coordinates,
the problem of calculating the lowest energy
reduces to solving the determinantal equation

~

IX;;—8;;Z
~

=0 for P-. This process is simplified
if we are interested only in the lowest of the n
roots, which, for the nuclear problem, is widely
separated from the next higher, one. For we may
then write for B the difference Hoo —hB and
introduce an estimated value of AZ in all diagonal
elements except the one involving Hoo, which
becomes AE. We write this element in the lower
right-hand corner of the determinant and reduce
the latter numerically by adding the first row
with a suitable factor to all other rows so as to
put zeros in the first column. Every single
application of this process adds a negative
increment to AP. , and after an (e—1)-fold appli-
cation the equation reads AB —t. =0. If e is not
sufficiently close to the original estimate the
reduction is repeated with the new value. In the
cases we have chosen the process is quite insen-
sitive and highly stable with respect to the
original choice of AE, and it is not very time
consuming, even with as many as 20 linear vari-
ation functions. Most of the work is involved in
the calculation of the elements H;;. This, how-

ever, was found somewhat laborious and has
forced us to use a single fixed form for the inter-
action between nuclear particles, symmetric in
all of them, vis.

U,;= —Ae "'i'"L(1 g)P +gP ~j (1)— ""
where the symbols have the usual significance. '
The parameters were chosen so as to make the
binding energy of H' equal to 2.15 Mev, to give
very approximately the experimental binding
energies of H', He4 with the use of the equivalent
two-body method, and to be consistent with
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scattering data, ' as folic ws:

A =35.60 Mev. , a=2.25)&10 "cm, g=0.20.

The Coulomb energy, which according to pre-
vious calculations aRects the total energy but
slightly, will be omitted from the variational
calculation on He4 for convenience and added in
afterwards. We shall also neglect for the present
the effect upon the lowest state of functions
unsymmetrical in like particles, which should
properly be included because of the term P;;~
in (1); their effect is also known to be small. '
(Cf. Section II, C.) If thus we limit ourselves to
functions which are completely symmetrical in
like particles, assumption (1) leads to the follow-
ing form" for the Hamiltonian operator, written
in central, individual particle coordinates:

H= P ~ 8P~ exp [——(r„—r;)'/a']P;;
23II '

—C P2 exp [—(r; —r;)'/a']P;; (2)
i7

where Z~ is extended over pairs of unlike, Z2
over pairs of like particles. 8 = (1—2'g)A =32.10
Mev; C= (1—2g)A = 21.77 Mev; P;; simply
permutes the position coordinates of the ith and
jth particles.

As to the choice of variation functions, the
general rule is that they should at once be com-
bined so as to possess the same symmetry in the
various particles as does (2). This reduces the
number of independent functions and hence the
labor in reducing the determinant. Furthermore
it is usually unnecessary to include functions
which do not combine directly with the one cor-
responding to the lowest energy, for their con-
tribution was found in most cases to be of
secondary magnitude. Elimination of a function
may sometimes be made by trial and error, using
the function alone in combination w'ith the
"lowest" one; but this procedure is not always
safe because a function, while feeble alone, may
gain power in collaboration with others. Finally,
as one w'ould gather from the symmetry of (2)
with respect to the three Cartesian axes, the best

' G. Breit, E. U. Condon, and R. D. Present, Phys. Rev.
50, 825 (1936); M. A. Tuve, N. P. Heidenburg, and L. R.
Hafstad, Phys. Rev, 50, 806 (1936).' G. Breit and E. Feenberg, Phys. Rev. 50, 850 (1936);
R. D. Present, Phys. Rev. 50, 870 (1936)."Cf. for instance Bethe and Bacher, reference 7.

function for the lowest states of H' and He4,
neither of which has orbital space degeneracy, is
one which is symmetrized in x, y, and s. Hence
this procedure is carried out on all trial functions.

All the present work involves simple harmonic
oscillator functions; it is related in this respect
to the investigations of Houston, " and Heisen-
berg. " We shall use the following notation:
Single Hermite functions will be denoted by

q (x) =N e *"'H„(x), (3)

C'imn=(1/6) (1+&im+&in+~mn+2&im&in&mn) '

X (&pl mn+plnm+ +min+ pmnl+ pnlm+ pnml) ~ (3)

Eq. (5) is merely a compact way of writing the
result of symmetrizing a function like (4) with
the correct normalizing factor.

II. VARIATIQN METHQD APPLIED To H

A. Use of relative coordinates

The Hamiltonian for the H' problem reads
(the index 1 here refers to the proton)

I+= —(&'/2~) (V V+V22+ V'3')

—8 exp [—r» /a ]P»
—8 exp [—r&32/a']P»

—C exp [—r»'/a']P23

The ' transformation to relative and center of
mass coordinates,

$, = (1/2) l(2x& —x, —x3), $2 = (1/2)1(x, —x3) ~

X= (1/3)1(xg+x2+x3) „

with similar relations between p and y, p and s,
changes the form of FI into

lj'= —($~/2~) (q~+3q 2+q22)

8exp [—(yg —y, ) '/2a'—]P„
8exp [—(p&+ y2)'/2a')—P$3

—C exp [—2p2'/a ]P23,
"W. V. Houston, Phys. Rev. 47, 942 (1935)."W. Heisenberg, Zeits. f. Physik 90, 473 (1935).

where X„ is a normalizing factor and H„a
Hermite polynomial. We define further

~i-.(~) = v i(x') v -(y') v -(s )
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where p'=P+go+io. It allows us to separate
off the motion of the center of mass, V', but we
pay for this advantage by having to use more
complicated P-operators. They become linear
substitutions:

The zero-order function of the set (7) is, if
written explicitly,

po ——exp [—ql pl'/2 —gopo'/2 j
=exp L

—ql(r12'+rlo'+2rlo r23)/4 —qor23'/47.

P12$1 2 ( $1+3[2) P12$2 2 ($1+E2)

P13$1 2 ($1+3(2) P13$2 =
2 ($1 $2)

P23$1 = $1 P23h $2 (6)

with similar relations for q and f. This com-
plication, of course, accompanies the transition
from individual particle coordinates to any new
set which corresponds to the correct number of
degrees of freedom. We note that the function

'@no&(gl $1) 'pro (gl gl) 'pnr&(gl pl) oonr (g2 f2)

X pn& (g2 lto) Oonr (g2 p2) ( )

satisfies the equation

(&'/2~) I
—(3&1'+&2') + (3ql'pl'+ go'po') I |i =E0

and has the eigenvalue

E(nol nro) = (A'/3f) [(nol+nol+nrl+3/2) 3ql

+ (n32+n32+nr2+3/2)g2]

If, therefore, we use functions of the type (7)
the kinetic energy is easily calculated from the
relation

—(I4'/2M) (3g1'+&2') p =E(n31. ~ ~ nr 2) p

+q p2 )&

In setting up variation functions we have at our
disposal not only the coefficients with which
functions (7) enter into linear combination, but
also the parameters q~ and q2. These must be
fixed before the coefficients can be determined.
The plausible thing to do in this connection is to
choose gI and g2 so that the "lowest" function
minimizes the energy, as was also done by Inglis. '
We have checked this method with some care for
H' and found that the final energy varies with
q in nearly the same manner as Hpp over a sur-
prisingly large range. "

It differs from the one employed by Feenberg'
and by Bethe and Bacher' by having the product
term in the exponent. As far as the minimization
of H is concerned, however, this term is indif-
ferent; for while the expression for J'$0IXI/hodr,
in terms of q~ and q2 looks different, the sub-
stitutions

0=4qo/(9ql+qo) ~=(9ql+qo)~'/8

reduce it to the same form as that given by
Bethe and Bacher, Eq. (118).The minimum Eo
is therefore the same except for the slight differ-
ence in the parameters. Its value is —6.21 Mev,
it occurs for g~

——0.1263, q2
——0.3394.

Calculations were carried out chieHy with the
following functions:

Po = 4'ooo(1)4'000(2), $3=4'ooo(1)4'4oo(2),

$2.—4 110(1)4110(2), $3 =4'400(1)4'ooo(2),

|t'2 4 200(1)4000(2) y tl 0 4 200(1)4400(2)

ti'3 4000(1)4200(2) $10 4400(1)4200(2) (9)

f4 4 200(1)4'2oo(2), 4'll =4 220(1)4 22o(2),

f5 —4220(1)4'ooo(2), $12=4'4oo(1)4'4oo(2).

A = 4'ooo(1) 4'220(2),

The effect of the functions having quantum
numbers (112)(110); (310)(110); (220) (200);
(400)(220) has also been considered and found
to be small.

If i and j refer to two functions of this set, and
q~ and g2 are given the above values, the matrix
elements are, in view of (8),"
H;; =E,f'1;; (S;;+T;;+ II;,+7.7—70(gl pl');;

+6 938(qopo')* ) (1o)

(qlpl'), ; and (qop2')„; are pure numbers, at once
expressible in terms of oscillator matrix elements:

(&')„„=n+-'„(P)'„,.+2 ——
—2,L(n+1) (n+2) )&.

"Energies are expressed throughout in Mev, and the
unit of length is 10 "cm, as in reference 7.
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Furthermore,

S,;=B)IP; exp [—(g~ —p2)'/2a']P»P;dr,

T;;=B
J P; exp [—(p, +p2)'/2a')P gag;d r,

U;, = C~t P; exp [—2p2'/a']P„P:, dr.

S;; splits up into sums of terms, each of which is
a product of three integrals of the type

Xexp [(—g, +I/2c') $,' —(g2+ I/2a') $2'

+$~ $2/a'/II„(g~ lP gg pf)H. (gm'*P12$2) d )id )2.

The algebraic expressions for the s integrals are
lengthy and will not be given. As a consequence of
the symmetry of the Hamiltonian the T;; terms
are related to the S;; and need not be calculated
separately. T differs from Sonly by an application
of P23 to the factor exp [

—(y& —y,)'/2a'g in the
integrand. But P» may be applied to the whole
integrand without changing the value of the
integral. P», however, affects only the variable
p2, changing its sign. Hence the passage from S
to T changes the sign of the integral if the
integrand is odd in p2, leaves it unchanged if it
is even. We see, therefore, that

T;;=aS;;,
the upper sign holding when f; and f; are both
even or both odd in (2. U;; is easier to calculate
because P~3 causes no mixing of the coordinates.
It is zero unless P; and P; contain the same
function of yI.

The result of the variational calculations is
best seen from Table I. The functions are labeled
in accordance with (9). The functions indicated
below that list have also been considered and
found to lower the energy by as much as 0.08
Mev if combined with certain others, but if they
are included together with Po —P&2 their effect is
inappreciable. It is clear that the chief contribu-
tion comes from the quadruply excited states, a
result which agrees with the calculations of
Inglis, using perturbation theory.

FUNCTIONS INCLUDED

fo
Po, QI
4o —fs
4o —fs, Ps
4'o, P4 —4's

4o —$9
Po —QI.2

—F(Mev)

6.214
6.243
6.244
6.39
7.11
7.21
7.21

'4 The results will be published shortly.
's D. Blochinzew, Physik. Zeits. Sowjetunion 8, 270

(1935); H. Margenau, Phys. Rev. 50, 342 (1936); E.
Feenberg, Phys. Rev. 50, 674 t'1936).

It has seemed too laborious a task to introduce
all the octuply excited functions. What, then,
may we say about convergence at the present
stage? There is certainly a semblance of con-
vergence toward the value —7.21 Mev. Never-
theless experience with the deuteron problem'4
has taught us that a similar group of functions,
employed in the same way, leaves about half a
megavolt of binding energy unaccounted for, and
that, when it is difficult to get beyond a certain
energy value, that value may not be the limit.
On the other hand the variation functions for H'
are more concentrated than those for H', which
implies that the present method will reach the
limit somewhat faster. Taking account of these
considerations and realizing that the error for H'
with similar functions of the same degree of con-
centration is probably somewhat larger than for
H', we believe the true limit of the present
scheme to lie at about —7.7 Mev. The true
theoretical binding energy with the interaction
parameters here chosen would be slightly below
this value since the mixing effect' due to Heisen-
berg forces and relativity corrections" have here
been neglected. The equivalent two-body method
gives approximately the experimental value
—8.3 Mev with the present parameters.

B. Use of individual particle coordinates

When applied to more particles, the method
outlined so far becomes unwieldy because of the
complicated nature of the permutation operators.
Recourse is therefore often had to functions of
individual particle coordinates in analogy with
Hartree's atomic method. It seemed of interest
to investigate in connection with the simple
example of H' the relative merits of the two
procedures.

TABLE I. Variational energies of H' for diferent
combinations of functions in normal coordinates.
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Hartree functions. describing the state of a
nucleus include the motion of the center of mass,
and this must be subtracted operationally from
the Hamiltonian. The term to be subtracted
from the usual H is the kinetic energy of the
center of mass which, for X particles all of the
same mass 3/I, has the form

—(h2/2¹lE) (Q'7,)'

For H' we have

B= —(l3'/3M) [PV —+37; rr;)
t)g

—& exp [—r12 /43 ]+12 & exp [—rlo /43 ]+13
—C exp [—r 232/a 2]P 23. (12)

Thus we have left as the significant Hamiltonian We have employed the following 21 normalized
to be used in the variational problem' variation functions:

@000(1)4000(2) 4000(3) = Po

(1/2) '4000(1) [@200(2)4&000(3)+)
Boo(1)$000(2) 4000(3)
@000(1)tt'100(2) 4100(3)

(1/2) '4 100(1)[0'000(2) 0'100(3)+)
(1/2) '@000(1)[Aoo(2) @000(3)+]

$400(1)oooo(2) 4000(3)

$000(1)4200(2) 4200(3) 'tl'200(1) Ct 1oo(2) 4 1oo(3)

(1/2)'Aoo(1) [4200(2) 4 000(3)+] (1/2)'4100(1)[&oo(2)41oo(3)+)
(1/2) -'paoo(1) [4100(2)@300(3)+] (1/2) $000(1)[@220(2)@000 (3)+]
(1/2) '4300(1) [4'100(2)4'000(3)+] 4220(1) 0 aoo(2) 0 ooo(3)

(1/2)'*@100(1)[4300(2)4000(3)+] (1/2) '4000(1) [4120(2)Aoo(3) +)
@000(1)4110(2)@110(3) (1/2)14100(1)[4000(2)@120(3)+]

(1/2) l@110(1)[$110(2)@000(3)+] (1/2) &@12o(1)[@000(2)@100(3)+)

(13)

A plus sign indicates that a function similar to
the foregoing one, but with particles 2 and 3
interchanged, has been added. (13) represents

-oscillator eigenfunctions for a potential energy

(h'/2M) g'(r '+ r '+ r ')

that is, the oscillator "stiffness" is taken to be
equal for all particles. We are thus at once dis-
posing of possible variation pa'rameters whose
retention would, however, give only a very
slight improvement. q appears of course in the
functions (13). To allow comparison w'ith the
work of Inglis' we introduce the dimensionless
quantity 0 =—ga'.

As before, we fix o by minimizing Hoo. The
minimum occurs at 0-=1.83 and has the value
—6.16 Mev. This compares not unfavorably with
the value —6.21 .Mev obtained in the previous
section for Hoo with the use of two parameters.
Expressing again the energy in Mev and dis-
tances in units of 10 " cm, we find in this
instance

&' =2/3E*~*"—4 945/(3) [(r.p') ';

E;= (h /M)g(9/2+En„) = 14.83(9/2+En;), where

the n; are the quantum numbers of state i. The
matrix elements are written so that the terms
in parentheses are pure numbers. The expression

( P V„V /ai);; at once decomposes into products
num

of two integrals of the form

d (s+ li &

O. (~)—204(~)«= )
—

I 64, .+1.
dx E2)

Since the functions chosen are symmetrical in

particles 2 and 3, the integrals over the tw'o terms
of (12) involving 8 are equal, and 823 may be
ignored. This makes the integrations very easy.
All 5;; and T;; reduce to products of integrals

(o+2i ~

f34, =
i i ~2(h) W(6)
E

Xexp I
—[p1'+ &2'+ (t1—b) '/~] I

X~ ($1)~ ($2)d 4d b,

many of which have already been given by
Inglis. These f's are polynomials in the quantity

24 = 1/(a+2).

The coefficients of the various powers of I for
the integrals needed in this work are tabulated
in Table II, where no entry indicates 3 zero.
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After calculation of the H;;, the secular deter-
minant, which now has 21 rows and columns,
was reduced as explained before. The effect of
simpler combinations among the functions was
not studied in as much detail as in the previous
section, the results being somewhat parallel to
that case. The 20 functions here considered in
addition to Pp lower the energy from —6.16
Mev to —6.84 Mev. It is seen that the Hartree
method is distinctly poorer than the one em-
ployed in II, A.

If the same functions are used with the
Schrodinger perturbation method it is found
that the second perturbation depresses the
energy from —6.16 Mev to —6.62 Mev.

C. Effect of Heisenberg operators

Although previous calculations' show that the
depressing effect of an antisymmetrical function
in the position coordinates of the two neutrons
upon the energy of the normal state is small, we
have made a careful study of this matter for the
case of H', using what is essentially a variation
method.

'Ke wish to satisfy the equation

Hpau+Xbv=Eau (a)
H,bv+Xau =Ebv (b)

(16)

where Hp is the Hamiltonian (11) which was
previously used,

X= (3 /2)g(&13+13 +12+12)&

J;,= —A exp [—r;,'/ a]

and

H( = T—Jpp+(1 —3g/2)(JipPip+ Zip&ip). (17)

Let us put

E& ——
~I vHivdr.

in this section), and the U's are defined in Eq.
(1). If we let

f=auSP+bvS (15)

where S' and S' are the spin functions used by
Breit and Feenberg, ' I, is symmetrical and v

antisymmetrical in particles 2 and 3, and a and b

are normalizing factors, "then the orthogonality
of S' and S' will cause (14) to reduce to two
equations:

in which'4

IX= T+ Ug2+ Ug3+ U23.

We have already found an approximation to

Ep = )tuHpudr.

T denotes the kinetic energy as it appears ex-
plicitly in (11) (we shall use "Hartree functions" "u and v are assumed normalized.

TABLE II. Numerical coefficients occurring in f integrals (individual particle coordinates).

foo, oo

fll, po

flo, lo
fso, oo

f11, 11

2»f21, lo
2»f21, ol

f20, 20

f22, 00

fsl, oo

(2/3)»fso, ~

f4o, oo

f21, 21

f22, 11
2»f22, 2o

(2/3)»fsl, 11
(1/3)»fs2, lo
(1/3) f32, pl

(1/3)»fsl, sp

f33, 00

fso, so

1—1
-(1/2)»—2

2

—2

1 —3
2—1—1

1 —3

3—3
3
3/2
3/2—(3/2)'
1
(3/8)'
15/2—6
6
4
3/2—1—3

9/2

Ss

—15/2
15/2—15/2—5—5/2
5/2
5/2
5/2—5/2

u4

(2/3)»f41 lp

(2/3)»f41, Ol

(1/3)»f42, oo

(1/3)»f4o, 2o

f22, 22.

(2/3)»fs2, 21

f33, 11

fsl, sl
(2/3)»f42, 2o

f43, lo
f41, 30

f44, oo

f4o, 4o

1 u

—1
1 —4

2

1 —4 9 —10

—2 5/2
1/2 —5/2—5/4

2 —5/4
15 —30—9 20

9/2 —15
1 —4 27/2 —25

9/2 —15
5

2 —9 15

105/4—35/2
35/2
35/2
105/8
35/4—35/4
35/8
35/8



NORMAL STATES OF NUCLEAR SYSTEMS

If now we multiply 16 (a) and (b) by u and v,

respectively, and integrate, we obtain
3 ass ( o'

2 3/Ia' (a'+4)

E=Es+ (b/a)
JfuXvd r (a)

E = Es+ (a/b) )fvXudr (b)

(19)

o"(o '+4)
(o'+2)

(o '+1)'/'(o'+3)" i
/2

0
+3(1-g)I „

E o"+6o'+ 6)
The two integrals appearing here are equal and
will be denoted by

s

x
I I A -(1—:g)

I

E o'+3& (o.'+ 6)
F(o'),

s = JfuXvdr. (20) (o o~) s/4

s=($)'AaI ——
I

F(o)/F'(o'),
Eo u)

b/a may be eliminated from 19 (a) and (b), so
that the result will be

E=Es+-', IEs —Eoa [(Es—E//)s+4s']*' } . (21)

To make this as small as possible the negative
sign must be chosen. For small s this equation
reduces to

E=E// s'/(E, E—o), —

which is essentially the result of Breit and
Feenberg in a form in which it shows more
clearly the meaning of E&.

Both Ej and s depend upon the choice of the
antisymmetrical function v. The procedure now
is to select a somewhat flexible v, to calculate BI
and s according to (18) and (20), and to find the
lowest value of (21). Two types of function were
tried. The first was

v = (1/2) '*@sos(1)[psoo(2) gsss(3) —psss(2) @s//o(3) g

with a variable stiffness q in the oscillator func-
tions. This gave somewhat poorer results than
the second choice

v =c(jss —Jis) fo(o'). (22)

( o o i 'f k

Eo'+4) Eo'+1 o'+3)
=2 'A 'F(o') '. (22')

With the use of (22), lengthy calculation gives

Po(o ) is the function appearing in the list (13),
but with a variable parameter o' which need not
be the same as o.. The normalizing constant turns
out to be

where o = —',(o+o') and F is defined by 22a.

E& is in the range considered very nearly a
linear function of o', rising from 10.8 Mev at
o'=0 to 65.6 Mev at a'= 2. The best value of
Eo —8 comes at o'=1.10, where By =42 Mev and
s='1.85; it is 0.070 Mev, an amount which is
rather insignificant in view of the inadequacies
of most variation methods.

According to (19), (b/a)'= [(Es—E)/s]'. This,
with our values, is 1.4)&10 '. It represents the
probability that in the normal state of H' the
neutron spins shall be parallel.

III. VARIATIQN METHQD APPLIED To HE

An application of the method described in
II A to the alpha-particle entails considerable
labor and has not been carried out at present.
It has seemed preferable first to employ the
Hartree method with the same class of functions
as that used in Section II B. We know that, for
H', this procedure misses 1/3 Mev of what the
use of relative coordinates would yield, and the
latter is probably in error by +1/2 Mev. The
true convergence limit for He4 is therefore
expected to be probably about 1 Mev below the
value obtained with the use of the present
scheme. "

"The value of 0 for He4 is 2.6 as against 1,83 for H'.
This means that the wave function is more strongly con-
centrated about the origin and that the wrong asymptotic
behavior of the Hermite functions is less serious. Hence
the convergence is more rapid for He4 than for H' (and
for H' than for H2). On the other hand, the absolute error
in He4, for equal rates of convergence, is greater than for
H' because of the greater number of Eppes Egj„ terms in
the Hamiltonian.
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Pp ——E,
Pl P127

P2 P34)
P3 P12P34)

P4 —P13P24)
P5 P13P24P122
P6 ——P13P24P34,
P7 —P 1 3P24P 12P34 ~

We choose functions of the same symmetry. If
this is done explicitly with the use of the P
symbols in the above table, the calculation of the
matrix elements is greatly facilitated. We have
used the following functions

4000(1)$000(2) 4000(~) 4000 (4)
2 (PO+Pl+P4+P7) $2004t7000$000$000

(1/2) (P0+P4) @1 @001 $00040&0000
2(P0+Pl+P2+P3) 4100@000$100@000

2 (P0+Pl+P4+P7) 4400400040004000

2(PO+Pl+P4+P7) 4220@0004'000/000

2(PO+Pl+P4+P7) @300$10047000$000
7

(1/8) P P44'3007t700041004t7000
i=p

(1/2)1(PO+P4) 4200A00@0004000

2 (Po+Pl+P2+P3) @200@000$200@000

2 (P0+Pl+P4+P7) 4'2104'10040004000

(1/8) ~ P P4$210$00041004000
i=0

(1/2) (P0+P4) 4'1104'1104'0004'000

2 (Po+Pl +P2+P3) pl 10@000$110/000.

The Hamiltonian operator (11) has the form

II= P '/~) ( l E~"—+ l E~' ~;) ~Z—
2 2) g

Xexpt r; —/73'jP;; C+—2 exp [ r; —/73']P;;.

If we choose 1,2 and 3,4 to be the pairs of like
particles, H is invariant with respect to the
following group of permutations

Except in $0, the arg™ents of the functions
have not been indicated explicitly; they are
understood to run consecutively. In computing
the H;.; we make use of the invariance of H with
respect to all P s, and look up products of the
P'i in a suitably constructed group table. This
allows identical terms in every H;; to be recog-
nized at once and aids in collecting them.

The potential energy terms corresponding to
the previous 5;;, T;;, U;; are again separable into
products of f integrals which were listed in
Table II ~ Hpp has its minimum value of —25.63
Mev for 0 = 2.60. The Coulomb energy raises
this to —24.81 Mev. (This result is very sensitive
to the choice of force parameters, and since these
were chosen somewhat arbitrarily in this work,
we do not wish to emphasize it too strongly. )
The functions included in the list above con-
tribute —1 .04 Mev. This amount agrees almost
exactly with that obtained by Inglis if only the
second order perturbation, with a similar set of
functions, is employed. The third order raises
this value again by 0.25 1Vlev, so that the vari-
ation method, for the case of He, is more effective
than perturbation theory by this amount.

We hope to return to the He' problem and to
treat it in a manner similar to that of Section
II A. For the present it seems well to be cautious
in estimating the convergence limit. We feel, for
reasons already mentioned, that the binding

energy may lie as much as 1 Mev below the
limit we have obtained. This estimate would

place it at 27 Mev, not far from the experimental
value, 2 7.6 Mev.


