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The accuracy with which binding energies can be computed using the statistical approxima-
tion is shown to depend strongly on the symmetry character of the wave function when the
forces are of the short range saturation type met with in nuclear theory. Recent calculations on
the relation between the neutron excess in heavy nuclei and the saturation properties of nuclear
forces are reinterpreted in the light of this result.

HE Thomas-Fermi statistical method has

been applied to fix upper bounds on the
magnitude of nuclear forces! and to obtain
necessary conditions for the occurrence of satura-
tion in heavy nuclei.? These applications are
legitimate because the method consists essen-
tially in the calculation of an expectation value
of the Hamiltonian operator with an especially
simple wave function. Since an expectation value
cannot lie below the true normal state eigen-
value, all forms of the interaction operator which
yield too much binding energy in the statistical
approximation must be rejected.

Recently the statistical approximation has
been used to study the relation between the
neutron excess, 4 —2Z, in heavy nuclei and the
exchange properties of the nuclear forces.? In
the statistical approximation a nucleus can be
characterized qualitatively by the statement
that it consists of a collection of ‘4" groups and
#2" groups.* Two neutrons and two protons in
one space orbit constitute a ‘‘4’’ group while
two neutrons with opposed spins in a single
space orbit form a ‘2"’ group. The wave function
has a definite symmetry character® described by
the partition quantum number (4+4+---44
+242+-.:2) with 3Z “fours’” and (4 —22)
“twos.”” (Actually the symmetry character has
little significance for heavy nuclei. The mixing
effect of the spin exchange and Coulomb forces
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produces a state which is a linear combination
of many different partitions.) For a fixed 4, the
value of A —2Z which makes the energy as low
as possible is determined by the conflict between
the Coulomb interactions tending to increase the
neutron excess and the saturation properties of
the nuclear forces which tend to associate
stability with a high degree of symmetry.
Clearly the question of how the degree of accu-
racy of the statistical approximation depends on
the symmetry character of the wave function
must be answered before much significance can
be attached to calculations of neutron excess in
heavy nuclei.

To examine this question consider a general-
ized nuclear system with the Hamiltonian
operator® :

~1T8= T Py 41 (1)

=<7

subject to the condition that no more than #
particles can occupy the same orbit. The physical
possibilities include #=2 and »=4. Under these
conditions the normal state binding energy
plotted against the total mass will show an ‘“n”
group structure which gradually merges into a
straight line for heavy nuclei. It is reasonable to
suppose that the total binding energy of a col-
lection of “n”" groups will be somewhat greater
than that of the separated # particle systems.

The binding energy of a single % particle
system can be computed approximately by using
the Gaussian wave function

Ya=Crexp[— (V/Z)qu 1 (2)

<7
The expectation value of the energy is given by

6 P;; is the Majorana exchange operator; the spin ex-
change operator Q;; appears in Eq. (12).
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en=3n(n—1)v/4
——%n(n-—l)(ﬁl/vr%‘)f J(r/Gnuv) e *ridr.  (3)

Now we proceed to calculate the energy of a
collection of “»n’’ groups by means of the statis-
tical method. Let IV (an integral multiple of n)
designate the number of particles in the system
and E(n, N) the energy value given by the statis-
tical method. By comparing €, and n/N-E(n, N)
something can be learned about the way in
which the degree of accuracy of E(n, N) de-
pends on x. In the statistical model the radius R
of the nucleus and the maximum momentum of
the particles in the nucleus are connected by the
relation (RP)*=97N/2n. The energy has the
form

E(n, N)=0.3NP2—n(n—1)/8

S [ ra=oalslgyasar @
with!

(g—¢/2|p|lg+£/2)=(sin £P/£— P cos £P)/(w§)?,
l¢g| =R, (5)

=0) IQI>R‘

From Egs. (4) and (5) we obtain the energy

[XP9eL]

per n group

n/N-E(n, N)=0.3nP?—in(n—1)(6/7)
-fwf(r/P)(sin r—r cos r)2/rt-dr. (6)

A great simplification is made possible by
the fact that the function 1/9-#2 exp [ —N2]
(N2=1/67%) approximates very closely to
(sin #—7 cos 7)2/r* up to the first maximum of
the latter function. The constant X\ is deter-
mined by the condition

1/9-f r2 exp [ —N\r2]dr
0

=fm(sin r—rcos?)/rt-dr=x/6. (7)
0

If J(r) is an error function or a linear com-
bination of error functions with positive coeffi-
cients, the potential energy in Eq. (6) is increased

by the substitution of 1/9-72exp [—Nr?] for.
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(sin #—7 cos 7)2/r%. Thus, for a reasonably gen-
eral form of potential function, we obtain a
lower limit to E(n, N) defined by the equation

n/N-E'(n, N)=0.3nP?—3n(n—1)(4/x%).
fmf(r/P)\*) exp [—r¥]r2dr. (8)
0

The substitution 3n(n—1)r/4=0.3nP? trans-
forms Eqs. (3) into

en=_Q.3nP2—%n(n—1)(4/7r%)
f J(r/P(n/5(n—1))}) exp [—r2Jridr. (9)

The general assumption about the form of J(7)
made in the preceding paragraph and the in-
equality #/5(n—1) >X=0.2068 which is satisfied
for n <31 imply the relation

en<n/N-E'(n, Ny<n/N:-E(n, N). (10)

Eq. (10) is still valid if E, E’, and e, are replaced
by the minimum values of the three functions
defined by the Egs. (6), (8) and (9), respectively.
It is known that the Gaussian wave function for
an % particle system is increasingly unsatis-
factory as % is decreased.” In actual nuclear
calculations the Gaussian wave function is very
bad for =2, but already surprisingly good for
n=4. Thus e, is an increasingly bad upper limit
on the true 7 particle eigenvalue as 7 is decreased.
The quantity

6(n) = (n/5N(n—1))} (11)

is a monatonic decreasing function of # and
greater than unity for #» <31. This quantity can
be interpreted as the ratio of the effective ranges
of the intranuclear forces in the # particle calcu-
lation and in the statistical calculation. More
than half of the drop to the asymptotic value
(5M)~% occurs in passing from n=2 to n=4.
The relation 6(n) >1 means that the statistical
calculation yields no binding energy for a collec-
tion of “n”" groups. This result must be ascribed
to the inadequacy of the method.

From Volz's form of the Hamiltonian operator,

H=—33A0:;—2V(riy)(—5+14P;;

<i
—7Pi;Q:;+10Q:) /12, (12)
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we obtain the energy equation

E(4, N)=0.3NP2

~0/8) [+ [ Va-a)alolyandr, (13)
when the system contains equal numbers of
neutrons and protons and

E(2, N)=0.3NP?
—(1/8) f f Vig—)(g|o|¢)drdr', (14)

when the system contains only neutrons. These
equations are identical with Eq. (4) if for
n=4 we take J(»)=3/4-V(r) and for n=2,
J(r)=%V(r). The same correspondences hold
also for the four and two particle systems.
Since the statistical approximation gives no
binding energy between ‘2"’ groups and also
none between ‘‘4” groups there is little likelihood
that it is adequate for the calculation of the
interactions within a mixed system containing
both 2’ and ‘4" groups.

Evidently the statistical method yields de-
cidedly less accurate results for #=2 than for
n=4. Although the problem considered here is
not identical with that of determining the
neutron excess in heavy nuclei, there is enough
similarity to suggest that the values of 4 —2Z
given by the statistical approximation are too
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small by a large factor.® In view of this possibility
the argument given by Volz for his special form
of the symmetrical interaction operator must be
considered inconclusive. Moreover the inter-
action operator proposed by Volz contains such
large spin exchange terms® as to preclude the
existence of a partition quantum number for even
the lightest nuclei (with .the single exception of
the deuteron) and thus comes into conflict with
the evidence presented by Wigner!® for the
usefulness of the partition quantum number in
ordering the empirical material on the stability
of isobars up to 4~30. Actually the simple
theory without spin exchange forces discussed
by Wigner begins to make 4 —2Z too large in
the neighborhood of 4 ~50. According to the
calculations of Volz any discrepancy, with
Wigner’s choice of interaction operator, should
be in the direction of making 4 —2Z too small.
However, for the comparison of isobars, Wigner’s
calculations are unquestionably much better
than those based on the statistical approxima-
tion. One may conclude that the evidence
available at present does not support the con-
tention that very large spin exchange forces are
required to account for the large neutron excess
in heavy nuclei.

81n a letter to the writer Dr. Volz states that a calcula-
tion which will test this point is in progress.
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