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terms of the area between the magnetization
curves. Values are given in Table II.

TABLE II. Values of anisotropy constants.

CONSTANTS FROM TORQUE MEASUREMENTS

METHOD

Measurement of areas between
magnetization curves

Ki (erg cm 3) K2 (ergcrn 3)

272,000 150,000
A third method of determining anisotropy

constants is by means of torque measurements.
A single crystal disk 1.77 cm in diameter and
0.222 cm thick was cut so the plane of the disk
was parallel to (110). Torque measurements
were made on this disk by means of a torsion
magnetometer. Using the relation L= —dE/du
and substituting the direction cosines for a
vector lying in the (110)plane gives the following
expression for the torque.

L= —Xq(2 sin 2u+3 sin 4u)/8
—X2(sin 2u+4 sin 4u —3 cos 6u)/64. (7

Fig. 5 shows the theoretical and experimental

Fitting theoretical magnetization
curves to the experimental
curves

Torque measurements

280,000 100,000

287,000 100,000

torque curves. E& and E2 were determined by
trial to make the theoretical curve fit the experi-
mental curve as closely as possible.

The values of E& and E2 determined by the
three methods are given in Table II.

I wish to thank F. E. Haworth for the careful
x-ray determination of the crystal orientations,
and R. M. Bozorth for valuable discussions.
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The viscosity of air has been remeasured with the rotating cylinder apparatus used by Day
and Bleakney. All of the constants have been redetermined, and especial attention has been
given to the corrections to the simple theory. The value obtained at 22'C is q = 1.8243 ~0.0045
c.g.s. units. This raises the oil drop value of e to 4.796 e.s.u. It is shown in the appendix that
a correction must be applied for the opening between the suspended cylinder and the guard
cylinders, and also a correction must be applied for the moment of inertia of the air carried
around by the cylinder when determining its moment of inertia. Neglect of these corrections
has introduced some additional uncertainty into other work.

HE viscosity of air has become of special
interest within the last few years since the

suggestion of Shiba' that an error in the adopted
value of this quantity was responsible for the
discrepancy between the values of e determined
by the oil drop and the x-ray methods. The
work of Harrington' was supposed to have
established its value with the necessary precision,
but Shiba concluded from an examination of
other determinations that this precision might
have been considerably overestimated. Because
of this interest and the presence in this laboratory

' K. Shiba, Sci. Papers Inst. Phys. Chem. Res. Tokyo,
19, 97 (1932).' E. L. Harrington, Phys. Rev. 8, 738 (1916).

of a rotating cylinder apparatus suited to this
purpose it seemed worth while to make a com-
plete redetermination of the viscosity. Although
since the work was started, about a year ago,
the very careful work of Kellstrom' and a
preliminary note from Bearden have appeared
and have confirmed Shiba's supposition, it may
be still of interest to have an independent
determination.

It is not necessary to enter into a detailed de-
scription of the apparatus since it has been previ-
ously described. 4 No essential changes have been

' G. Kellstrom, Phil. Mag. 23, 313 (1937);J. A. Bearden,
Phys. Rev. 51, 378 (1937).

4 R. K. Day, Phys. Rev, 40, 281 (1932);W'. M. Bleakney,
Physics 3, 123 (1932).
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made since the work of Bleakney but all of the
dimensions have been redetermined.

The expression for the viscosity when deter-
mined by this method is

q = s.(b' —a') Ie/la'b'P'Q. (1)

The inside diameter of the rotating cylinder
was measured with two inside micrometers.
The results are given in Table II.

TABLE II. Diameter of outer cylinder.

For convenience in discussion this may be
divided into three parts. Let

X=QI= I m(b' .a')—/la'b'} I,
D = 8/P'0

READINGS

14
14
14

POSITION

Top
Middle
Bottom
Mean

MEAN

11.9070&0.0014
11.9078&0.0006
11.9082~0.0009
11.9077&0.0006

where a is the radius of the inner suspended
cylinder, b is the radius of the outer rotating
cylinder, l is the effective length of the inner
cylinder, I is the moment of inertia and P the
period of oscillation of the inner cylinder, 0 is
the angular velocity with which the outer
cylinder is turned, and 9 is the angular deflection
of the inner cylinder. The quantity Q is deter-
mined by direct measurement, I by observation
of periods of vibration, and the determinations
of D constitute the measurement of the viscosity.
E may be considered a constant of the instru-
ment independent of the suspension used.

READINGS POSITION MEAN

DETERMINATION OF Q

The diameter of the inner cylinder was meas-
ured directly with two different micrometers.
Each micrometer was checked on a standard
block. Although no investigation of the standards
was made it is certain that their error is entirely
negligible compared with other errors which are
present. Measurements were taken near the top,
near the middle, and near the bottom. These
are given in Table I. The uncertainties given
are the root-mean-square deviations from the
mean. The uncertainty indicated in the final
value, in this as in all other tables, is either the
root-mean-square deviation of the mean values'
given or 1/el times the square root of the mean
square of the given uncertainties, whichever is
the larger. There was evidence of slight ellipticity
at the top and at the bottom.

TABI-E I. Diameter of inner cylinder.

The length of the cylinder was measured with
a steel scale and with a glass scale on a cathe-
tometer. Both of these scales had previously
been compared with a standard meter. ' With
the cathetometer, nine readings gave a mean of
25.482&0.018 cm when corrected for the error
of the scale. Six readings with the steel scale
gave 25.495~0.005. The mean is 25.489~0.013
cm.

The use of the length of the cylinder in Eq. (1)
implies that all of the torque is applied to the
outer surface of the cylinder. However, the air
penetrates the opening between it and the guard
cylinder and exerts a torque on the end and in
fact on the inside surface of the suspended
cylinder. This effect is small since the distance
between the cylinders is small compared with
the length, but it is not entirely negligible. The
distance between the guard cylinders as meas-
ured with the steel scale was 25.587&0.015 cm
so that the sum of the two openings was 0.098 cm.
If the suspended cylinder and the guard cylinder
had been identical in wall thickness, just half of
this opening should be added to the length of
the inner cylinder. However, the guard cylinder
had walls some 3 mm thick while the thickness
of the suspended cylinder wall was less than
0.5 mm. On this account more of the torque was
applied to the guard cylinder than to the other
and the correction added was 0.47 of the opening
or 0..046 cm. A further discussion of this correc-
tion is given in the appendix.

With this correction the effective length of
the cylinder was

20
20
20

Top
Middle
Bottom
Mean

10.7173a0.0014
10,7176&0.0014
10.7173&0.0006
10.7174+0.0007

l =25.535&0.015 cm.

' J. S. Campbell and W. V. Houston, Phys. Rev. 39, 601
(1932).
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The relative uncertainty in the value of Q is

~Q/Q =
I L~'/(~ —') j'+L~»(b —a) j'+(»/1)'I '

Combining the above results gives

Q=8.1375+0.10 percent.

DETERMINATIQN QF I
The moment of inertia of the inner cylinder

was determined by the customary procedure of
measuring the period of the rotational oscillations
with and without the addition of a ring whose
moment of inertia was calculated from its
dimensions. Since the torsion constant of a
suspension depends upon the weight it supports,
it was necessary to use a compensating weight
when the ring was not in place. This weight had
the form of a rod and was supported on the axis
of the cylinder by three small wires extending to
one of the ribs. The period was then measured
under four different conditions.

Let Tp be the period of oscillation of the cylin-
der alone, T& the period of the cylinder and the
ring, T2 the period of the cylinder and the
weight, and T3 the period of the cylinder with
both the ring and the weight. Let these be the
periods after the correction for the observed
damping has been applied so that the square
of the corrected period is proportional to the
effective moment of inertia divided by the force
constant. The correction was made in terms of
the observed decrement. Let 5=log, (X„/X +~),
where X„and X„+~are successive maximum dis-
placements on one side. Then T= T'/(1+ P/8~'),
where T' is the observed period. In many cases
this correction was entirely negligible.

The suspensions for the determination of I
were steel and tungsten wires of various sizes.
When first inserted they showed a tendency to
change with the time, and the torsion constant
always showed a slight change with the temper-
ature. A determination of the moment of inertia
thus involved an extended series of observations
of each of the four periods until the permanent
change was negligible and a curve of period
against temperature could be established. The
cylinder was mounted in a wooden case on a
heavy block of concrete to be shielded from air
currents and as much as possible from outside
mechanical disturbances. In spite of these pre-

TABLE III. j/Ioment of inertia of rings and weights.

1 3264.5 ~1.0
2 6364.8+1.2

43.5a0.5
130.5 &0.5

116.10
226.78

118.16
228.83

cautions it was found that the long period
observations were erratic and not reproducible,
so that no determinations were included in
the fina results for which Tp was greater than
100 sec.

The oscillations were observed with a telescope
and scale and the amplitude was recorded to
compute the damping correction. The time
between a passage through the central position
and an integral minute on the clock was meas-
ured by means of a stopwatch. Part of the time
the clock used was a chronometer loaned by
the Mt. Wilson Observatory, but after the
Institute power lines were connected to the
Boulder Dam plant, the frequency was suffi-
ciently constant to use an ordinary electric
clock. Errors in the clock were treated as
negligible. Observations were made of three
passages through the center at the beginning of
a run and again about 50 minutes later. The
nine differences permitted averaging to minimize
the end point errors so that the periods are
believed to be correct to 0.005 percent.

Since these observations were made in air at
atmospheric pressure it is necessary to make a
correction for the moment of inertia of the air
dragged around with the cylinder. This quantity
is approximately proportional to T&, and its
exact form and development are given in the
appendix. Let AIp, AIy, AI2, AI3 be the correc-
tions to be added to the true moment of inertia
of the cylinder under the four conditions of
oscillation. %hen

To' 47r'(I+ BIO) /k, ——
TP =47r'(I+BI~+Is)/k(1+ a),
T22 =4n'(I+QIg+Ig )/k(1+ e),
Ts' 4''(I+AI3+Isr+Is)/—k—(1+2r). (2)

I~ is the calculated moment of inertia of the
ring, I~ that of the weight, and k is the torsion
constant of the suspension when supporting
the weight of the cylinder alone. In these
equations it is assumed that the change in the
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SERIES
SUSP L&NS ION

Ring No.
Temp.
TQ
T1
TQ
T3
aI
/o I
BI2
BI3
I1
II/
PI1
Mean I
Uncertainty

1 2
8 mil steel 5 mil steel

3
8 mil 8' 5

5 mil W 5 milg

2
20.0
35.408

- 43,91Q
35.618
44.100
37.5
41.6
37.7 .
41.7

11857
11837
11835
11843

18

1
20.5
89.496

101.169
89.775

101.436
58.0
61.3
58.1
61.3

11839
11850
11830
11840

14

2
21.0
26.6174
33.0030
26.7680
33,1340
31.5
36.0
31.5
36.0

11839
11826
11834
11833

9.

1
22.5
56,637
63.990
56.779
64.103
47.5
50.2
47.5
50.2

11824
11862
11844
11843

16

1
22.2

63.969
56.763

50.2
47.5

11847
11847

Mean I =11841~10

TABLE IV. Determina, tions of I. but no correction to the standard temperature
of 22.0' was made since the correction is well
within the uncertainty.

The uncertainty in I given in Table IV is
based on the consistency of the different results
only. In addition the uncertainty in Ig and I~
must be included. The fact that two different
rings are used with no apparent systematic
difference in the results indicates that the
difference between the errors in the two rings is
within the dispersion of the measurements.
However to make some allowance for these
uncertainties the value was taken as

I= 11841~0.10 percent gram cm'.torsion constant is proportional to the weight
added, and also that the small difference between
the weights of the rings and the corresponding
compensating weights is negligible.

From Eq. (2) it follows that.

DETERMINATION OF D

The rotating cylinder was driven at constant
speed by a reed controlled motor. The reed was
enclosed in a thermostated box and its tempera-
ture did not vary over 0.2'. The angular velocity
of the cylinder, when connected to the motor by
gears reducing the speed by a factor of 120,
was determined from a run of several hours to be
QQ —0.034967&0.002 percent radians per second.
In making observations several different gear
ratios were used and the ratio of the angular
velocity used to the one given above is tabulated
in column 2 of Table V.

'tAthen the apparatus was assembled and the
cylinder adjusted to be vertical and coincident
with the guard cylinders a series of intermingled
observations of I' and t)I were made. The ob-
servations of P were made with the apparatus

(1+o)= {1+(Iw+AIp AIo)/—
(I+~Io) }To'/To',

(1+o)= {1+(Iw+~Ip ~h)/
(I+Is+2 Ig) I TP/Tpo.

An approximate value of I can be inserted in
these equations to calculate (I+o) The agr. ce-
ment of the two values obtained gives some
indication of the consistency of the observations.
The mean value was then used to determine I.

From Eqs. (2) it also follows that

TABLE V. Observatjons of D.

I' = Tp'(Is + DID —AIp) /
[(1+o) TP T,'] aIp— —

I"=T,P(I+gIp nIp)/—
[(1+o) Too —Tpo] Is AIp, — —(4)

I'"=Too(Iz+~Ii ~Ip Iw)/—
(TP —Too) Iw ~Ip. —

The differences among these three values of I
reHect the difference between the two values of
(1+o). The root-mean-square deviation of these
three values from their mean gives an estimate
of the consistency of the four observed periods
and of the reliability of the mean value of I.

Table III gives the calculated moments of
inertia of the rings and the weights and Table IV
gives the observed periods and the values of I
determined from them. In series 5 observations
were made of T1 and 12 only so that no value
of the dispersion can be given. The temperatures
indicate those at which the periods were taken,

P(22.0')

275.42

186.225

186.049

186.070

0/Oo TEMP.

9/14 21.7
6/7 21.3
1/1 21.6

0.032232
0.042935
0.050112

v X10 D„X10
1.8912 1.8927
1.8908 1.8943
1.8905 1,8925

1/1 21.8
4/3 2 1.8
9/14 21 7
6/7 21.8

6/7 21.7
9/14 2 1.9
1/2 2 1.9

1/1 22 0
4/3 22.3

4/3 22.3
1/1 21.8
6/7 22.2
4/3 23.3

0.050168
0.066965
0.032260
0.043045

0.019642
0.014750
0,011448

0.022900
0.030563

0.030640
0.022935
0.019696
0.030731

1.8924
1.8942
1.8920
).8933

1.8898
1.8922
1,8881

1.8916
1.8940

1.8974
1.8948
1.8978
1.9Q20

1.8934
1.8952
1.8935
1.8943

1.8913
1.8927
1.8886

1.8916
1.8925

1.8959
1.8958
1.8968
1.8955

Mean D22 = 1.8933~0.0017

MEAN

1.8932
&0,0008

1.8941
&0.0008

1.8909
&0.0017

1.8921
&0.0005

1.8960
+0.0005
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evacuated since the moment of inertia was
determined for the cylinder alone. The tempera-
ture was measured by means of four thermo-
couples at various points on the case of the
.apparatus. The whole was surrounded by an
insulating housing to reduce the fluctuations in

temperature, and although no great effort was
made to control the temperature, it varied so
slowly that the change during an observation
of an hour was rarely as much as 0.1'C. The
values of P were then plotted as a function of
the temperature and the suitable value read
from the curve for use with each value of the
deflection. The value of I' at 22.0' for each set
ef measurements is given in column 1 of Table V.

The air admitted to the apparatus was passed
slowly through two tubes, a meter long, filled

with calcium chloride and seemed to be ade-

quately dried. To measure 0 the motor was run
first in one direction and then in the other.
The equilibrium position for each direction was
determined by observing a series of turning
points as the cylinder oscillated through a small

amplitude. Two observations of the deflection
in each direction gave two values of the double
deflection whose mean was then reduced to give
the deflection of the cylinder. The scale readings
were reduced to angular - deflections by the
suitable series expansion. The observed values
of 0 are given in column 4 of Table V and the
corresponding temperatures are in the previous
column.

The value of 0 was then divided by the angular
velocity of the outer cylinder and the square of
the period at the given temperature to give the
quantity D. Although D was observed at a
number of temperatures, the temperature range
was not sufficient to give a good value of the
temperature coeScient, Hence the observed
values were corrected to 22.0'C by the usual

temperature coefficient of 0.00271 per degree. '
The results given in Table V are divided into

five groups. The first two groups were made with
a watch spring suspension of the type used by
Day and Bleakney and the last three were made
with a steel wire 0.003 in. in diameter. Each

6 R. A. Millikan, Ann. d. Physik 41, 759 (1913).

group represents a complete readjustment of
the cylinders. The differences between the groups
are somewhat larger than the dispersion within
them and so are to be attributed to errors in the
adjustment of the cylinders. According to.Kell-
strom an eccentric adjustment gives too low a
value, so that the highest of the values should
be considered the best. To make some allowance
for this the adopted uncertainty in D was made
fifty percent greater than that obtained from
the dispersion of the values so that

D22 ——1.8933X 10 '~0.14 percent.

DISCUSSION OF THE RESULTS

The combination of the adopted values of Q,
I, and D given above gives

q22
——1.8243~0.25 percent)&10 ' c.g.s. units.

The combination of the uncertainties in the
three quantities given above leads to 0.19
percent as the uncertainty of the result. To allow
for other possibilities this is rounded off to 0.25
percent which is then to be regarded as an
estimated limit of error.

With the usual temperature coeAicient

qg3
——1.8292&0.0045 X 10 4 c.g.s. units

which gives for the electronic charge as given by
the oil drop experiments

e=4.796&&10 "e.s.u.

This value of q23 is a little lower than that
given by Kellstrom although the difference is
less than the sum of the two limits of error.
It is not clear from Kellstrom's paper whether
or not he applied the correction for the length of
the cylinder. If this is applied to his result it
becomes somewhat lower. Kellstrom also did
not discuss the corrections to the moment of
inertia due to the presence of air, but it appears
from his description of the method used that
this should be rather small and would tend to
raise his value a little.

In conclusion I wish to acknowledge the
assistance of Mr. F. C. Bennett who helped in

making m'any of these observations.
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APPENDIX

Comyutation of end correction

The use of guard cylinders at each end of the suspended
cylinder very much reduces the end effects and makes the '

end correction very small. Nevertheless a correction of the
order of magnitude of the spacing between the inner
cylinder and the guard cylinders must be added to the
measured length. To determine the amount of this correc-
tion it is necessary to compute the excess of the torque on
the inner cylinder over the torque computed in the simple
theory.

Since the radius of the cylinders is large compared with
the difference in radius it is sufficient to regard them as
planes and to treat the problem in two dimensions. In the
figure let AB represent a part of the inner surface of the
outer cylinder, CD the end of the suspended cylinder and
BFGII the section of one guard cylinder. Since FG is about
3 mm and DF about 0.5 mm it is a sufficient approximation
to prolong FG to FGJ. The thickness of the sheet CD is
about 0.4 mm so it is treated as a thin sheet. The problem
is now to find the motion of the fluid in the space surround-
ing these surfaces when CD and BFJ are fixed and AB is
moving into the page with a constant velocity. When the
motion of the fluid is known the force on the various sur-
faces can be found.

Under these circumstances all of the velocity is perpen-
dicular to the page, and if v is the magnitude of the velocity
at any point (x, y),

8'v/Bx'+ a'v/ay' =0. (&')

This equation and the accompanying boundary conditions
are just those for the distribution of electrical potential be-
tween conducting sheets when AB is at one potential and
the other surfaces are at another.

When the distribution of v is known the force per unit
area on one of the surfaces is the normal component of

(—q grad v) and the total force is the surface integral of
this quantity. To determine the correct value of l for use
in Eq. (1) it is only necessary to find the point P such that
the lines of "flux" (grad v) from BP go to BFJand those
from AP goto CD. If P were joined to Jbya surface normal
to the figure and coincident with the grad v it follows from
Gauss' theorem that the force on BP is equal and opposite
to that on ZFJ, and the force on AP is equal and opposite
to that on CD. If the guard cylinder and the suspended
cylinder were identical in section it would follow from sym-
metry that P would lie just midway between D and F.
However, since this symmetry does not exist the problem
was solved by means of a conformal transformation. 7

This shows that the fraction of the spacing to be added de-
pends upon the ratio of the distance DF to the distance DP.
As DF/DP approaches zero the correction approached
DF/2, and for the dimensions used in this work 0.47 DF
must be added to each end of the swinging cylinder. Since
the thickness of CD is really almost as great as DF the
correct result is between 0.47 and 0.50.

Since the wall of the cylinder is very thin the whole force
is applied effectively at the surface, so the excess torque is
simply given by this addition to the length. In other cases
allowance would have to be made for the point on the end
of the cylincer at which the force was applied.

Effect of the air on the yeriod of the cylinder
%'hen the cylinder is rotating about its axis in air a

certain amount of the air, both inside and outside, rotates

FIG. 1. Section at end of cylinder.

with it and contributes to the effective moment of inertia
of the system. The correction necessary on account of this
effect was computed by considering an infinite hollow
cylinder. This is in error due both to the finite length of
the cylinder and to the presence of the inside ribs but there
seems to be no simple way to take these into account. Of
course the moment of inertia could actually have been de-
termined in vacuum but this presents considerable com-

I

plication.
The treatment of problems such as this apparently goes

back to Stokes'. who gave a simple solution for an oscillating
plane and worked out a number of more complicated cases.
For a large enough cylinder and a short enough period of
oscillation the approximation of a plane can be used. How-
ever, for the cylinder and the periods used in this measure-
ment the error in such an approximation is considerable. I
have been unable to find the cylindrical case treated in any
of the standard works which I have consulted, and since it
seems one which might have a number of applications I
shall outline it here.

For the slow motion of a viscous fluid subject to no ex-
ternal volume forces, and in which the differences in pres-
sure. and density are negligible,

'
the equation of motion is

p(8v/Bt) V'v, (2')

where p is the density, q the viscosity, and v is the vector
velocity of the Quid. For the problem in hand all the motion
takes place in cylindrical laminae so that v is always per-
pendicular to the axis and to the radius. Expressed in
cylindrical coordinates under these restrictions the equa-
tion is

~ I am indebted to Professor W. R. Smythe for assistance in working
out this transformation. The method is described in his book, Static
and Dynamic Electricity published by Edwards Brothers.

gq/g] = (q/p) I(Pp/gy2+ (f/g )gp/gr —y/g 2
I

8 G. G. Stokes, Math. and Phys. Papers, vol. III.

(3')
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where v is now the scalar velocity. The velocity at any
distance from the axis will vary harmonically with the
time so let F(X) G(X)

TABLE VI. Values of F(X) and G(X).

Then

v=A(r) sin (2mt/T)+B(r) cos (2mt/T).

d'A/dr'+ (1/r)dA/dr —A/r'+k8 =0,
d2B/dr2+ (1/r) dB/dr —B/r' —.XA =0,

where ) =2mp/qT.
The general solution of these equations is

(4')

(5')

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

X
0.997
1.922
2.536
2.745
2.780
2.791
2.802
2.828

2.463
2.684
2.752
2.781
2.794
2.805
2.811
2.828

A p ber'(X)
ber" (X)+ hei" (X)

'
A p bei'(X)

ber" (X)+ hei" (X)

From the equations which they satisfy it follows that

A =a herr (x) —b bei&(x) +c ker~(x) —d keir (x),
8=a herr. (x) +b hei'(x) +c ker~(x)+d kei~(x),

(6')

where x= Vr. For numerical computation it is a little more
convenient to have these expressed in terms of the func-
tions with the index zero, so by using the recursion formulas
one obtained

A =n ber'(x) —P hei'(x) +y ker'(x) —8 kei'(x),
B=P ber'(x)+a bei'(x)+8 ker'(x)+y kei'(x).

(7')

The torque on length l of the. cylinder due to the fluid is

L = +2mlR'g I (dA/dr —A/r) sin (2~t/T)
+ (dB/dr —B/r) cos (2vrt/T) I. (8')

The upper sign is to be used for the fluid outside the
cylinder and the lower sign for that inside it. If 0 is the
angular displacement of the cylinder, let

e = (2~/RT)Ap cos (2~t/T), 8= (Ap/R) sin (2xt/T),

where R is the radius of the cylinder. The equation of mo-
tion of the cylinder is

IIV (2 plR /VRA, ) (dB/dx —B/x) y~g I8
+ Ip+ (2~lR'gX&/Ap}(dA/dx —A/x), y-'g Ie+kg =0, (9')

in which p represents the damping constant due to sources
other than the fluid in which the cylinder is immersed,

From Eq. (9') it is evident that the effect of the fluid is to
add an additional moment of inertia to that of the cylinder
and to increase the damping constant. Since only the cor-
rection to the moment of inertia is of immediate interest,
the final expressions will be given for it only. The damping
can be worked out in the various cases by similar methods.

In applying the boundary conditions it is convenient to
consider three cases.

Case I. Theguid is inside the cylinder only. —In this case
the velocity must vanish at the origin and so both A and B
must vanish. Since ker'(x)~ ~ as x~0, 7 and 8 must both
be zero in this case.

Let X=X&R where R is the radius of the inside of the
cylinder. At r=R, B(X)=0, and A(X) =Ap. Hence

A pker'(X)

k.r"(X)+kei"(X)'

—A pkei'(X)
(12')ker" (X)+kei"(X)

'

aI= (m plR4/2) G(X)/X,

ker'(X) ker(X)+kei'(X) kei(X)
G(X) = —4 (13')

ker'(X) +kei'(X)

A few of the values of F(X) and G(X) which lie in the
range needed for the moment of inertia determinations are
given in Table VI.

Case III. Fluid enclosed between concentric cylinders. —In
this case all four coefficients will be different from zero and
must be determined by the solution of four simultaneous
equations. Although laborious this solution presents no
difficulties.

Since when the moment of inertia of the cylinder was
determined the cylinder was enclosed in a house, this third
case might have been of importance. However for the
periods used it diKered only negligibly from case II. With
the dimensions of the cylinder used and approximate values
for the density and viscosity of air X 34.0/T&, and
b,I= 152.5 I F(X)+G(X) I /X.

(d/dx) ber'(x) —ber'(x) /x =bei (x),
(d/dx) bei'(x) —bei '(x) /x = —ber(x).

Using these expressions in Eq. (9') it follows that

aI= (xplR4/2) F(X)/X,

ber'(X} ber(X)+bei'(X) bei(X)
ber" (X)+hei" (X)

where F(X)=4

The coefficient of F(X)/X in Eq. (11') is just the moment
of inertia of the fluid inside the cylinder if it were moving
as a solid. This is its motion in the limit in which X~.
This limit can be approached by a low density, a high
viscosity, a long period, or a small radius of the cylinder.
The other limit in which X~op is that in which the ap-
proximation of the cylinder by a plane is justified. In this
limit F(X)~8&.

Case II. The quid is outside the cylinder and extends to
injinity. —In this case both A and B must vanish at infinity
and Bvanishes at x =X.Since ber'(x) and bei'(x) both go to
infinity, n and P are both zero. These conditions give


