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Energy Bands in the Body-Centered Lattice*
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Slater's method of finding the structure of electronic energy bands in the body-centered
lattices is extended so as to satisfy boundary conditions at fourteen points of the polyhedral cell

surrounding an atom, instead of eight as in previous applications. Since this requires the use of
all the "d" spherical harmonics, the method is now applicable to elements which have "d"
electrons. Greater accuracy is also to be expected for other elements. The expansions of the
determinants relating the energy 8 to k, the wave number vector, are given for all symmetry
axes, and points, and in part for the symmetry planes. From group theory the places where

various bands will stick together, i.e. degeneracies required by symmetry, are also determined.

I. INTRQDUcT IoN

SLATER'S' extension of the method of Wigner
and Seitz' has made possible an approximate

determination of the detailed structure of
electronic energy bands in crystals. In this
method the crystal is divided into polyhedral
cells of equal size, each cell surrounding one
atom. In any one cell the wave function for an
electron can be expanded as

P A„,~u~P~"'(cos 0)e' &

where the u~ are radial functions (obtained by
numerical integration) and P~"' (cos 0)e'"" are
surface harmonics. The constants A l are de-
termined from the known periodicity conditions
which the wave function and its slope must
obey in a translation from one face of the cell to
the perpendicularly opposite face. Since, to
fulfill these conditions for the whole surface of the
cell would be very difficult, in practice the
boundary conditions are satisfied only at the
midpoints of the faces, in which case we repre-
sent the wave function by a finite number of
terms out of the above series. More exactly if we
write

%=G+iU',

where G is even with respect to inversion through
the origin (taken at the nucleus in the center of

*A preliminary report of this work with application to
tungsten (unpublished) was given at a meeting of the
American Physical Society in Rochester, N. Y. Junc, 1936,
Phys. Rev. 50, 399 (1936).**Now at Toledo University.

' J. C. Slater, Phys. Rev. 45, 794 (1.934).
'signer and Seitz, Phys. Rev. 43, 804 (1933) and 46,

509 (1934).
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the cell) and U is odd then the equations de-

termining the A l are

U= tan (X r „/2) G, .

G'= —tan (IC r„/2) U'.

Here r„/2 is the radius vector to the midpoint
of one of the cell faces (~ r„~ is distance between
midpoints of opposite faces), K is the reduced
wave number vector, ' the (') denotes differentia-
tion with respect to r, U, G, O', G' are evaluated
at r„/2. There is a pair of these equations for
each pair of midpoints and therefore we will use
as many terms in our polynomial for + as the
number of midpoints at which we wish to satisfy
the boundary conditions.

These equations for A l are homogeneous and
for a non-trivial solution the determinant of their
coefficients must vanish. Setting this determinant
equal to zero gives a relation between the energy
B, which enters as a parameter in the numerical
integration of the radial functions, and the wave
vector X. A knowledge of B as a function of X
throughout the whole Brillouin zone completely
determines the structure of the band.

In previous applications to the body-centered
lattice, ' ' in which the cell is the familiar
truncated octahedron with fourteen faces, eight
between nearest neighbors, and six between sec-
ond nearest neighbors, the boundary conditions
were satisfied at the midpoints of the faces
between nearest neighbors. The eight functions

' Cf. A. Sommerfeld and H, Bethe, IIandbuch der
Physik, Vol. 24; J.C. Slater, Rev. Mod. Phys. 6, 209 (1934);
Mott and Jones, Theory of the Properties of Metals and
Alloys, Oxford, 1936.

4 J. Millman, Phys. Rev. 4'7, 286 (1935). F. Seitz, Phys.
Rcv. 4'7, 400 (1935).
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used in the expansion of 4' were one s, three p,
three d, and one f S.ince the group' of a general
E vector contains only the identity operation,
there is no spatial degeneracy as in a free atom
and an electronic level with a given l value in
the free atom, which is always 21+1 fold spatially
degenerate, splits up into 2l+1 bands in the
crystal. However, one cannot obtain, for in-
stance, the five bands arising from an electronic
d level, if an eight term polynomial is used for 0,
containing only three d functions. Slater'
pointed out that the method could be extended
by fitting the boundary conditions at the mid-
points of the six faces between second nearest
neighbors, in which case fourteen functions
would be used, including all of the d functions.
When the d band in the metal is occupied, it is
obviously necessary to use these extra functions
and even for other cases, it should improve the
accuracy of the results. ' Moreover, Shockley, '
in an attempt to check the accuracy of the
method, has shown that although the use of eight
functions gave quite good results in the first zone,
it was in error by about 25 percent in the second.
The more elaborate method would undoubtedly
give more accurate results for the higher bands,
and should therefore be used even for elements
having only s and p valence electrons.

I j.. METHoD

For a general direction of propagation, the
wave function for the value of X will contain all
fourteen terms, and the resulting determinant
will be of the fourteenth order, which is much
too unwieldy for practical computation. For
special directions of propagation (in symmetry
planes, or along symmetry lines of the cell), i.e. ,

where the group of X contains more than the
identity operation, the wave functions will have
symmetry properties which can be used to split

~ The group of a wave vector X contains those symmetry
operations of the crystal class, i.e., rotations and reQections,
which either leave the vector invariant or transform it into
one belonging to an equivalent irreducible representation
of the translation group, i.e., a vector diKering from X by
one of the translations of the reciprocal lattice. Cf. F.
Seitz, Ann. Math. N', 17 (1936);Bouckaert, Smoluchowski
and Wigner, Phys. Rev. SO, 58 (1936).' Unpublished calculations on potassium show that this
improvement is appreciable.' Doctoral thesis, M. I. T. (1936). Shockley applied the
method to a case where the wave functions and energy were
known exactly (constant potential) and compared the
results obtained wit& those of the exact treatment,

the determinant into smaller ones. Under the
operations of the group of X, the wave functions
will transform by the irreducible representations
of the group, and only those spherical harmonics
which belong to the same representation will

appear in the expansion of any one wave function.
Due to these transformation properties of the
wave functions, satisying the boundary condi-
tions on one pair of faces, automatically satisfies
them on all other pairs arising from the given
pair by the symmetry operations of the group.
Also for some representations the transforma-
tion properties are such that either the odd or
even functions, or both, must vanish on certain
pairs of faces, e.g. , in the case of a symmetry
plane, where the group contains two elements,
those functions belonging to the antisymmetric
representation must obviously vanish at all
points lying in the plane. All this results in re-
ducing the number of equations necessary to
fit boundary conditions on all the faces, to
exactly the number of spherical harmonics (out
of the fourteen) belonging to the given repre-
sentation. Therefore, instead of solving a
fourteenth order determinant for all the X
values (corresponding to the various zones) going
with a given E, we solve several much smaller
determinants, each for the X value or values, '
corresponding to the zone (or zones) belonging
to that representation. ' Since, ultimately the
constant energy surfaces in the Brillouin zones

Kz

H

K„

FrG. 1. Reduced Brillouin zone for the body-centered
lattice.

'For some directions several zones may belong to the
same irreducible representation.' For classification of Brillouin zones according to their
representations see paper by B. S. W. (reference 5).



ENERGY BANDS IN CRYSTALS 733

are obtained by interlopation between known
directions of X, as many possible directions as
give manageable determinants must be ex-
amined. In the following section we give the
results obtained.

III. RESULTS

The reduced Brillouin zone for the body-
centered lattice is shown in Fig. 1. For con-
venience we have used the notation of Bouckaert,
Smoluchowski and Wigner' (to be referred to as
B.S.W.) in labeling the axes of symmetry. We
shall also use their notation for the various
irreducible representations. For any direction
of X, the functions are listed according to the
representation to which they belong, the dimen-
sion of the representation, " and the expansion
of the corresponding determinant given.

As has been pointed out by B.S.W. , if we
pass from a point of symmetry to an axis of
symmetry, the group of the latter must be a
sub-group of that of the former. The irreducible
representations of the group of the point con-
sidered as representations of the sub-group
(group of the axis), must either be irreducible
representations of the group of the axis, or (if
reducible) have the latter as their irreducible
parts. The irreducible representation of any
band along the axis must be contained in the
irreducible representation of that band at the
symmetry point. Since a point of symmetry
always occurs at the intersection of two or
more axes of symmetry, the above compatability
relations between axes and points indicate
which of the various band sections along the
several axes may join. However, an irreducible
representation along an axis may be compatible
with several diff'erent irreducible representations
at a point, and therefore this joining is not com-
pletely determined by symmetry, which only
limits the possibilities, the actual numerical
values being necessary for a complete determi-
nation. But inasmuch as these compatibility
relations may not be violated, they serve as a
valuable check on any numerical calculations.
For this reason we include the representations
at the various symmetry points, the functions
belonging to them and the determinants. We

"As in the case of atomic levels an n-dimensional ir-
reducible representation denotes an n.-fold degeneracy.

have also given these data for the symmetry
planes, X,=O, X =E„, but only for the anti-
symmetrical representations. The determinants
for the symmetrical representations are larger
than can be conveniently handled. "

The fourteen functions used were

xy xs ys' x —y 3s —r'
even 1$ —d —d —d d

r2 r2 r2 r2 r2

5(x4+y4+s') —3r4
gi

x y s x(5x' 3r')— y(5y' —3r')
odd —p —p —p

r r r

s(5s' —3r') xys

yd

Q 3Bi=3pi'fm'+2pg'f i') Si=
4 3B2 3p1 f2 +2p2f1 SR=
g 3BS 3pgf2' +2pa—'—fg, Ss ——

43B4=3pif2 +2pmfi, S4=
Bs= pi'fi —pifi', Ss=
Bs= pm'f2 —p2f2', Sg=

L s =dc /dz, Du=dm /d2~

3$1 g2 +2$2 gl
3s1 g2 +2$2g 1 &

3$1g2 +2$2 gl~

3slg2 +2$2gl,
$1 gl Slgl )

S2 g2 —$2/2,
~=f~'/f~

"Shockley (Phys. Rev. 51, j.32—3 (1937)) has given a
method for expanding such determinants by using the
expansions along axes contained in the plane. In our case,
however, the resulting transcendental equations would be
much too complicated tp solve without excessive calcu-
lations,

s, p, d, f, g, refer to corresponding radial func-
tions.

In using fourteen points we need the value of
the radial functions and their slopes at two
distances.

rl ——half-distance between nearest neighbors
=(3)'~/4,

r2 ——half-distance between second nearest
neighbors =a/2,

thus s~, pq, dq, fq, gq, and sq', pq' dq' fq', gq' will
refer to value of the functions and slopes at the
distance r~, and s2, f2, etc. will refer to distance
r2. For convenience we shall use an abbreviated
notation for the spherical harmonics omitting
the denominator, thus x will mean x/r, 3s' —1
will mean (3s' —r')/r' etc.

Also since certain symmetrical combinations
of terms frequently appear in the expansions,
we list these and the notation we use for them
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TABLE I. Symbol of the representation, the degeneracy (in parentheses), the functions belonging to the representation and the
expanded determinant.

Point F
r,
r„(3)
r„'(3)
I'gp(2)
I'2'

Point H
Hg
H„-(3)
H»'(3)
H(2(2)
Hp'

Point P
Pg
&3(2)
P4(3)

Point N
Ng
N2
Ng
N4
Ng'
N3'
N4'

Z = (0,0,0)
1s I5(x4+y4+z4) —3 }g
xp yp sp x(5x' —3)f y(5y' —3)f z(5z' —3)f
xyd xzd yzd
(3z2 —1)d (x2 —y2)d
xyzf

E= (0,0,2m. /a)» I5(x4+y'+z') —3 }g
xP yP zP x(5x2—3)f y(5y' —3)f z(5 z' —3)f
xyd xzd yzd
(3s —1)d (x —y)d
xyzf

X= (m-/a, x/a, ~/a)
1s I5(x4+y4+s4) —3 }g xyzf
(3s' —1)d (x' —y')d
xp yp zp xyd xzd yzd x(5x' —3)f y(5y' —3)f z(5z' —3)

X= (m/a, ~/a, 0)
1s xyd (3s' —1)d I5(x4+y4+z4) —3 }g
(xz —yz)d
(xs+ys)d
(x' —y')d
(x+y) p Ix(5x' —3)+y(5y' —3) }f
zp s(5z' —3)f xyzf
(x—y) p Ix(»' —3)—y(5y' —3) }f

Sg=0
B4=0
d~'=0
d2' ——0
f~=0

S3——0
B2 ——0
dg ——0
d2 ——0fI 0

FS4+S2——0
d2 ——0

D)B3+Bg——0

2D~D2S4+2D2S2+D~S3+Sl ——0
dg' ——0
dg=O
d2=0
B~=O

F84+B2——0
B3——0

Line 6

Line Z

Z2

Z4

E = (0,0,k) T~ = tan (ka/4) T2= tan (ka/2)
1s sp (3s' —1)d z(5s' —3)f I 5(x4+y4+z4) —3 }g
T2'Tg'Bl(253+D2S4) —6T2T)D2(SgB6+S6Bg)+ T2-'B3(2Sg+D252)+3Tl'B2D2S3+3D2845g =0
(x' —y')d d2' ——0
xyd xysf FTg'+Dg ——0
xp yp xzd yzd x(5x' —3)f y(5y' —3)f B2TP+Dl B4 ——0

E = (k,k, O) T= tan (ka/2)
1s (x+y)p xyd (3z' —1)d Ix(5x' —3)+v(5y' —3) }f I5(x4+y4+s4) —3 }gT'B,(2D)D2S4+D)S3+2D2$2+Sg)+ T'I 3D2B2(Sg+D)S3)+2D)B3(2DRS2+Sg) —1286SgD)D2—12BgS6D)D2}+6D)D2SlB4——0
(xy —yz)d dg' ——0
":p (xs+yz)d z(5z' —3)f xyzf T'(B2+FB4)+2D&B4=0
(x—y)p (x' —y')d Ix(5x' —3)—y(5y' —3) } T'B3+D2B4 =0

In Table I we list first the symbol of the repre-
sentation, in parentheses the degeneracy, if any,
then the functions belonging to that representa-
tion and the expanded determinant.
In the section of Table I for line D, the symbols
D~, D2 etc. used for the irreducible representa-
tions are not to be confused with the D j and D2
defined previously in terms of the radial d
functions and their derivatives. It is also to be
noted that the vectors ending on line F of Fig. 1.
do not actually have the form X=(k,k, k) as
indicated in Table I. However, the vectors along
the line A do have this form and if we continue
along this line past the point P we will be con-
sidering a line of an adjoining cell which, because
of the symmetry of the reciprocal lattice, has
the same energy values as the line F. Similarly
the line Gwith E=(—&+2m/a, k, 0) h'as the same

energy values as the line K=(2'/a, k, k) and the
plane X,=E„has the same energy values as the
plane K+X„=2~/a.

Most of the compatibility relations between
the various axes, points and planes have been
given by B.S.W. and the reader is referred to
their paper for these. We give below some,
applicable to our results, which they have
omitted.
Ng N2 N3 N4 N] N3 N4 Pg P3 P4

G& G3 G2 G4 64 G3 G&

Dg D4 D3 D2 D3 Dg D4
Z4 Zg Z3 Z4

As an example of how these compatibility rela-
tions are to be used, let us consider an energy
at which d&' ——0. At this energy there will be
three bands stuck together at the center of the
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TABLE I.—Continued.

Lines A. and F
Fl

F3(2)

Line D
Dl

D2
D3
D4

I.ine G

G3
G3
G4

Plane X,=X„

X= (k,k,k) Ti = tan (ku/4) T2= tan (ka/2) T3 = tan (3k'/4)
1s (x+y+z)P (xy+xz+ys)d xysf Ix(5x' —3)+y(Sy' —3)+z(Ss' —3) }f IS(x4+y4+z4)+3 }g
16FBl$4Tl'TQT3'+ Tl'T2'(3Dl S4+53)(383F+Bl)+T2'T3'(F83+38') (Dg$4+3$2)+
6T2'Tg T3(Dg54 —S2) (Bl —F83)—24TgT j T3(Tl +T3)F(86S5+S685)+16''T3 82FS3

+Tg'(82+ 384F)(Sg+3D (53)+T3'(382+ F84) (35)+Dg53) +16T2'D l S383
+6Tl T3(F84 B2)(Sg—Dl53) —24'(Tg+T3)Dj. (8353+$683)+16D(845)——0

(x—z)P (y —s)P (yx —yz)d (xy —xs)d (x' —y-')d (3z' —1)d Ix(Sx' —3) —z(5z2 —3) }f
Iy(Sy' —3)—(5 ' —3) }f
Tl T2 Bi+TpD28g+ To Dl83+D)D284 =0

X= (vr/a, 7r/a, k) T= tan (ka/4) C= ctn (ka/4) T2 = tan(ka/2)
1s zp (3s' —1)d xyd z(5s'. —3)f xyzf IS(x4+y4+s4) —3 }g
12T2(C—T)(F—D&) (8653+8&56)+6T2' I (FB3—8&) (S2—D &54) +2 (8&54F+835.D&) }

+3T2'(T'+ C') (B3F—Bg) (S2+54Dg) —(T'+ C') I2D2(82+ F84) ($2+Dl54) —(83+FB4)(Sl+D)53) }—2 I2D DB —8 F)(S —S D )+2(B S F+8 5 D )j+(8 —8 F)j(S —S D )
+ 2 (B253F+845lDl) }=0

(x' —y')d d2 ——0
(x+y)p (xz+yz)d x(5x' —3)+y(5y' —3) ~f 183+
(x—y) p (xz —ys)d x(Sx' —3)—y(Sy' —3) }f T'Bl+Dg83 =0

X= (—k+22F/a, k,0) T= tan (ka/2)
1s (x—y)p xyd (3z' —1)d I x(5x' —3)—y(Sy' —3) }f I 5(x'+y4+s4) —3 }g
T'83I 2Do(52+ D lS4) + (5]+D l53) }+T I Bl (2D2S4+ 53)+1286D25o+ 128oD256+ 384D2(5(+D]$3) I

+6D282$3 ——0
(xz+yz)d d) ——0
zp (xz —yz)d z(5s' —3)f xysf T'Dl, (B(+FB4)+2F82=0
(x+y)P (x' —y')d I x(Sx'—3)+y(5y' —3) }f T'8 l +Dg82 ——0

E= (k,k,u) T= tan (ku/2) R = tan (ua/4)
(x—y) p (xs' —yz)d (x' —y')d I x(5x' —3) —y(Sy' —3) }f
T'R'Bl+ T'Dl B3+R'D282+ Dl Dg84 =0

Plane X,=O X= (k,u, 0) T=tan f(k+u)a/4j
sp xsd ysd s(Sz' —3)f xysf

R=tan L(k —u)a/4j
2T R 82F+Di(FB4+82)(T +R )+2Dl 84=0

zone and belonging to the representation I'2~'.

As we go out along the line 6 two of the bands
will continue to stick together, having repre-
sentation A~ and the third with A2 . Since A~ is
compatible with either II&5 or IX»' the two de-
generate bands may end at either the energy for
which d ~ =0 or 82 =0, and if we assume that the
bands we are considering started at an energy
lower than any other 6s bands (two more start
at energy for which 84 ——0), they will end at the
lower of these two energies, since bands of the
same symmetry in general will not intersect,
tending to repel each other. Let us consider the
energy for d& ——0 as the lower. Since this belongs
to I7»' which is triply degenerate there must be
another band ending here, which had the repre-
sentation 6s' (IIss' being compatible with
6s'6s). This 6s' band may be either the one which
started at the same point as the As bands (i.e.
dt' ——0, representation I'ss') or one which started
at ft 0(represen——tation f's'), in which case the
former will end at ft' ——0 (IIs' also compatible
with As' ). The determining factors again are the
numerical values and the fact that bands of like

K=0
d, =O

f;=0

F, '=0

cL=o

cI,'=0
f, '=0 dr 0

IKI IKI
A 8

Fro. 2. The plot of energy F as a function of ~X ~. (A) il-
lustrates the case where the energy at which d&=0 is
higher than that at which f~' ——0. (B) illustrates the reverse
case.

symmetry will not cross. Thus if ft ——0 occurs at
a higher energy than d&' ——0, we have the two
possibilities shown in Fig. 2. Here we have
plotted the energy Z (ordinate) as a function of
IXI. (A) illustrates the case where the energy
at which dt ——0(IIss') is higher than that at
which ft' ——0(IIs'). (8) illustrates the reverse
case. It must be remembered that the curve 6„.
represents two bands. In these diagrams the
shape of the bands is not significant, the 62'
bands and 6s bands may cross (accidental
degeneracy) or in the case (8) the 6s' band
starting at d&'=0 may be above the 65 bands.
The correlations between beginnings and ends
of bands here are significant, these being the
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only possibilities allowed, assuming fi =0 at
higher energy than d& =0. The possibilities for
the opposite case follow in an analogous manner.
It must be noted that results obtained here for
degeneracies, the various bands which may stick
together etc. are not dependent on our approxi-
mation. In an exact treatment (i.e., fitting
boundary conditions over the whole surface of
the cell) while the numerical values would be
shifted, the spherical harmonies would still be
classihed according to representations, the com-
patibility relations ~ould still hold and all the

above results would follow. Thus, for example,
the bands arising from a d atomic level would
still have the same symmetry properties as
above (determined essentially by the transfor-
mation properties of the various d functions).
All the information we have obtained about
these bands from their symmetry properties
would still be valid in an exact treatment, or in

any other method of approximation.
We wish to thank Professor Slater who sug-

gested this problem and Dr. Shockley for many
usef ul suggestions.
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The g values of the neutral rare gases have been calculated from the atomic coupling factors
for the mp'n'p configurations, and excellent agreement is shown to exist between theory and
'experiment in most cases. From curves of the g values, interesting conclusions regarding the
the genealogy of the terms in these configurations are noted. ,

HE Zeeman effect of the neutral rare gases
has been studied by a number of investi-

gators, 6rst among them Back' who showed, by
means of his work on neon, the 6rst discrepancies
of the simple Land~ theory and its failure to
explain the anomalous g values that he had
observed. At the same time, he gave the 6rst
evidence of the g sum rule.

A theoretical investigation by Houston' led
the way to the interpretation of these g values
and the possibility of their calculation from
atomic coupling parameters. Pogany's'&~& ~ '&'&

work on the rare gases has shown that excellent
agreement exists between theory and experiment
for the 6rst excited state of these atoms, the
con6guration np'(e+1)s, the type of configura-
tion studied by Houston and Condon and
Shortley, ' and Jacquinot4 has extended the work

' (a) Back, (neon), Ann. d. Physik N, 329 (1925); (b)
Terrien and Dykstra, (argon), J.de phys. 5, 439 (1934);
(c) Bakker, (argon, krypton, xenon), Diss. Amsterdam,
1931; (d) Pogany (krypton) Zeits. f, Physik 86, 729 (1933);
(e) Pogany (argon, krypton, xenon) Zeits. f. Physik 93, 364
(1935).

~ Houston, Phys. Rev. 33, 297 (1929).
&Condon and Shortley, Phys. Rev. 35, 1342 (1930);

see also Laporte and Inglis, Phys. Rev. 35, 1337 (1930).
4 Jacquinot, Comptes rendus 202, 157'8 (1936).

of Pogany to inc1ude the higher series members
of this type of con6guration in neog. , namely the
2p~3s, 2p'4s, 2p'Ss, and 2p~6s con6gurations.
Although a comparatively large amount of
experimental evidence exists, there seem to have
been no other calculations made for any other
con6gurations of the rare gases except the 2p'3p
con6guratxon of neon, where the agreement
between theory and experiment is extremely

POOI .
It is the purpose of the present paper to give

a comparison between the observed g values and
the g values calculated from the parameters
determined by BartbergeI5 from a least-squares
solution of the problem as set up by Shortley'
for the np'n'p con6gurations of the rare gases.
Bartberger's paiameters were determined from
the matrix of the energy set up in JJ coupling
as the zero-order approxlmatIon, but such a
zero-order scheme is not suitable for the calcu-
lation of g values, since the weak-Geld magnetic
interaction terms are not diagonal in jj coupling.
They are, however, in JS coupling, and Bart-

~ Bartberger, Phys. Rev. 48, 682 (1935).' Shortley, Phys. Rev. 44, 666 (1933).


