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Fio. 6. Electron "temperatures" and drift velocities in
argon. The curves marked S—II and G are "temperatures"
derived from the probe measurements of Seeliger and
Hirchert and of Groos, respectively.

Argon

Argon has the greatest Ramsauer effect of any
gas. The result is that its "temperature" defined

by formula (1) instead of being very nearly
equal to 2~/3k as it is when the cross section is
constant, is very much greater. The two quanti-
ties are shown in Fig. 6 and it is seen that
Townsend' s" measurements agree fairly well

with formula (1). On the other hand the probe
'3 J. S. Townsend and V. A. Bailey, Phil. Mag. 44, 1033

(1922).

measurements of Groos' and of Seeliger and
Hirchert4 are of the order of 2e/3k. Using
~1 ——15.6, the ionization potential, gives agree-
ment at the top end of the curve.

Calculated drift velocities agree fairly well for
low values of 8/p though they are a bit low, as
in the case of neon. At large 8/p the use of 15.6
for e& is quite inadequate to give the measured
drifts, whereas ~1——11.57, the first critical po-
tential gives excellent agreement with the meas-
urements of Neilsen. "This value of e1, however,
gives "temperatures" which are far too low.
Townsend's measured velocities are far larger
and are impossible of explanation on this theory.

In conclusion it may be said that "tempera-
tures" and drift velocities may be calculated
without any adjustable parameters and give
excellent agreement with experiment for low
values of 8/p. The peculiarities of the "temper-
ature" of argon are explained by its varying
cross section. At large values of E/p where
inelastic collisions are important their effect can
in general be represented by choosing a single
parameter, ei, which must lie in the range of the
excitation potentials. The two measurements in
argon cannot however be explained by the same
parameters.
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Plasma Electron Drift in a Magnetic Field with a Velocity Distribution Function
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Previous calculations of the drift motion of electrons moving through a gas under the com-
bined action of electric and magnetic fields and concentration gradient have been based upon
inexact averaging methods. For electrons which, like arc plasma electrons, have a Maxwell
distribution to a first approximation, the first-order correction to the distribution function
which arises from drift motion is now calculated. This permits exact averaging of component
velocities to be carried out. The resulting equations are compared with Townsend's earlier
results. Tonks' theorem that "the drift speed is the same as would occur if the components
of concentration gradient and electric field perpendicular to it, as well as the magnetic field itself
did not exist" is found to hold within 12 percent.

HE detailed analysis in terms of a distribu-
tion function of the motion of electrons in a

magnetic field given by tA'. P. Allis and H. W.
Allen' makes it possible to replace the previously

'%. P. Allis and H. W. Allen, Phys. Rev. 52, 703 (1937).

approximate expressions for the drift motion of
electrons' in a magnetic field with exact ex-
pressions.

~ J. S. Townsend, Electricity in Gases, $)89—92. L. G. H.
Huxley, Phil. Mag. 23, 210 (1937).
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where v' —k'+ v'+ I'

This is in accordance with the reasoning of
Morse, Allis, and Lamar. ' The analysis leads to
three equations between f„f& and f2 (Allis and
Allen's Eqs. (28), (29), and (30)), of which the
first gives the energy balance and the second
and third the momentum balance in the x and y
directions respectively.

The first equation is of importance in deter-
mining fo from the energy transfers which in-
volve the electrons. The equation is based on
two types of interchange. The first is the work
done on the electrons by the electric field and
the second is the energy elastically transferred to
atoms on impact. In an arc plasma, however,
other transfer mechanisms operate, namely loss
of energy in inelastic impacts and probably
direct interchange of energy between electrons.
We must, therefore, abandon this equation and
in its place use for fo the Maxwell distribution

The case to be treated is that in which the
magnetic field is in the s direction. The electric
field and concentration gradient components in
the s direction are assumed to be zero, since
motion in this direction is independent of FI and
takes place according to well-known laws. With
Allis and Allen we assume that the distribution
function f giving the number of electrons per
unit volume of t, v, I', x, y, s (velocity-displace-
ment) phase space is

f=fo(v, x, y)+(P/v)f, (v, x, y)
+(V/v)f2(v, x, y), (1)

inhere

b, = eE, /(k T) —B In n/Bx,
b„=eE„/(kT) —B In n/By,

vp, XeH/m. ——
(6)

(7)

It is worth noting that the electric field and
density gradient components enter Eqs. (5)
through the b's only and that the b's are them-
selves gradients of the function

B= eV/(kT) ——ln n,

which is directly related to the Boltzmann
equation. In the absence of magnetic field
(Xc/3)B is the velocity potential for electron
drift. Its space derivatives are still fundamental
in the presence of a magnetic field. That the
equations develop in this way is a consequence
of the fact that a magnetic field does not destroy
the validity of Boltzmann's equation. 4

It is evident that v must enter f2 and f2 in
Eqs. (5) in the exponential form. Accordingly,
we set

then have

eE,Bf0/Bv+ mvBf 0/Bx H—ef2
——m—vf2/I2,

eE„Bf0/Bv+mvBf o/By+IIef 2
——m—vf2/X,

from which to determine f2 and f2 W.e. shall
assume that X is independent of v, although it
will appear that theoretically its variation with v

can be included in the treatment.
Substitution in Eqs. (4) from (2) gives

2r &W—22 "'~'nhb2 (Vy, /V)—f2+f2 ——0,
(5)

&2v 22 "—" '—n).b—„+(v2/v) f2+ f2 0, ——

to which experiment shows that electrons con-
form in many cases. Here n is the electron
density and m2 is 2/3 of the mean square velocity
C'. In terms of electron temperature T and
average electron speed c

f,=2r '2V 'nA e "—2™—f =2r &VV 'nA2c "—'"'—(8)—
with A& and A2 to be determined by substitution
in Eqs. (5). The solution of the resulting simul-
taneous equations gives

w2= 2kT/m = (2r/4) v2. (3) A 2 ——XLb.+ (v2, /v) b„j/LI+ (vg, /v)'j,
A 2

——Xfb„—(v2, /v) b,j/t 1+(vp/v)'j,
(9)

The second and third equations have to be
filled out by the inclusion of a y component of
electric field E„and also by concentration
gradient terms which can obviously be added on
the basis of the Morse-Allis-Lamar Eq. (7). We

P. M. Morse, W. P. Allis, and E. S. I.amar, Phys. Rev.
4S, 412 (1935}.

thus completing the specification of f2 and f2
The fiux of electrons in the x direction is

e

n$=42r f $V2fdV=42r V$2f&dV
' o 0

' L. Tonks, Phys. Rev. 51, 744 (1937).
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and since P can be replaced' by v'/3, The table gives values for o. and P for a range of
values of h.

h 0 0.2
LL 1.0 0.964
P 0.0 0.1671

0.4 1.0 2.0 5.0 10.0
0.882 0.595 0.300 0.0716 0.0194
0.295 0.457 0.44 0.243 0.130

In the course of the indicated integration we
require the value of

In the present notation Townsend's result
(amended4) is

e
—"ds,

b, +(7r'/. 2) hb„
g = (Xc/3)

1+(x-/4) h'
(20)

the x integration being carried out after taking
the derivative with respect to p.

The result of the integration is

where

$ = (Xc/3) (ab, +Pb„), (10)

n = 1 —h'+h4e"'Ei(h') (11)

P = (m'*/2)h[1 —2h'+2m"*h3e"erf (h) J, (12)

(e
—*/x)dx, "

erf (x) =2~ l e *'dx. (13)

In terms of the Larmor precession, ra=eII/m

(14)

which does not appear in the tables. The value
given was found by the process

"d(Je ")——dp

For small h this gives both n and p correctly to
the lowest order in each. For large h, and again
to the lowest order, his a is 2/x and his P is
8/(3x) of the proper value. Thus the agreement
is surprisingly good. Considering ease of mathe-
matical manipulation Eq. (20) is probably as
good a simple approximation over the whole
range of h as is possible where the basic dis-
tribution is Maxwellian.

Of particular interest is the modification
which may be necessary to the theorem that the
motion in the direction of drift is that which
would be caused by the potential and concentra-
tion gradients in that direction alone with all
other components and also the magnetic field
eliminated. 4

Since any deviations will be most marked for a
drift perpendicular to the magnetic field, we
shall assume that the drift lies in the xy plane
and shall orient the x and y axes so that the flow

is in the x direction. Then g is zero and

b. =(Pj~)b*,

For the y drift whence &=(Xc/3)( +P'/ )b.. (21)

q = (Xc/3) (nb„—Pb ). (15) Accordingly, for small h, using Eqs. (17) and (18)
For small values of h

o.=2h-'[1 —3h '+12k 4+ (18)

P = (3/4) x'*h '[1—(5/2) h '
+(35/4)h 4+ . j. (19)

6 This is in accord with G. A. Campbell and 14. M.
Foster, "Fourier Integrals for Practical Application, " Bell
Telephone System Monograph B-584 (1931).Jahnke-Emde,
Tables of Functions (1933) on p. 78 denote this integral as—z~( —~).

(x = 1 —h'+h4(ln k2+0.5772+ ~ ~ ) (16)

P = (m. '*/2) k[1—2h'1 2m ~k'+ ]
For large values of k

$ = (Xc/3) [1—(1—x/4) h'$b,
= (Xc/3) [1—0.2146k']b (22)

and for large h, using Eqs. (19) and (20),

(= (Xc/3) (9x/32) [1+(64/9x —2)h
—'jb„(23)

= 0.883(Xc/3) [1+0.2635k ']b, .

Thus the theorem is accurate to within 12 per-
cent over the whole range of field strength.

Note added ally 11, 1937. Expressions corre-
sponding to our a and p are given without
references in Knoll, Ollendorf and Rompe,
Gasentladungstabellen, Sections f7 and f12. In
the former, on page 47, the ratio of transverse
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diffusion coefficient with magnetic field to that
without magnetic field is given. This agrees, as it
should, with our u. In the latter, on page 51,
the ratio of drift parallel to the electric field
with magnetic field to that without is given and
also the ratio of transverse drift with magnetic
field to parallel drift without. These should, but

do not, agree with our n and P, respectively.
In the absence of references it has not been
possible to determine the source of the differ-
ences, but it probably lies either in the method
used in averaging over the velocity distribution
or in the assumptions, perhaps tacit, regarding
that distribution.
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The Coupling of p Electron Configurations
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The structure and type of coupling of the observed p', p',
and p4 configurations is considered in detail in terms of the
intermediate-coupling theory, in particular for the long
isoelectronic sequences which have recently been analyzed.
The theoretical values of the ratios of various intervals in
these configurations are plotted as functions of the single
parameter which specifies the type of coupling. The experi-
mental values have been fitted to these curves and the
parameters evaluated. The points fit the theoretical curves
fairly well; and the departures of the experimental points
of an isoelectronic sequence from these curves are suS.-
ciently regular to enable accurate prediction of unknown
levels. This method has yielded new classifications in K IV

and Ca VII. For the configurations p' and p's, interval
ratios are found which are predicted to be entirely inde-
pendent of coupling. The parameters are plotted for the
isoelectronic sequences of sp, p, p', p', p4, p', and p's
configurations. The electrostatic interaction parameter F2
is found to be a linear function of Z to a good approxima-
tion; the spin-orbit parameter g~ is accurately proportional
to (Z —S)4 for all but the first few members of each se-
quence. The screening constant:s (S) for f„are much smaller
than the corresponding screening constants for F2. A com-
plete bibliography of data for those atoms with p electrons
in the normal configuration is appended.

Intro d.uction

Recent progress' in the analysis of isoelectronic
spectra has now made possible a thorough
comparison of the intermediate-coupling theories
with experiment for those elements containing
equivalent p electron groups. The manner in
which the energy of the various levels is predicted
to vary with the coupling is shown by Fig. 1.
These diagrams, but with only a few data
superposed, were given by Condon and Shortley. '
The size of the parameter y measures essentially
the departure from Russell-Saunders coupling
(y=0). For pure jj coupling z= ~ (1/+=0).
y is defined as the ratio of the spin-orbit inter-
action integral t~ (C-S 4'4) to the electrostatic
integral 5F~ (C-S page 177). Diagrams of this

* Now at Central Technical Laboratory, Armstrong
Cork Company, Lancaster, Pennsylvania.

' For a complete bibliography see the last section of this
paper.' Condon and Shortley, 'Theory of Atomic Spectra (Cam-
bridge, 1935). For the general theory and notation used in
this paper see chapters XI and XIII of this book. In what
follows this reference will be denoted as C-S.

type are very compact and give a clear picture
of the manner in which the relative values of the
various energy intervals vary with the coupling.
In actual practice, however, they are incon-
venient to apply to experimental results because
of the various scale factors involved and are
inadequate for either extreme, g&(1 or x)&i,
where certain of the intervals become very small
compared to the rest. These diAiculties are
obviated in what follows by using ratios between
directly observed energy intervals; these are
calculated from theory and plotted directly
against x.

In the theory for the p', p', and p' configura-
tions, the ratio of any two intervals (e.g. 'So —'D&

and 'P2 —',P&) is completely determined by y
alone. Thus in these configurations, if any three
levels are known, x may be predicted and the
positions of the other levels as well. For example,
a knowledge of the Lande ratio for a triplet
term should predict absolutely the position of
the two singlet terms arising from a p' or p'


