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Theory of the Townsend Method of Measuring Electron Diffusion and Mobility
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The Lorentz method is applied to the combined drift and diffusion of the electron stream in
the Townsend experiment. The zeroth-order approximation is found to lead to the equation
found by Townsend. It is shown how the next approximation is obtained. The same method is
then applied to the drift of electrons in crossed electric and magnetic fields. It is found that the
magnetic field changes the energy distribution as well as the direction of drift. The latter is
found in close agreement with Townsend, but not with Huxley.

«OKNSEND» measures the random motion
of electrons in gases under the inHuence of

an electric field Z by means of an apparatus
sketched in Fig. 1. Electrons liberated from the
plate I' pass through a circular hole at A and
on down to a circular electrode Cm with a ring
electrode C»C3 around it. Potentials are applied
to the various parts of the apparatus so as to
insure a uniform field 8 from I' to C. The ratio
of the current to C»C3 to that to C2 determines
the ratio of the diffusion constant D to the drift
velocity uz, and hence the temperature T by the
relation

T=AD/kus. (&)

The drift velocity u~ is measured in a similar
apparatus in which the circular hole is replaced
by a slit and the electrodes C», C2, C3 are sec-
tions of a disk. The electron stream is deviated

FIG. 1. Arrangement of electrodes used by Townsend
for measuring random motion of electrons in gases.

by a magnetic field Il directed para11el to the slit,
and the angle of deviation is given by

tan 8=III,/E.
The derivation of these relations is, however, not
free from objections. The existence of a "tem-
perature" implies a Maxwell distribution of
velocities, yet it is known that the distribution

' Townsend and Tizard, Proc. Roy. Soc. 88, 336 (1913);
Townsend and Bailey, Phil. Mag. 42, 873 (1921).

cannot be Maxwellian. Druyvesteyn' has de-
rived a distribution similar to the Maxwellian
but with the energy squared, instead. of to the
first power, in the exponent.

The authors have therefore applied to the
theory of these experiments the method origi-
nated by Lorentz' and extended by Morse,
Allis and Lamar4 to give both the drift velocities
and the energy distribution. The method is
superior to "mean free path" methods in that
one does not average over velocities until the
very last step, and hence can easily handle any
velocity distribution or mean free paths which
are a function of the velocity. Townsends has
recently tried to avoid the dif6culty by con-
sidering groups of electrons of the same energy,
but this is dif6cult as the groups do not stay
together. The Lorentz method considers the
electrons entering and leaving an element of
volume fixed in phase space. It therefore re-
sembles the Euler method in hydrodynamics
whereas Townsend follows Lagrange.

The as yet unknown distribution f is ex-
panded in surface harmonics in velocity space
and only the linear terms are kept. This is well
justified, as random motions are always much
larger than the drift velocity. The thermal
motions of the gas atoms are neglected com-
pared to the motions of the electrons. Davydov'
has shown how to correct for the thermal mo-
tions if it is necessary to do so. Collisions with
atoms are considered to be elastic. This imposes
an upper limit on the parameter Z/p which will

be investigated in the following paper by one of
' M. J. Druyvesteyn, Physica 10, 61 (1934).' H. A. Lorentz. T'heory of E/ectrons, p. 269.
4 Morse, Allis and Lamar, Phys. Rev. 48, 412 (1935).
~ J. S. E. Townsend, Phil. Mag. 22, 145 (1936}.' D. Davydov, Physik, Zeits. Sowjetunion 8, 59 (1935).
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us. The probability of elastic scattering, 0.(v, 0)
is, however, an arbitrary function of angle and
velocity. The cross section for momentum trans-
fer is then defined by

n=4)r fpv dv

Eq. (7) of Morse, Allis and Lamar can then be
applied directly, giving

Q)v)=J 2 (1—cos 0) (v, 0) ) edO (3)
0

fr (2p——»/» p)fp (X—/n) (dn/ds) f», (7)

and the mean free path by

X(v, p) =1/1VQ. (4)

Interactions between electrons are neglected,
and hence the theory applies only to electron
densities which are very small in comparison to
that of the gas.

The two cases of a circular hole and a slit at A
are treated quite separately as cylindrical coordi-
nates are appropriate to the first and cartesian
coordinates to the second.

MOBILITY AND DIFFUSION COEFFICIENTS

fp Aexp ———2p»d»/»»',
» 0

As a first approximation we shall neglect the
diffusion sideways and assume the energy distri-
bution to be that for the homogeneous case'

where we are using s instead of x. The drift
velocity is then given by

f' Z Sm.
u= — ) f,d—y=

n~ v 3nm'

f. 2pe' 1 dn p
X ( fpd» ———

I X»f»d»
n ds~

= Nv —(1/n) (dn/ds) D,

where NE is the drift due to the field and D the
diffusion constant. If the mean free path is
constant, the two integrals are easily evaluated
and give

p' (2
Ng =—

3I'(3/4) E m I
X /2»p') '

i
3I'(3/4)pl ( m )

The cases of greatest interest, however, are those
where p=3m/cV, »» ——XeE, »=-,'mv' and the elec- where X is not constant and the above quantities
tron density must be determined by integrating.

ENER(iY DISTRIBUTION

Let r, 8, s be cylindrical coordinates, i, r'8, z the corresponding velocities. Following Lorentz,
we have

df Bf Bf »7f Bf Bf »7f Bf—=—+~—+8—+z—+i'—+8—+ Z—=b —a
dt 8t 8r 08 Bs Bi 08 Bz

(10)

The first, third, and sixth term in the above expression vanish because we are considering a stationary
state with cylindrical symmetry. In the fifth and seventh terms

r'= r8' and s = eZ/m,

but the nature of these two accelerations is entirely different. The second is due to the applied electric
field and takes place independently of the orthogonal velocity components i and r8 and these there-
fore have to be kept constant in the partial derivative. On the other hand the radial acceleration is
due to the curvature of the coordinate lines and takes place as the electron moves uniformly along a
straight line. The derivative is therefore to be taken with v constant.

Morse, Allis and Lamar, Eq. (14) which is incorrectly written.
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We now substitute

df Bf Bf (Bfq eE (Bf)—="—+'—+"B'I —.
I +—

I
—.

I
=b

dt 8r Bs &Br'), nz E8~) „'
g

f=fo+ (&/v)f ~+ (r/v)fo

(12)

(13)

and replace the resulting quadratic terms by their average values

(e )A„= (r' )A
= r (8 )o„=v'/3, (zr')&„——0 (14)

b ac—an readily be obtained from Morse, Allis and Lamar by an obvious extension of their Eq. (6a).
Equating separately the terms in v alone, in i, and in ~ gives

Bf& 1 B eE B p B (v fo't Bfo eE Bfo fi Bfo+-—(f)+ —('f»= ——
i i, +-

~voBy vp Bvg y ) Bs mv Bv X Br
(15)

It is convenient now to use energy units

g =s'eE, p = reE,

and further to substitute as independent variable q= e —|in place of g.
The above equations then become

1B 1B 2pB(o'fog o Bf,
(pf )+——( f ) =——

I
I+2@—,Bfo/Bo= fi/oo, —Bfo/Bp= fo/po-

p&p e&e e &eE ep &
(16)

It is noticed that the variable g which has replaced s no longer appears on the left-hand sides with the
diffusion terms, but enters only in the term arising from the energy loss in collisions. If there were no
energy losses, q, the total energy, would be a constant of the motion and hence fixed by the initial
conditions aod have no place in the differential equation.

It is now easy to eliminate f& and fo and separate the variables

Set

1 B ( Bfp& 1 B f Bfp) 2p B fpfp) 2poBfp
i+——~" i+——

i I+,
pBph Bp) oopBoE B ~ pppoBo( op ) op B'g

fp R(p)Z(v)E(p——),
(1/p)(B/Bp)(pBR/Bp) = aR R= J' —(ap) BZ/Bv=bZ, Z=eoo=cop' &~

(17)

(19)

where a and b are the separation constants to be determined by the boundary conditions and the
equation for E(o) is

1B~ BE
+ E I+(

opo Bo( Bo pp J 4 op

Substituting E=exp —be —2 oclp/cp G(o), (2o)

(1 op' 2pe) ( b bpp 4bpp tG"+) -+——»-—,lG'+( I'-a' — —+
ep cp ) 0 o pp op

(21)

and finally the solution is expressed as a series

fp=exp —2p) odp/op' QA;Jp(a;p)QB;& exp [—B;&I jG;&(o),
i k

V

(22)
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where the constants are determined by the boundary conditions at the plane z=0.

QB;pG;p(e) =1, QA;Jp(a;p) = A for p & pp the radius of the hole,

0 for p) pp.

The equation for G is, however, not one that
has been studied and therefore it would be
difficult to determine the coefficients 8;I, even if
the characteristic values b;~ were known. It is
better therefore to determine a single mean value
5; corresponding to each Bessel function Jp(a;p)
and then solve Eq. (21) by power series or
asymptotic series. The resulting function fp will

satisfy the equation exactly but will not give
quite the correct energy distribution at the hole.

To determine the best value for b one can
first assume the energy distribution to be the
same everywhere and given by Eq. (5). Town-
send's' equation, converted to our notations, is
then correct

5;s+ub~/eED = a4s (24)

with

Setting

x = (eZ/m)+ (eFF/m) j,
y = —(eIX/m) *

f=fp+(*/v)fi+(i/v)fs

(26)

(27)

and proceeding as before one obtains

and u and D are given by Eq. (8). Solving for
b; and substituting in (21) one finds how much
the energy distribution differs from that as-
sumed, and substituting in (22) without sum-

ming over k one finds how the energy distribu-
tion varies from point to point, in first ap-
proximation.

MAGNETIC DEFLECTION

We shall not attempt here the complete
theory of the experiment with the magnetic field,
but simply that of crossed electric and magnetic
fields, leaving out diffusion. Using Cartesian
coordinates and taking E and II along the x and
z axes respectively, the problem reduces to the
x —y plane only. We have

(~fl»)+ 7J(~f/~"i) = & a(25)—

eE Bfp eFi fq
fs 1

mv Bv mv X

(eIZ/mv)f, = f,/—h

(29)

(30)

The last two equations correspond to Huxley's'
Eq. (24). Huxley has, however, already averaged
over all velocities. Defining 8 by

tan O=fs/fg

and following Huxley one gets

f4 = —(E/2FI) sin 20.
Bfp/Bv

Averaging over velocities now does not lead to
Huxley's Eq. (25).

Equations (28), (29), (30) are easily inte-
grated and give

p 2pe pe H'
log fp —

)I
——de ———,

2 m g2

2pf
fi= fp

Ep-

IVep IIv
fs= fi= —-p—fp

Emv I

(31)

(32)

(33)

Eq. (31) shows that the magnetic field reduces
the number of high velocity electrons. Eq. (32)
shows that the drift down the electric field of
electrons of a given energy is not altered by the
magnetic field. This is, however, because of the
change in the energy distribution. If fp were not
allowed to change, (32) would not be true.
Eq. (33) shows that the sideways drift increases
with v. Comparing (32) and (33) shows that
tan 8 varies inversely as v, so that the high
velocity electrons are relatively little affected.

The average drift velocities are given by

1 fi2 2w 8p,
u, =—

~ f,dp =———
,

I fpde, —
n~ v 3n m'~

eZ pI p pi fv4fpq—(v'fi) =——
]

mvs plv vs plv E X ) (28)

4 J. J. Thomson and G. P. Thomson, Condupuon pf
5/ectricity through Gases, p. 8P,

1 p j' 4m H p
us ———

I fsdV = I4
—

i
v'fpd—v

n& v 3n Z&

P L. G, H. Huxley, Phil. Map. 23, 226 (1937),

(34)
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These integrals are easily evaluated as power
series in gp(IIso/E)', where —', mvo' ——XeE, and
give, in terms of the drift velocity without the
magnetic field NE

u~ —ugr 1 —0.195(p) r(IIvo/E)'+ ] (35)

u„3 IIuE IIui;= 1..06 (36)
u. 2(2)l E E

It is this last formula which Townsend used to
measure NE and it is seen that the numerical
factor differs insignificantly from his value 1.
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The results of the theory developed by Allis and Allen are applied to the computation of elec-
tron "temperatures" and drift velocities in the rare gases; helium, neon and argon. Curves are
given showing the eAect of the variable cross sections on the distribution function in the three
cases. A distribution function is derived to account for energy lost by inelastic impact at higher
values of 8/p. This distribution function depends on an adjustable parameter, ~1 which has a
value between the first resonance potential and the ionization potential, since it is assumed that
the number of electrons with energies above ~1 is negligible. Curves are given comparing the
computed values of electron "temperatures" and drift velocities with experimental values. In
most cases the check is good.

1. ELASTIC COLLISIONS ONLY

HE rare gases helium, neon, and argon offer
an excellent opportunity to check the

. results of the theory developed in the previous
paper by Allis and Allen, of the diffusion and
drift velocity of electrons in these gases. The
angular distribution of electrons scattered from
these gases has been measured down to very low
velocities by Ramsauer and Kollath' and by
Normand' and these measurements allow the

/2

computation of cross sections for momentum
transfer Q. It is found that helium has a falling
curve, neon one which is practically flat, while
argon has one which rises sharply (Fig. 1). The
energy distribution in these three gases will
consequently vary greatly on this account as
well as because of the greatly differing masses.
The argon curve cuts off more sharply on the
high energy side. Furthermore the drift velocity
NE and the diffusion coeAicient D correspond to
the averages of (p/XE)s' and Xv, respectively;
@=3m/3E, three times the ratio of the masses
of the electron and the gas molecule, X is
the mean free path, 1/NQ. The quantity which
is given by Townsend' as a result of his measure-
ments is

T= eED/kup:

.8 /Z /6 2& Z/ Z. a $2 g6

FIG. 1. Cross section in sq. A divided by the square root
of the mass. This is the quantity which determines the
mean energy 8 of the electrons.

' C. Ramsauer and R. Kollath, Ann. d. Physik (5) 12, 529
(1932).

'C, F, Normand, Phys. Rev. 35, 121.7 (1930).

and would be the temperature if the electrons
had a Maxwell distribution. In the above
expression e is the electron charge, Z the field
strength and k the Boltzmann constant. For-
mulae (9) of Allis and Allen show that for a
constant cross section 1should be proportional
to EX/u& but when the cross section varies it is

' J. S. Townsend, Flectricityin Gases (Clarendon Press,
Oxford, 1915).


