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The conductivity of monovalent metals is computed
from the Bloch theory under the assumption that the wave
functions of the electrons are nearly the same as those of
free electrons throughout the major part of the volume. The
perturbation potential resulting from the Debye elastic
waves, which produce transitions between the electronic
states, is the sum of two terms: (1) the change in the total
potential of the ions, which are assumed to move rigidly
with the elastic waves, and (2) the change in the potential
of the self-consistent field of the valence electrons. The
second part tends to compensate the first. Scattering of
electrons through angles greater than 2 sin12-% (~79°)

results from the ‘“ Umklappprozesse’’ of Peierls. It is shown
that the probability of these transitions joins smoothly
with the probability of transitions of the ordinary type,
so that the probability is a continuous function of the
angle of deflection, and transitions through all angles are
possible. Comparison with experiment is made through
Bethe's interaction constant C, which is a measure of the
average scattering power of the elastic waves. Table I gives
the theoretical and experimental values of C/¢, where ¢ is
the Fermi energy. Reasonable agreement is obtained for
Na and K, but the theoretical values of C for the remaining
monovalent metals are somewhat too small.

I. INTRODUCTION

HE modern quantum theory of the elec-
trical conductivities of metals has been
very successful in giving a qualitative, and in
some cases a quantitative, explanation of such
experimental results as the following: the
Wiedemann-Franz law, the dependence of con-
ductivity on temperature (in particular, the
infinite conductivity at zero temperature), the
effect of impurities, and the conductivities of
solid solutions. It seems, however, to be very
difficult to make an accurate calculation of the
absolute value of the conductivity of a metal.
The resistance of a pure metal results from the
interaction of the électron waves with the
lattice vibrations, and little is known about
either the electronic wave functions or the fre-
quency spectrum of the vibrations of most
metallic crystals.

An attempt is made in the present paper to
calculate the conductivity of a monovalent
metal under the usual assumption that the
wave functions of the electrons are nearly the
same as those of free electrons throughout the
major part of the volume. The Debye theory is
used to obtain the frequency spectrum of the
elastic waves. Our treatment differs from pre-
vious theories in two respects: (1) the perturba-
tion resulting from the elastic waves, which is

* Presented at the American Physical Society, Madison
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responsible for the transitions between the
electronic states, is determined in a consistent
manner by calculating the change in the self-
consistent field of the valence electrons when
the crystal is distorted, and (2) the probability
of transitions resulting from the “Umklapppro-
zesse’’ is determined. These latter transitions
are responsible for the scattering of electrons
through angles greater than 2 sin—! 2—3(~79°).

The main outlines of the theory of conduc-
tivity are rather definite. According to Bloch,!
the wave functions of the electrons moving in
the periodic potential field of the undistorted
crystal are of the form:

(k) =exp [k-x]JU(k, x), (1)

where U(k, x) has the translational period of the
lattice. The configuration of the electrons may
be described by giving the distribution of
electrons in k space. If an electric field acts on
the metal, the distribution of electrons will no
longer by symmetric about the origin of k space,
but will be displaced in the direction of the field.
The new distribution results from an equilib-
rium between the transitions due to the field,
and those due to the lattice vibrations. Bloch! ob-
tained an integral equation for the new distri-
bution by setting up the conditions for equi-
librium. Due to mathematical difficulties, it has
so far been possible to solve this equation only
with the following simplifications:

LF. Bloch, Zeits. f. Physik 52, 555 (1928).
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(1) The energy of an electron in the state k
is a function of |k|, and is independent of the
direction of k.

(2) The probability of a transition from a
state k to a state k’ due to the lattice vibrations
depends only on the angle between k and k' (or,
equivalently, on |k—k’|).

These conditions are approximately satisfied
only by the monovalent metals.?

‘The thermal motion of the ions is generally
analyzed into a system of independent sound
waves, after the manner of Debye. The' dis-
placement of an ion at the lattice point R, is
then of the form:

R, =2(qj) {Ag exp (¢q R, —iw,;t)
+Aq* exp (—iq-Ratiwg )}, (2)

in which q is the propagation vector, and w,; is
the angular frequency of the wave. The index
j=(1, 2, 3) refers to the three possible directions
of motion of the ions. Transitions between the
electronic states are due to the displacement of
the ions from their equilibrium positions.

A calculation of the probability of the transi-
tion k—k’ due to the thermal motion of the
ions depends on the evaluation of the matrix
element:

M (k') = f (&) Vg (K)dr, 3)

where 7, is the perturbation potential resulting
from the lattice vibrations. Several different
forms for V, have been chosen by the authors
who have discussed the subject. Bethe and
Bloch? have used the hypothesis of a ‘‘deformable
potential.” If the potential at the point r in the
undistorted crystal is V(r), the potential at the
same point in a crystal subject to the distortion
or is assumed to be V(r—sér), and V, is then
the difference between these, V(r—sér)— V(r).
Nordheim* introduced the idea of a ‘“‘rigid ion.”
If »(r) is the potential of a single ion, the total
potential of the ions is Z,9(r—R,). The ionic
potential of the distorted lattice will then be
2.0(r—R,—6R,). Nordheim supposed that the

2 A discussion appropriate to divalent and transition
metals, where two Brillouin zones are of importance, has
been given by Mott, Proc. Roy. Soc. A153, 699 (1936).

3 A. Sommerfeld and H. A. Bethe, Handbuch der Physik,

Vol. 24, II (Berlin, 1933); Bloch, reference 1.
*L. W. Nordheim, Ann. d. Physik 9, 607 (1931).
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perturbation potential, V,, is the difference be-
tween these, and thus neglected the distortion in
the electronic potential. Both of these hypotheses
result in an interaction between electrons and
lattice vibrations which is too large, and therefore
in a value for the resistance which is much greater
than the experimental value. Mott and Jones®
assume that in each atomic cell, the potential
is due entirely to the ion in the center of the
cell. Then, in the #nth cell, V, is »(r—R,—6R,)
—2(r—R.,). Due to the neglect of the potential
of an ion outside of its own cell, they obtain a
value for the resistance which is somewhat too
small.

The most recent discussion of the subject is
that of Peterson and Nordheim.¢ These authors
object to the method discussed above of de-
scribing the effect of the lattice vibrations as a
perturbation acting on the wave functions of
the electrons in the undistorted crystal, because
the perturbation potential and wave functions
are both large in the neighborhood of the ions.
An attempt is made to construct approximate
wave functions of the progressive wave type for
electrons in the distorted crystal, and transi-
tions between these functions are considered.
The method is applicable when the periodic
part of the wave function of an electron in
the undistorted crystal, U(k,r), is reasonably
independent of the propagation vector k. For
“starting”’ wave functions they take functions
of the form exp [k-r] U(r) where Uy(r) is the
exact wave function of an electron in its lowest
state in the distorted crystal. It is assumed that
(Uq(r))? is proportional to the electronic charge
density. In order to obtain the charge density, it
is assumed that the atomic cells are distorted by
the lattice vibrations, and that the total elec-
tronic charge in each cell is equal to the charge of
one ion. A knowledge of the perturbation poten-
tial is not required, as the matrix element re-
quired for the transition probability depends
essentially on a Fourier component of the charge
density, and is independent of the potential. Ap-
proximate agreement with the experimental

5N. F. Mott and H. Jones, Theory of the Properties of
Metals and Alloys (Oxford, 1936). These authors use the
Einstein model, instead of the Debye model, for the
thermal motion, and so do not need to consider the
“Umklappprozesse.”

SE. L. Peterson and L. W. Nordheim, Phys. Rev. 51,
355 (1937). )



690 J.

values of the resistances of Na and K is obtained,
but these authors neglect transitions due to the
“Umklappprozesse’’ of Peierls,” which would
greatly increase the resistance if included.

Furthermore, the assumption concerning the
form of U, is not correct, as the density of
electrons in the distorted crystal is not propor-
tional to Ug? According to the theory of Peterson
and Nordheim, the conductivity at low tempera-
tures should be proportional to T instead of 7.
The latter follows from the theory of Bloch, and
is justified by experimental data (cf. Section 5).

While the general procedure of these authors
is undoubtedly correct, we believe that the
ordinary perturbation procedure is also correct
as long as the displacement of the ions is small
compared with the interatomic distance. If Uy is
computed correctly, both methods should lead
to the same result. Regions near the ions, where
the perturbation is large, make a negligible con-
tribution to the matrix element.8

The perturbation potential acting on a given
electron consists of two parts: (1) the change in
the potential of the ions? (which is given by the
“rigid ion”” hypothesis of Nordheim above) and
(2) the change in the potential of the self-con-
sistent field of the valence electrons. The second
part tends to cancel the first. Let us consider
the transitions due to a single elastic wave of
wave number q. It is well known that the al-
lowed transitions k—k’ are such that

k—k' = +q+K,, 4)

where K, is a vector of the reciprocal lattice
space, such that K.-R, is a multiple of 2.
Furthermore, we have the requirement of the
conservation of energy :

Ep =Ey+ha,. ()

The few electrons for which these conditions are
satisfied do not contribute appreciably to the
self-consistent field. The wave functions of the
remaining electrons change adiabatically with
the elastic waves. The field acting on an electron
is the potential of the ions together with the

7 R. Peierls, Ann. d. Physik 12, 154 :(1932).

8 Cf. reference 5, p. 254.

9 It is assumed that the ions may be replaced by a central
force field which follows the motion of the ions. This as-
sumption is probably justified for the alkali metals, since

the ionic radii are small compared with the interatomic
distance; it is more questionable for the noble metals.
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adiabatically varying potential of the self-
consistent field. The perturbation potential, V,,
is the difference between the fields in the dis-
torted and the undistorted crystals.

A calculation of the self-consistent field is
carried out in detail for a simple model in Sec-
tion 3. It is assumed that the wave functions of
the electrons in the undistorted crystal are
sufficiently close to the plane wave functions,
Y(k)=exp [7k-r] so that the latter may be used
to determine the charge distribution. This re-
quires that the periodic part of the actual wave
function, U(k, r), be fairly flat throughout the
major part of the volume. The calculations of
Wigner and Seitz and of Slater!® show that this
assumption is valid for Na, and it probably
holds reasonably well for other monovalent
metals as well.

It has been found possible to determine the
probability of transitions resulting from the
“Umklappprozesse’’ (values of K,0in Eq. (4)).
The probability is of the same order of magni-
tude as the probability of an ordinary transition
and does not depend markedly on the direction
of the propagation vector k of the initial state,
so that the theory of Bloch may be applied.
Transitions are possible for all angles between
k and k’; the transitions through angles greater
than 2 sin 2-% (~79°) are due to the “Um-
klappprozesse.”’

II. GENERAL THEORY OF CONDUCTIVITY

Reviews of the theory of conductivity as de-
veloped by Sommerfeld and Bloch may be
found in many places in the literature,! so only
the results we shall need later will be quoted
here. For temperatures well above the char-
acteristic temperature of Debye, the formula
for the conductivity may be written in the
Drude-Lorentz-Somerfeld form:

o= (Ne*/tkm)VpT. (6)

The notation is as follows: N is the number of

10 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46,
509 (1934); J. C. Slater, Phys. Rev. 45, 794 (1934); Rev.
Mod. Phys. 6, 209 (1934).

1 The recent books of Mott and Jones (reference 5),
Frohlich, Electronentheorie der Metalle (Berlin, 1936), and
Wilson, The Theory of Metals (Cambridge, 1936), may be
found useful. The notation of the present paper follows
more closely that of the older article of Sommerfeld and
Bethe (reference 3).
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valence electrons per unit volume, v, is the
group velocity of an electron in a state, k,, at
the top of the Fermi distribution, and 7 is the
mean lifetime of an electron in the state k.
The value of 7, as determined from the integral
equation of Bloch is given by

(1/7)= (kn?/7h)(dk/dE). | | M(kk’)|?

X (1 —cos 0) sin 646, (7)

where 6 is the angle between k and k’. In the

derivation of (7), it has been assumed that E is a
function of |k|, and that M (kk’) is a function of
|k—k’|. The matrix element is defined by (1).

In computing the matrix element, one may
suppose that the elastic waves with different
wave numbers scatter independently. Since the
motion of the ions is slow compared with that
of the electrons, it is possible to consider the
scattering of a stationary wave. The displace-
ment of the ion at the point R, due to an elastic
wave of wave number q is

6R,=N-n,(a, exp [iq-R,]
+a.*exp [—iq-R.]), (8)

where n, is a unit vector in the direction of
motion of the ions, and N is the number of
atoms per unit volume. At high temperatures,
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T>> 0 the amplitude of the vibration is given by :
laq|?=«T/2Mu, )

where « is the Boltzmann constant, M is the
mass of the atom, and w, is the angular fre-
quency of the vibration. According to the
elementary treatment of Debye, the frequency is
given by

wq:qcv

(10)

where ¢ is the velocity of the wave, which is
assumed to be independent of q and of the
direction of motion of the ions. The maximum
value of @ may be expressed in terms of O, the
Debye characteristic temperature :

Bqn="H(672N)}=«0O/c. (11)

While the Debye treatment is not very accurate,
one is almost forced to use it in the present
stage of the theory, because little is known about
the actual frequency spectrum of metallic
crystals. Furthermore, Bloch’s integral equa-
tion has not yet been solved for the general
case.

At low temperatures ("< 0), the sound waves
must be quantized, and the energy of the sound
quantum may no longer be neglected in com-
parison with 7. A brief discussion of the con-
ductivity at low temperatures is giveén in
Section 5.

III. CALCULATION OF THE MATRIX ELEMENT

We consider the scattering due to a single elastic wave of wave number ¢, defined by (8) above.
The perturbation potential, V,, resulting from this wave is the sum of two terms: V;, the change in
potential of the ions, and V,, the change in the potential of the self-consistent field of the valence
electrons. Since the amplitude of the vibration is small, it is possible to determine V, by a perturba-
tion procedure in which terms of higher order than the first in the amplitude are neglected. For V; we
have simply :

Vi=—N"%,2, exp [7q-R,.]n, grad v(r —R,,) +comp. conj. (12)
The potential #(r) is the potential of a single ion, and the sum runs over all N ions in the unit volume.

It is more difficult to compute the potential V, which results from the modification of the electronic
charge distribution. In order to simplify the calculation, we assume that the wave functions of the
electrons in the undistorted crystal run close to the free electron wave functions, y°(k) =exp [ik-1]
throughout most of the volume. The self-consistent field is computed by a perturbation procedure
in which the wave functions of the electrons in the distorted crystal are expanded in terms of the
wave functions of the electrons in the undistorted crystal.

If we expand V;¥(k) in terms of the wave functions, ¢(k'), of the electrons in the undistorted
crystal, the only values of kK’ which enter are those which satisfy condition (4) above. Thus,
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Vap(B) =Za{ Vinp (k+q+K.)+Vin ¥ (k—q—K,)}, (13)

where the sum is over all points of the reciprocal lattice space, and

Vi = f Y(k+q+K,)* Vap(k)dr = — N-%a, f exp [—i(q+K,) -]
X {Z,exp [4q-Rnn, grad o(r—R,,) } Uk+q+K,)*UK)dr. (14)

Interchanging the order of summation and integration, we have, after summation over m,
Ving = —N“iaqfexp [—7(q+K,) r]n,-grad v(r) Uk~+q+K,)*Uk)dr. (15)

The integration is throughout space. We have made use of the fact that U(k) is periodic. There is a
similar expression for V;,_. In the approximation of nearly free electrons, V;, is independent of the
propagation vector k of the initial state.

The wave functions, ¥(k), of the electrons in the distorted crystal may be expanded in a similar

series,
V(k)=y(k)+Z,{b(kn+)¢(k+q+K,)+b(kn— )¢y (k—q—K,)}. (16)

In computing the charge density and potential resulting from these wave functions, we assume that
¥(k) for the undistorted crystal is approximately,

¥(k) =exp [7k-nJUo(r) (17)

and that U,(r) is flat throughout most of the volume.
The density of electrons is, to the first order,

p=2(k) ¥ (k)*¥(K) = po+2(k, 7) Us?{ (b(kn+)+b(kn—)*) exp [i(q+K,)-r]
+(bkn+)*+b(kn—)) exp [—i(q+K,)-r]}, (18)

where p, is the density of electrons in the undistorted crystal. The summation over k is over all
occupied states.
From the equation,
AV,= —4mre*(p—po), (19)

we may determine the change is the electrostatic potential of the electrons resulting from the dis-
tortion of the crystal. We make the further approximation that Ug®=1, so that (19) may be easily
integrated. This approximation should be satisfactory for the terms in which we are interested; i.e.,
those for which q+XK, is small. To this approximation, the potential is:

V,=2,{Vonexp [i(q+K,) 1]+ V,n* exp [ —2(q+K,) 1]}, (20)
Vpw=4me?| q+K, | 22 (k) (b(kn+) +b(kn—)*). (21)

where

The b(kn) are to be determined from the Schrédinger equation,
— (72 2m) A (K) + (Vot Vit V,) ¥ (k) = E(k) ¥ (k), (22)

where V), is'the total potential, ionic plus electrostatic, in the undistorted crystal. The energy of
an electron is unchanged in the first order by the distortion of the crystal. In the free electron ap-

proximation,
Ep=E,+h%k2/2m. (23)
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Substituting (13), (16) and (20) in Eq. (22), and keeping only first-order terms, we obtain the follow-
ing set of equations for the b(kn):

(Ek+q+XK.,.)—E&)b(kn+)4 Vinp+ V,on=0,

(24)
(Ek—q—XK,)—E®&)o(kn—)4 Vin—t V,n*=0.
These equations serve to determine the b(kn) except for k such that
E(k)~E(k+q+K,); Ek)~Ek-—q—K,); (25)

when the simple perturbation procedure breaks down. It is, of course, just these k for which transi-
tions are possible. Solving (24), we find

b(kn+) = (Vint4V,n) (E(k) — E(k+q+K,))™,

(26)
bkn—) = (Vin_+ V,n*)(E(k) - E(k—q—K.,))™.

The V,., still involve the 6(kn). An equation for V,, may be obtained by substituting the values of
b(kn) given by (26) into (21). Some care must be taken in carrying out the summation over k,
because the b(kn) become large for certain values of k. It will be convenient to define an average
energy, W(q+K,) which is a function of |q+K,| to be determined below, by

[(W(q+K,)]"'=N"2(k) (E(k+q+K,) - E(k))", (27)
so that we have the following equation for V,,:
Vin= = (Vinst Vo) Bre2N) | g+ Ko | 2L W(g+K.) T, (28)
Solving, we obtain
Von= = Vins (14 (87¢2N) ™ | g+ K, LW (@ +K) D (29)

In our approximation, the matrix element, M(kk’), corresponding to the transition k—k'=k
+q+K, is:

MEK) = Vinp+ Von=Vinr(1+87€2N |q+ K| [ W(q+K,) ). (30)

The factor multiplying V., is a measure of the compensation of the distortion of the ionic potential
by the shift in the charge density of the valence electrons. For elastic waves of long wave-length
(q small, K,=0) the compensation is almost complete ; the compensation is less effective for waves of
shorter wave-length.

There remains to determine W(q+K.,) from from (27) and V;, from (15). The summation over k in
(27) may be replaced by an integration over the occupied states in k space. We introduce cylindrical
coordinates (¢, p, ), in k space, with the axis in the direction of K=q+X,. From a consideration of
the behavior of the b(kn) for those values of k for which (24) is satisfied, it is easily shown that the
integral we require is:

[W(K) ] =li 3m [f—(K/z)—e d¢ f(kmz_m%pdp
~=lm e
- ¢* 1o

>0 thm:i T [(K+§-)2_
En, dg (km?—2)}
+f ————f pdp}. "(31)
—xin+e [(K4¢)2 =21,

We have used (23) for E;. The integration may easily be carried out by elementary methods, and
we find :
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4 2k, (1 4k,2—K?2  2k,+K)7!
W(K)=- —+ log .
3 2m 2 8kn K 2kn—K

(32)

In calculating V;, from (15), it will be convenient to divide the integration over space into two
parts: the integration over the central cell, and the integration over the remainder of space. The
former may be transformed into a surface integral ; the latter may be simplified by the approxima-
tions U(k) =1 ; 9(r) ==—e?/7. In carrying out the integration, we replace the central cell by a sphere of
equal volume (radius 7,). We then have

Ving = ‘“N%aq(lr‘f“h), (33)
with

)

cell

exp [—i(q+XK,) - rIn, grad v(r) U(k+q+K,)*U(k)dr,

. (34)
L= — f f f exp [—i(q+K.)-r]n,-grad (2/r)dr.
rsY0 g
By elementary methods, we find:
@ .1
Io=4me? cos (n,, q+Kn)f j usin (|q+K,|ru)dudr
rs¥ 0
= — (4mie?/|q+XK,|) cos (n,, q+K.,)(sin x/x), (35)
where '
x=|q+K,|7. (36)

In any cell, the undistorted potential ¥, is approximately equal to the potential of the ion in the
center of the cell plus the potential of the electron cloud within the cell, since the potential of the
ions in neighboring cells is very nearly cancelled by the potential of the electrons in those cells.
The potential of the electron cloud, with the assumption of uniform density, is equal to (3¢*/27,)
— (e*?/2r8). We thus have

Vo(r) =v(r)+ (3e2/2r,) — (e2r%/2r3). 37)
The integral I, is then,

Ilzf Y(k')*n,-grad ‘v(r)t//(k)dv";j' Y(K')*n,-grad Voo (k)dr
cell

cell
+ Y(k')*n, grad (e*r?/2r )¢ (k)dr. (38)
¢ cell

The first integral on the right-hand side of (38) may be transformed into a surface integral which is
rather small in magnitude ; the second may easily be evaluated directly.
According to Mott and Jones,?

f Y(K')*n,-grad Vo (k)dr=(A*/2m)n,: f [¥(k')*(3/0n) grad ¢ (k) —grad ¢(k)(3/on)y (k')*]dS, 3

cell (39)
the second integral being over the surface of the cell. With the approximation of nearly free electrons,
Y (k) wexp [ik-r]Uo(r); Uo(rs) =1; U'(ry)=0; (40)

12 Reference 5, p. 253.
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it is easily shown that the surface integral is equal to:

—4mir 2 cos (ng, q+K.,) (Vo(rs) — Eo) (sin x —x cos x)/x?,

(41)

where E, is the energy of an electron in its lowest state. The potential in each cell is given by (37),
and the wave function of an electron in its lowest state satisfies the Schrédinger equation,

— (B*/2m)AU+V U= E,U.

(42)

It should be noted that E, includes the Coulomb energy, which, for free electrons is 1.2¢?/7,. The
values of E, should be quite small for most monovalent metals. Since v(r) =—e?/7, V(7,) =0.
In the second integral on the right-hand side of (38), we may set with sufficient accuracy, ¥ (k)

=exp [<k-r] so that

f ¥ (k')*n,- grad (e272/2733)¢(k)dr=f

cell cell

Integration by elementary methods gives the following value for the integral :

— (4mie?/|q+XK.|) cos (n,, q+K,)[3(sin x —x cos x) —x?sin x]/x3.

From (35), (41), and (44), we have, finally,

i|q+Kni(
N

4meN
lq+K,|?

Ir{‘Iz: -

exp [—72(q+K,) r]n,-grad (e2?/2r,3)dr. (43)
(44)
3(sin x —x cos x)
+ Volrs) —E(]) cos (n,, q+ Kn)(———;————) (45)
x

and M (kk’) may easily be obtained from (30) and (33). An explicit expression will be given in the

next section.

IV. CaLcuLATIiON OF THE CONDUCTIVITY

The reciprocal mean lifetime, 1/7, is to be
obtained by expressing the matrix element
M(kk') as a function of the angle of scattering,
0, and then integrating over all angles from 0 to
w, as indicated by Eq. (7). For the transitions
of interest, we must satisfy the conservation of
energy, which, in our approximation, gives

k= [k+q+K,| =R,
|q+K,[?= —2k- (q+K.). (46)

Given any k and k’ such that k2=F£"*, one can
always choose q and K,, in such a way that (46)
is fulfilled. If the angle 6 between k and k' is
less than 2sin™12-%(~79°), K,=0. For angles
greater than 79°, one must take the K, which
connect the nearest neighbors to the origin of the
reciprocal lattice space (these transitions corre-
spond to the “Umklappprozesse” of Peierls).
In order that the Bloch theory may be applied,
the matrix element M (kk’) must be independent
of the direction of k, and depend only on the
angle between k and k’, which may be expressed

or

in terms of |q+K.,|. This requirement is
satisfied if K,=0. All the factors in M (kk’) are
functions of |q+K,| except a, which is a
function of ¢. According to (10) and (11), a, is
inversely proportional to ¢. For most transitions
resulting from the “Umklappprozesse,”” q is
quite large, and is close to its maximum value,
gn- We will therefore set ¢g=¢» in a, for those
transitions for which K,#0, and thus under-
estimate the resistance to some extent. The
theory of Bloch may then be applied in its usual
form.

In order to simplify the equations, the follow-
ing notation will be introduced :

u=sin (0/2);
|q+ Ko | 2= 2kn2(1 — cos 8) = &k, u?;
fw)=3+((1—u?/4)log (1+u)/(1—u));
E(u)={ 1, u<2t
2%, u>2"%
g(u)=3(sin x—x cos x)/x3;
x=|q+K.|7s=2krsu=23.84u;
=k, 2m;
B=ek,/7(.

(47)
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Using (30), (32), (33), (45) and (47), and sum-
ming over the three directions of motion of the
ions, we find, after some reduction, that

2(ng) | M(u) 2= (4/9N) |qa,|*(G(u))?,  (48)
where
G ) = g(au) £) [ 1+ (V) — Eo) (30/8¢) ]
X[ f(u)+(2/8)u*]s.  (49)

As u approaches zero (deflection through small
angles) the factor multiplying ¢ in (49) ap-
proaches unity. As u increases, G(#) decreases,
and becomes rather small when #=1 (deflec-
tion through an angle of 180°). It is to be
noted that there is no discontinuity in G(u) at
u=2"%6~79°). The probability of transitions
due to the ‘“Umklappprozesse” joins smoothly
with the probability of transitions of the ordinary
type.

The reciprocal mean lifetime is obtained by
substituting (48) into (7). The integration over
6 is changed to an integration over u, and we
have

(1/7)=2753(k,2/nh) (dk/AE)n

X (4/9N)|ga,|2C% (50)

in which it has been convenient to introduce a
mean square value of G(u) defined by

1
Cr=4u,~ f (G(u))2ubdu
0
1

=214/3f (G(u))u*du, (51)
0

where %, =2"% is the maximum value of u for
an ordinary transition. As thus defined, C is the
interaction constant of Sommerfeld and Bethe.®

13 Reference 3, p. 513.
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We may simplify (50) to some extent by use of
(9), (10), and (11). The substitution for |ga,|?
gives, after some reduction,

(1/7) = 123 Nk 2(dk/dE) (T/ Mx©?) C2.  (52)

The conductivity is obtained by substitution of
(52) into (6):

o= Me(lim)~n(dE/dR) (kO T)C=,  (53)

which is Eq. (36.11) of Sommerfeld and Bethe.
As the characteristic temperatures are not
known accurately for most of the monovalent
metals, it is perhaps best to compare the directly
calculated quantity with the experimental values
of ¢/0?2 which may be expressed in terms of the
interaction constant C2 If we use the free elec-
tron value for E, we have ’

kn(@E/dR)n=2¢. (54)
Eq. (53) may then be written in the form
(¢/C)2=mwomhT /43 Mk O2. (55)

Table I gives a comparison of the experimental
and theoretical values of C/¢ for the monovalent
metals. The relevant data for the calculation of
C/¢ from the experimental values of o and © are
also given. As the characteristic temperatures of
the alkalis are rather uncertain, two values have
been given for Na and K. The lower values are
those of Fuchs'4 as derived from the specific heat
at low temperatures; the higher values are those
of Gruneisen'® as obtained from the variation
of conductivity with temperature. The former
values are perhaps to be preferred, because the
theory of conductivity at intermediate tempera-
tures is rather uncertain. Row (8) of Table I

14 K, Fuchs, Proc. Roy. Soc. A153, 622 (1936).

15 Gruneisen, Ann. d. Physik 16, 530 (1933).

TABLE 1. Comparison of the experimental and theoretical values of C/¢ for the monovalent metals.

1 METAL Na K Rb Cs Cu Ag Au

2 Atomic Wgt. 23 39 85.5 133 63.6 108 197

3 (@1 cm™1; 0°C) 22.6 15.3 - 8.2 5.4 64 67 68

4 ® 150-202 100-126 ~85 ~55 315 215 175

5 7,X 108 2.12 2.56 2.81 3.13 1.41 1.58 1.58
6 B 1.33 1.60 1.77 1.9 0.89 1.00 1.00
7 C/¢ (exp) 0.77-1.04 0.87-1.10 1.6 1.65 1.32 1.21 1.30
8 C/¢ (theor.*) 0.72 0.77 0.80 0.82 0.61 0.64 0.64
9 Vo(rs) — Eo (ev) 0.2 1.3 1.1 3.7)
10 C/¢ (theor.) 0.77 0.80 0.83 0.90

* Assuming that Vo(r.) —Eq=0.
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gives the theoretical values of C/{, computed
under the assumption that V,—E,=0. This
assumption should be very nearly correct for the
alkalis (except Li). Row (9) gives the theoretical
values of E, for Na, Cu and Ag as determined
from the work of Wigner and Seitz!® and of
Fuchs.’® The value given for Au was estimated
from the ionization potential and the heat of
sublimation. It should be noted that the theo-
retical values of C/{ for all the metals listed are
close to 0.8, and are thus very close to the
theoretical values of Peterson and Nordheim®
(0.84 for all monovalent metals). Since we have
underestimated the effect of “ Umklappprozesse,”
the true theoretical values should be larger (by
perhaps ten or fifteen percent).

The agreement obtained for Na and Rb is
satisfactory, but the calculated values for the
noble metals and for Rb and Cs are somewhat
too small. It is perhaps not surprizing that the
values for the noble metals are too low, because
our assumptions are very likely not justified
for these metals, but one would expect closer
agreement for Rb and Cs in view of the fact
that many properties of these metals can be
explained on the assumption of free electron
wave functions.

The accuracy that can be expected from the
one-electron picture on which the Bloch theory
is based is uncertain. The effect of electron ex-
change on the conductivity will be discussed by
the author in a forthcoming paper.

V. CoNDucTIVITY AT Low TEMFERATURES

At low temperatures (7<), the only elastic
waves which will be excited are those with

16 K. Fuchs, Proc. Roy. Soc. A151, 585 (1935).
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small wave number q, and the electrons can be
scattered only through small angles. The theory
has been discussed by Bloch! with the following
simplifying assumptions:

(1) Debye theory for eastic waves,

(2) Thermal equilibrium of elastic waves,
(3) E(k) a function of |k| alone,

(4) G(u)=-constant,

(5) Neglect of “Umklappprozesse.”

If Ty and T, are two temperatures such that

I<OKLT, (56)

and o¢; and o, are the corresponding conduc-
tivities, it was shown that

02/01=497.6(T1/O)«(T1/T>). (87)

According to the present theory, the numerical
factor will be slightly different. As 6 (or u)
approaches zero, G(u) approaches ¢. It is
easily seen that (57) must be multiplied by
¢2/C?, so that we have

o2/a1=497.6(¢2/C*(T1/ ©) (T1/Ts). (58)

For Na, the numerical factor is increased by a
factor of about 1.6. Gruneisen has shown that
the 7% law is obeyed by most metals at low
temperatures, but it is difficult to estimate the
numerical factor from experimental data because
of the uncertainty in ®, which enters in a high
power.

The criticism of Peierls” of the theory of
conductivity at low temperatures must not be
forgotten. It is difficult to see how the elastic
waves in a monovalent metal can be in thermal
equilibrium when a current is flowing.



